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Abstract 
 
The use of artificial neural networks (ANNs) in physical sciences has increased recently. Determining the orbital 

elements of binary systems helps us to obtain fundamental information. In this paper, ANNs were used to find the corresponding 

orbital and spectroscopic elements of four double-lined spectroscopic binary stars: Schulte 3, EY Cep, HD 101131, and Haro 1-

14c. The orbital parameters of the radial velocity curve obtained from ANNs were compared with other traditional methods and 

we show that the proposed method is of high accuracy. Our numerical results are in good agreement with those obtained by 

others using nonlinear regression methods. We show the validity of our new method in a wide range of different types of binary. 

In this method, the time consumed is considerably less than in the other traditional methods. The present method is applicable to 

orbits of all eccentricities and inclination angles and enables one to vary all of the unknown parameters simultaneously. 
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1. Introduction 

 

Artificial neural networks (ANNs), are one of the 

artificial intelligence methods and have become to play an 

important role in our scientific or personal lives. The wide 

applicability of ANNs stems from their flexibility and ability 

to model linear and non-linear systems without prior know-

ledge of an empirical model. This gives ANNs an advantage 

over traditional fitting methods for scientific applications.  

In recent years, ANNs have been widely used in 

astronomy for applications such as star/galaxy discrimination, 

galaxy morphological classification, and spectral classification 

of stars (Bazarghan et al., 2008). Following Bazarghan et al. 

(2008), we employ probabilistic neural networks (PNNs). An 

example of a PNN is shown in Figure 1. This network was 

investigated in ample detail by Bazarghan et al. (2008). The 

method of a probabilistic neural network (PNN) is a new tool 

to derive orbital parameters of the spectroscopic binary stars. 

 

 
 
Figure 1. Schematic of a typical probabilistic neural network given 

by Bazarghan et al. (2008). 
 

The study of both light and radial velocity VR curves 

of binary stars has the potential to provide important infor-

mation, such as the masses and radii of individual stars, which 

has an important role in understanding the present state and 

evolution of many interesting stellar objects. One of the usual 
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methods to analyze the velocity curve is the method of Leh-

mann-Filhés (1894). Some other methods were also intro-

duced by Russell (1902) and Sterne (1941). The different 

methods for VR curve analysis have been reviewed in ample 

detail by Karami and Teimoorinia (2007). They showed the 

validity of applying their new method to a wide range of 

different types of binary systems (Karami et al., 2008; Karami 

& Mohebi, 2007a, 2007b, 2009). 

Schulte 3 is a double-lined eclipsing binary and it is 

a probable member of the Cyg OB2 region. The spectral type 

is O6IV and O9III for the primary and secondary stars, res-

pectively, and the orbital period is P =4.7464 days (Kiminki et 

al., 2008). EY Cep is a double-lined eclipsing binary star and 

the components of EY Cep are young main-sequence stars 

with an age of about 40 million years. The spectral types are 

F0 + F0 V and the orbital period is P = 7.97143839 days 

(Sandberg Lacy et al., 2006). HD 101131 is the brightest 

object in the young open cluster IC 2944. This system is a 
double-lined spectroscopic binary in an elliptical orbit with a 

period of P = 9.64659 days. It is a young system (approxi-

mately 2 million years old) and the spectral types are O6.5 

V((f)) and O8.5 V for the primary and the secondary stars , 

respectively (Gies et al., 2002). Haro 1-14c is a double-lined 

spectroscopic binary and consists of primary and secondary 

components. The spectral type is K3 and the orbital period is 

P = 591.3 days (Simon & Prato, 2004).  

In the present paper we use a PNN to find optimum 

match to the four parameters from VR curves of the four 

double-lined spectroscopic binary systems: Schulte 3, EY 

Cep, HD 101131, and Haro 1-14c. Our aim is to show the 

validity of our new method for a wide range of different types 

of binary systems.  

 

2. Materials and Methods 
 

The radial velocity of a star in a binary system is 

defined as (Smart, 1990): 
 

                  (1) 
 

where  is the radial velocity of the center of mass of system 

with respect to the sun and
 

 

                (2) 
 

is the radial velocity of the star with reference to the center of 

mass of the binary (Smart, 1990). In Equation 2, the dot 

denotes the time derivative and θ, ω, and e are the angular 

polar coordinate (true anomaly), the longitude of periastron, 

and the eccentricity, respectively. Note that the quantities θ 

and ω are measured from the periastron point and the spec-

troscopic reference line (plane of sky), respectively. 

Also, 
 

                                                (3) 

 

where P is the period of motion and inclination i is the angle 

between the line of sight and the normal of the orbital plane. 

Here we apply the PNN method to estimate the four 

orbital parameters, γ, K, e, and ω of the VR curve in Equation 

2. The ANNs are able to acquire information and provide 

models even when the information and data are complex, 

noise contaminated, non-linear or incomplete. The goal of 

ANN is to map a set of input patterns onto a corresponding set 

of output patterns. The network accomplishes this mapping by 

learning from a series of past examples and defining the input 

and output sets for a given system. The network then applies 

what it has learned to a new input pattern to predict the 

appropriate output. 

