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Abstract 
 
 Divergence or relative information is a measure of information associated with two probability distributions of a 
discrete random variable which is based in Shannon entropy. In this paper a new divergence measure and corresponding fuzzy 
directed divergence measure have been proposed. Comparative study of the proposed divergence measure with some existing 
divergence measure has been done with the help of numerical example. Further, the application of proposed fuzzy directed 
divergence is illustrated in decision making problems. 
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1. Introduction 

 
 Information theory deals with the study of problems 
concerning any system that includes information dispensation, 
storage, retrieval and decision making. In other words, 
information theory studies all problems related to the entity 
called communication system. The source of messages can be 
a person or machine that generates the messages, the encoder 
converts messages in to an object which is suitable for 
transmission, such as a sequence of binary digits (digital 
computer applications), channel is a medium over which the 
coded message is transmitted, decoder convert the received 
output from the channel and tries to convert the received 
output in to the original message to transport it to the 
destination. But this cannot be done with absolute consistency 
due to existence of some disorder in the system, which is also 
termed as noise. Information theory is considered to be 
identified by Shannon (1948); measure of information theory 
is termed as entropy w.r.t. probability distribution. Shannon 
(1948) also proved various mathematical properties of the 

 
measure. Kullback and Liebler (1952) quantified the measure 
of information associated with the two probability distri-
butions݌ = ,ଵ݌) ଶ݌ , … … , ݍ ௡) and݌ = ଵݍ) , ଶݍ , … … ,  ௡) ofݍ
discrete random variables, ݌)ܦ ∥ (ݍ = ∑ ݃݋௜݈݌ ௣೔

௤೔

௡
௜ୀଵ   known as 

directed divergence. There exist other measures of 
divergenceon set of probabilities, with diverse names such as 
distance and discrimination etc. The natural properties of 
directed divergence are divergence is a non-negative function; 
it becomes zero when two sets coincide. 
 Analogous to probability theory, fuzzy set theory 
was introduced by Zadeh (1965). Uncertainty and fuzziness 
are present in human thinking and related to many practical 
problems. Fuzziness is found in our language, in our judgment 
and in the course of actions.  
 Fuzzy set theory gave a whole new dimension to set 
theory which considers an element to belong to a set or does 
not belong to a set. A fuzzy set ܣሚ is subset of universe of 
discourse X, is defined asܣሚ = ,ݔ〉} 〈(ݔ)஺෨ߤ ⁄ݔ ∈ ܺ}, whereߤ஺෨ ∶
ܺ → [0,1] is a membership function of  ܣሚ . The value of 
ݔ describes the degree of belongingness of (ݔ)஺෨ߤ ∈ ܺ inܣሚ. 
 Fuzzy entropy deals with vagueness and ambiguous 
uncertainties, whereas Shannon entropy deals with proba- 
bilistic uncertainties. De Luca and Termini (1972) charac-
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terized the fuzzy entropy and introduced a set of following 
properties (1–4) for which fuzzy entropy should satisfy them: 

1. Fuzzy entropy is minimum iff set is crisp. 
2. Fuzzy entropy is maximum when membership 

value is 0.5. 
3. Fuzzy entropy decreases if set is sharpened. 
4. Fuzzy entropy of a set is same as its 

complement. 
  

Bhandari and Pal (1993)  gave a fuzzy information 
measure for discrimination of a fuzzy set ܣሚ relative to some 
other fuzzy set ܤ෨   called as Fuzzy divergence and gave various 
measures of fuzzy entropy and measure of fuzzy divergence 
corresponding to a fuzzy set ܣሚ relative to some other fuzzy 
set ܤ෨  . Let X be a Universal set and F(X) be the collection of 
all fuzzy subsets of X. A mapping D:  F(X)×F(X)→R is called 
divergence between two fuzzy subsets if it satisfies following 
properties for any ܣሚ,ܤ෨, ሚܥ ∈  :(ܺ)ܨ