Previous papers applied methods with several stages 

for obtaining the four parameters K, γ, ω, and e from VR. They 

obtained each of four parameters separately without depen-

dence on numbers of VR and ϕ. But by using the proposed 

PNN method, the number of stages decreased and four 

parameters have been calculated concurrently and, therefore, 

the speed of the calculations increased. 

In this work, for the identification of the observa-

tional VR curves, the input vector, X = (x1, x2, …, xn), was the 

fitted VR curve of a star with 36 data points (n = 36). The PNN 

is first trained to classify the VR curves corresponding to all 

possible combinations of γ, K, e, and ω. This can synthetically 

generate VR curves given by Equation 2 for each combination 

of parameters: 

• 100 100       in steps of 1; 

• 1 K 300          in steps of 1; 

• 0 e 1                in steps of 0.001; 

• 0 360           in steps of 5. 

 
This gives a very large set of 5000 pattern groups k, where k 

denotes the number of different VR classes, one class for each 

combination of γ, K, e, and ω. Since this very large number of 

different VR classes causes some computational limitations, 

one can start with large step sizes. Note that from Petrie 

(1960), one can guess γ, K, and e from a VR curve. This 

enables one to limit the range of parameters around their 

initial guesses. When the preliminary orbit has been derived 

after several stages, then one can use the above small step 

sizes to obtain the final orbit.  

According to Equation 2 we obtained VR for each 

combination of the parameters K, γ, ω, and e and different 

values of ϕ for 0 < ϕ < 1 (36 phase). Using the fitted curve to 

the observed data we obtained VR from ϕ in these 36 phases. 

In this work, for the identification of the observational VR 

curves, the input vector is the fitted VR curve of a star. The 

PNN is first trained to classify VR curves corresponding to all 

the possible combinations of K, γ, ω, and e. Since this is a 

very big number of different VR classes with all the possible 

combinations of K, γ, ω, and e, we use the fitted VR curve of a 

star. When an observational VR curve of an unknown classi-

fication was fed to the trained network, we obtained four 

parameters with maximum similarity to all the possible 

combinations. Therefore this method is useful for all of the 

unknown parameters, For example, in one case, the method is 

useful for a star attended by two dark companions with 

commensurable periods. 

When the network starts to train in big step sizes, its 

output is 1 for those inputs VR and ϕ that have maximum 

similarity to combinations of the four parameters K, γ, ω, and 

e. For the other values of VR, ϕ output is 0 and by repeating 

this process with a small step size it converges to the best 

values of K, γ, ω, and e. These combinations of the parameters 

give a very big set of k pattern groups, where k denotes the 
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number of different VR classes, one class for each combination 

of K, γ, ω, and e. Since this very big number of different VR  

classe causes some computational limitations, one can first 

start with the big step sizes. Note that from Petrie (1960), one 

can guess K, γ, and e from a VR curve. This enables one to 

limit the range of parameters around their initial guesses. 

When the preliminary orbit has been derived after several 

stages, then one can use the above small step sizes to obtain 

the final orbit. When the network starts to train with a deter-

mined step size, the maximum absolute error of the network’s 

output and real value is smaller than the amount of mesh size 

and it outputs 1 for those inputs that have maximum similarity 

to four parameters. If we decrease the mesh size the error 

value between the real value and the network’s output 

decreases. 

The PNN has four layers including the input, 

pattern, summation, and output layers (Bazarghan et al., 

2008). When an input vector is presented, the pattern layer 

computes distances from the input vector to the training input 

vectors and produces a vector whose elements indicate how 

close the input is to a training input. The summation layer 

sums these contributions for each class of inputs to produce as 

its net output a vector of probabilities. Finally, a competitive 

transfer function on the output layer picks the maximum of 

these probabilities, and produces a 1 for that class and a 0 for 

the other classes (Specht, 1988, 1990). Thus, the PNN classi-

fies the input vector into a specific k class labeled by the four 

parameters γ, K, e, and ω because that class has the maximum 

probability of being correct. 

 

3. Results and Discussion 

 
Using measured VR data of the two components of 

these systems obtained by references in section 2, the fitted 

velocity curves are plotted in terms of the phase in Figures 2 

through 5. We have fitted the observational VR data by Curve 

Expert software. In this software, r is a parameter that 

quantifies goodness of fit. It is a fraction between 0.0 and 1.0, 

and has no units. Higher values indicate that the model fits the 

data better. 

 

 
 
Figure 2. Radial velocities of the primary and secondary components 

of Schulte 3 plotted against the phase. The observational 

data have been measured by Kiminki et al. (2008). 