1. D (ܣሚ,  .෨) is non-negativeܤ
2. D(ܣሚ, ෩,ܤ)෨)= Dܤ  (ሚܣ
3. D(ܣሚ, (෨ܤ = 0 if ܣሚ = ෨ܤ  
4. Max{D(ܣሚ ∪ ,ሚܥ ෨ܤ ∪ ,(ሚܥ D(ܣሚ ∩ ,ሚܥ ෨ܤ ∩  ≥{(ሚܥ

D(ܣሚ,  (෨ܤ
 

 The simplest fuzzy directed divergence is D(ܣ, (ܤ =
∑ ൤ߤ஺(ݔ௜)݈݃݋ ఓಲ(௫೔)

ఓಳ(௫೔) + (1 − ݃݋݈((௜ݔ)஺ߤ ൫ଵିఓಲ(௫೔)൯
൫ଵିఓಳ(௫೔)൯

൨௡
௜ୀଵ  given by 

Bhandari and Pal (1993), where ߤ஺(ݔଵ), ,(ଶݔ)஺ߤ … ,  (௡ݔ)஺ߤ
describes the degree of belongingness of ݔ௜ ∈ ܺ inܣ and 
,(ଵݔ)஻ߤ ,(ଶݔ)஻ߤ … … … ,  describes the degree of (௡ݔ)஻ߤ
belongingness of ݔ௜ ∈ ܺ inܤ respectively. Later, Fan and Xie 
(1999) gave the discrimination of fuzzy information of fuzzy 
set A against B. 

,ܣ)ܫ                   (ܤ = ∑ ൣ1 − ൫1 − ൯݁ఓಲ(௫೔)ିఓಳ(௫೔)(௜ݔ)஺ߤ −௡
௜ୀଵ

  ൫ఓಳ(௫೔)ିఓಲ(௫೔)൯൧݁(௜ݔ)஺ߤ                                      

w.r.t. exponential fuzzy entropy given by Pal and Pal (1989). 
Further, corresponding to entropy given by Havrda-Charvat 
(1967), Kapur (1997) gave a generalized measure of fuzzy 
directed divergence as  ܫఈ(ܣ, (ܤ = ଵ

ఈିଵ
∑ ஺ߤ]

ఈ(ݔ௜)ߤ஻
ଵିఈ(ݔ௜) +௡

௜ୀଵ

(1 − ఈ(1((௜ݔ)஺ߤ − ଵିఈ((௜ݔ)஻ߤ − 1] , ߙ ≠ 1, ߙ > 0 Divergence is 
found in various applications in the real world such as image 
segmentation, medical sciences, pattern recognition, fuzzy 
clustering etc.  
 Operations on fuzzy sets are termed as aggregation 
operators such as fuzzy union and fuzzy intersection. These 
operations are used to combine two or more fuzzy sets into 
one. An aggregation operation (Klir & Folger, 1988) defined 
as a function ܣ: [0,1]௡ → [0,1] satisfying: 

1. A(0,0,…..0)=0 and A(1,1,…..,1)=1  
2. A is monotonic in each argument. 

 
Bhatia and Singh (2013), proposes a measure of arithmetic–
geometric directed divergence of two arbitrary fuzzy sets A 
and B is as 
,ܣ)ܶ (ܤ = ∑ ൤ఓಲ(௫೔)ା ఓಳ(௫೔)

ଶ
݃݋݈ ఓಲ(௫೔)ା ఓಳ(௫೔)

ଶඥఓಲ(௫೔)ఓಳ(௫೔)
+௡

௜ୀଵ

                     ଶିఓಲ(௫೔)ିఓಳ(௫೔)
ଶ

݃݋݈ ଶିఓಲ(௫೔)ିఓಳ(௫೔)
ଶඥ (ଵିఓಲ(௫೔))(ଵିఓಳ(௫೔))ቃ  

 

and defined generalized triangular discrimination between two 
arbitrary fuzzy sets A and B as follows: 

∆ఈ(ܣ, (ܤ = ∑ (௜ݔ)஺ߤ) − ଶఈ௡((௜ݔ)஻ߤ
௜ୀଵ ൤ ଵ

൫ఓಲ(௫೔)ା ఓಳ(௫೔)൯మഀషభ +

                       ଵ

൫ଶିఓಲ(௫೔)ିఓಳ(௫೔)൯మഀషభቃ  

 

They also defined a new (ߙ,  class of measure of (ߚ
fuzzy directed divergence for two arbitrary sets A and B as 

ఈܦ
ఉ(ܣ, (ܤ = ଵ

ఉିଵ
∑ ቈቀߤ஺(ݔ௜)ఈߤ஻(ݔ௜)ଵିఉ + ൫1 −௡

௜ୀଵ

൯ଵିఈ(1(௜ݔ)஺ߤ                        − ଵିఈ൯((௜ݔ)஻ߤ
ഁషభ
ഀషభ − 1൨  

 
ߙ  > 0, ߙ ≠ 1, ߚ > 0, ߚ ≠ 1 and introduced (ߙ,  (ߚ
generalized arithmetic-geometric measure of fuzzy directed 
divergence ఈܶ

ఉ(ܣ, (ܤ = ଵ
ଶ

ቂܦఈ
ఉ ቀ஺ା஻

ଶ
, ቁܣ + ఈܦ

ఉ ቀ஺ା஻
ଶ

,  ቁቃ andܤ

ఈܶ
ఉ(ܣ, (ܤ = ,ܣ)ܶ ߙݐܽ(ܤ = ߚ = 1. 

 A new measure of fuzzy directed divergence for two 
Fuzzy sets A and B, 
 

∗ுܯ ஺∗
ி ,ܣ) (ܤ = ∑ ൫ఓಲ(௫೔)ିఓಳ(௫೔)൯మ

ଶ
ቂ ଵ

ఓಲ(௫೔)ିఓಳ(௫೔) +௡
௜ୀଵ

                                ଵ
ଶିఓಲ(௫೔)ିఓಳ(௫೔)ቃ  

 

 Where, ܣ∗: [0,1]ଶ → [0,1] such that ܣ∗(ܽ, ܾ) = ௔ା௕
ଶ

  

andܪ∗: [0,1]ଶ → [0,1] such that ܪ∗(ܽ, ܾ) = ௔మା௕మ

௔ା௕
  was 

defined by Bhatia and Singh (2013), they also discussed 
application of new directed divergence measure in images 
segmentation. 
 Bhatia and Singh (2013), introduced three new 
divergence measures between fuzzy sets and some properties 
of these divergence measures. They also defined three 
aggregation functions corresponding to divergence measures.  
 Verma et al. (2012),defined a measure of entropy as 
 

௔ܸ(ܲ) = ∑ ln(1 + (௜݌ܽ − ∑ ௜݌݈݊ − ln(1 + ܽ) , ܽ > 0௡
௜ୀଵ

௡
௜ୀଵ   

 
for probability distribution, ܲ = ,ଵ݌) ଶ݌ , … … . ,  ௡) and its݌
corresponding measure of directed divergence is defined as  
 
:ܲ)௔ܦ ܳ) = ∑ ௜݈݊ݍ ௣೔

௤೔
− ∑ ௜ݍ ln ቀ௤೔ା௔௣೔

௤೔
ቁ +௡

௜ୀଵ
௡
௜ୀଵ

                       ln(1 + ܽ) , ܽ > 0  
 

and corresponding measure of fuzzy directed divergence is  
 
∑=(A,B)ܦ ݈݊(௜ݔ)஻ߤ ቀ ఓಲ(௫೔)