 
 
Figure 3. Radial velocities of the primary and secondary components 

of EY Cep plotted against the phase. The observational 

data have been measured by Sandberg Lacy et al. (2006). 

 

 
 

Figure 4. Radial velocities of the primary and secondary components 

of HD 101131 plotted against the phase. The observational 
data have been measured by Gies et al. (2002). 

 

 
 

Figure 5. Radial velocities of the primary and secondary components 

of Haro 1-14c plotted against the phase. The observational 

data have been measured by Simon and Prato (2004). 
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The orbital parameters obtained from the PNN for 

Schulte 3, EY Cep, HD 101131, and Haro 1-14c are tabulated 

in Tables 1 through 4, respectively. The tables show that the 

results are in good accordance with those obtained by 

references in section 2. The numbers in parentheses in the last 

columns of the tables give the error in the last digit quoted. 

Note that the Gaussian errors of the orbital parameters in 

Tables 1 through 4 are produced by the same steps that 

generated the VR curves, i.e. Δγ = 1, ΔK = 1, Δe = 0.001, and 

Δɷ = 5. When the network starts to train with the determined 

step size, the maximum absolute error of the networks output 

and real value is smaller than the amount of mesh size and it 

outputs 1 for those inputs that have maximum similarity to the 

four parameters. If we decrease the mesh size the error value 

between the real value and the network output decreases. The 

parameter e is the most important of the other three para-

meters that have been reported. The error of parameter e in 

this work is less than other methods. Furthermore the present 

method enables one to vary all of the unknown parameters γ, 

K, e, and ɷ simultaneously instead of one or two of them at a 

time. It is possible to make adjustments in the elements before 

the final result is obtained. 

These are close to the observational errors reported in the 

literature. Regarding the estimated errors, following Specht 

(1990), the error of the decision boundaries depends on the 

accuracy with which the underlying probability density 

functions (PDFs) are estimated. Parzen (1962) proved that the 

expected error gets smaller as the estimate is calculated from a 

progressively larger data set. This definition of consistency is 

particularly important since it means that the true distribution 

will be approached in a smooth manner. Specht (1990) 

showed that a very large value of the smoothing parameter 

would cause the estimated errors to be Gaussian regardless of 

the true underlying distribution. Also, the misclassification 

rate is stable and does not change dramatically with small 

changes in the smoothing parameter. 
 

Table 1.     Orbital parameters of Schulte 3. 
 

 
 

Table 2.     Orbital parameters of EY Cep. 
 

 

Table 3.     Orbital parameters of HD 101131. 

 

 
              

          Table 4.    Orbital parameters of Haro 1-14c. 
 

 

 

The combined spectroscopic elements including 
3

pm sin i , 3

sm sin i , 
3

p s(m m )sin i , p s(a a )sin i , and s

p

m

m
 

are calculated by substituting the estimated parameters K, e, 

and ω into Equations 3, 15, and 16 in Karami and Teimoorinia 

(2007). The results obtained for the four systems are tabulated 

in Tables 5 through 8 and show that our results are in good 

agreement with those obtained by references in section 2. 

Here the errors of the combined spectroscopic elements in 

Tables 5 through 8 are obtained by the help of errors in orbital 

parameters error, such as Equations 3, 15, and 16 in Karami 

and Teimoorinia (2007). 

 
Table 5. Combined spectroscopic elements of Schulte 3. 

 
 

 
 

PNNs are used in both regression (including 

parameter estimation) and classification problems (Agarwal et 
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al., 2012; Almeida et al., 2010; Andreon et al., 2000; Ball et 

al., 2004; Cortiglioni et al., 2001; Firth et al., 2003; Snider et 

al., 2001). However, one can discretize a continuous 

regression problem to such a degree that it can be represented 

as a classification problem (Specht, 1988, 1990), as we did in 

this work. 

There are different methods to determine the orbit of 

a spectroscopic binary from its VR curve. Using the measured 

VR data of Schulte 3, EY Cep, HD 101131, and Haro 1-14c 

obtained by other methods in the literature, we find the orbital 

elements of these systems by the PNN. Our results show that 

this method has more advantages in comparison with the other 

traditional methods. 

 

4. Conclusions 
 

We showed the validity of this method to a wide 

range of different types of binary systems. Our numerical 

results are in good agreement with those obtained by others 

using more traditional methods. In this method the time 

consumed is considerably less than in the other methods and it 

is applicable to orbits of all eccentricities and inclination 

angles. It is also more accurate as the orbital elements are 

deduced from all points of the velocity curve instead of four in 

the method of Lehmann-Filhés. The present method enables 

one to vary all of the unknown parameters γ , K, e, and ω 

simultaneously instead of one or two of them at a time. It is 

possible to make adjustments in the elements before the final 

result is obtained. There are some cases, for which the 

geometrical methods are inapplicable, and in these cases the 

present one may be found useful. Another case, for which this 

method is useful, is that of a star attended by two dark 

companions with commensurable periods.  
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