௔ఓಲ(௫೔)ାఓಳ(௫೔)ቁ௡
௜ୀଵ + ∑ ൫1 −௡

௜ୀଵ

൯݈݊(௜ݔ)஻ߤ                  ቀ ଵିఓಲ(௫೔)
ଵା௔ି௔ఓಲ(௫೔)ିఓಳ(௫೔)ቁ + ln(1 + ܽ) ,   ܽ > 0 

 
and their properties were studied. 
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 Li et al. (2014a) proposed two approaches to define 
divergence measure under fuzzy settings based on dissi-
milarity functions and fuzzy equivalences. Li et al. (2014b) 
proposed different methods to define fuzzy equivalences and 
used it to define similarity measures for fuzzy sets. Tomar and 
Ohlan (2014a) present various fuzzy mean divergence 
measures and inequalities amongst them. Tomar and Ohlan 
(2014b) introduce a parametric generalized exponential 
measure of fuzzy divergence of order α and established a 
relationship between entropy of order α and proposed 
divergence measure. Tomar and Ohlan (2015) proposed a 
generalized measure of fuzzy divergence and applied it to 
multi-criteria decision making problems. Li et al. (2016) 
discussed the robustness of fuzzy connectives and reasoning 
using general divergence measure. He et al. (2016) proved the 
T୐  transitivity is satisfied by the similarity measures defined 
by Li et al. (2014) and also investigated its fuzzy equiva-
lences. 
 In the next section, we have proposed two new 
binary aggregation operators and corresponding to these 
operators a new divergence measure has been introduced. 
Further, a new directed divergence measure for two fuzzy sets 
have been defined. 
 
2. Fuzzy Directed Divergence 
 
 Aggregation operators are defined as  ܩ: [0,1]ଶ →
,ܽ)ܩ , [0,1] ܾ) = ܾܽ andܭ: [0,1]ଶ → ,ܽ)ܭ ,[0,1] ܾ) = (௔ା௕)ర

଼(௔మା௕మ)
 

, both the functions are monotonic in each argument and 
satisfy boundary conditions and hence are aggregation 
operators. Let us define a new divergence as  
 

,ܲ)௄,ீܦ ܳ) = ∑ ൤ (௣೔ା௤೔)ర

଼(௣೔
మା௤೔

మ)
− ௜൨௡ݍ௜݌

௜ୀଵ               (1) 

                        =  ∑ ௜݌)௄,ீܦ , ௜)௡ݍ
௜ୀଵ  

where ܲ = ଵ݌) , ଶ݌ , … … , ܳ݀݊ܽ(௡݌ = ଵݍ) , ଶݍ , … … . ,  (௡ݍ

  
 Equation 1 is clearly non-negative as shown 
graphically in Figure 1 (whereܽ = ௜݌ , ܾ = ݖ௜ܽ݊݀ݍ =
௜݌)௄,ீܦ ,  .((௜ݍ

 

Figure 1.ீܦ,௄(݌௜ ,  (௜ݍ

 Henceீܦ,௄(ܲ, ܳ)is a non-negative function with 
minimum value ீܦ,௄(ܲ, ܳ) = ܲݏܽ 0 = ܳ and 

డ஽ಸ,಼(௉,ொ)

డ௣೔
= ∑ ൤ସ(௣೔ା௤೔)య

଼(௣೔
మା௤೔

మ)
− ௜ݍ − ଵ଺௣೔(௣೔ା௤೔)ర

(଼(௣೔
మା௤೔

మ))మ ൨௡
௜ୀଵ            (2) 

  
 
 Equation 2 is zero when each ݌௜ = 0 =   ௜andݍ
 

డమ஽ಸ,಼(௉,ொ)

డ௣೔
మ = ∑ ൦

ଵଶ(௣೔ା௤೔)మ

଼(௣೔
మା௤೔

మ)
− ଵ଺(௣೔ା௤೔)ర

(଼(௣೔
మା௤೔

మ))మ

− ଵଶ଼௣೔(௣೔ା௤೔)య

(଼(௣೔
మା௤೔

మ))మ + ହଵଶ(௣೔
మ(௣೔ା௤೔)ర

(଼(௣೔
మା௤೔

మ))ర

൪௡
௜ୀଵ   

 

                   =∑ ௄,ீܦ
′′ ௜݌) , ௜)௡ݍ

௜ୀଵ  
  

 Figure 2 (whereܽ = , ௜݌ ܾ = ݖ௜ܽ݊݀ݍ = ௄,ீܦ
′ ௜݌) ,  ((௜ݍ

graphically representsீܦ,௄
′ ௜݌) , ௜), 0ݍ ≤ ௜݌ , ௜ݍ ≤ 1 and shows 

that డమ஽ಸ,಼(௉,ொ)
డ௣೔

మ ≥ 0  in 0 ≤ ௜݌ , ௜ݍ ≤ 1. 
 

 

Figure 2. 
డమ஽ಸ,಼(௉,ொ)

డ௣೔
మ  

 

,ܲ)௄,ீܦ ܳ) is a convex function for 0 ≤ ௜݌ , ௜ݍ ≤ 1 . Hence 
Equation (1) is a valid measure of divergence. 
 
 Now, compare the membership values by com-
paring the fuzziness of A, B with the fuzziness of the 
intermediate subset with the help of an example. Consider the 
universe consisting of four elements A, B, C and D with 
membership values given as follows: 
 

Membership Values 
 

 ସݔ ଷݔ ଶݔ ଵݔ 
 

A 
 

0.25 
 

0.8 
 

0.5 
 

0.3 
B 0.2 0.7 0.5 0.2 
C 0.04 0.5 0.7 0.5 
D 

 
0.89 

 
0.01 

 
0.1 

 
0.99 

 

 
 For these sets we obtainீܦ,௄(ܣ, (ܤ = 0.000115, 

,ܣ)௄,ீܦ (ܥ = 0.005789  and ீܦ,௄(ܣ, (ܦ = 0.139388. The 
divergence measure shows that A is quite similar to B and 
different from D. 
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 Measure of fuzzy directed divergence between two 
fuzzy sets A and B corresponding to (2) is defined as  
 
ܨீ ,௄(ܣ, (ܤ =

∑

⎣
⎢
⎢
⎡ ൫ఓಲ(௫೔)ାఓಳ(௫೔)൯ర

଼(ఓಲ(௫೔)మାఓಳ(௫೔)మ)
− (௜ݔ)஻ߤ(௜ݔ)஺ߤ

+ ൫ଶିఓಲ(௫೔)ିఓಳ(௫೔)൯ర

଼((ଵିఓಲ(௫೔))మା൫ଵିఓಳ(௫೔)൯మ)
− ൫1 − ൯൫1(௜ݔ)஺ߤ − ⎦൯(௜ݔ)஻ߤ

⎥
⎥
⎤

௡
௜ୀଵ   

 
  = ∑ ܨீ ,௄

௜௡
௜ୀଵ ,ܣ)  (3)                  (ܤ

 
 Clearly, ீܨ ,௄(ܣ, ܨீ ,is non-negative (ܤ ,௄(ܣ, (ܤ =
ܨீ ,௄(ܤ, ܨீ and (ܣ ,௄(ܣ, (ܣ = 0. To prove max{ீܨ ,௄(ܣ ∪
,ܥ ܤ ∪ ,(ܥ ܨீ ,௄(ܣ ∩ ,ܥ ܤ ∩ ܨீ ≥ {(ܥ ,௄(ܣ,  we divide the ,(ܤ
universe of discourse (Ω) in to following seven subsets as 
 
Ω = ݔ} ∈ ܺ ⁄(ݔ)஺ߤ ≤ (ݔ)஻ߤ ≤ {(ݔ)஼ߤ ∪ ݔ} ∈ ܺ ⁄(ݔ)஺ߤ ≤

(ݔ)஼ߤ < {(ݔ)஻ߤ ∪ ݔ} ∈ ܺ (ݔ)஻ߤ < ⁄(ݔ)஺ߤ ≤ {(ݔ)஼ߤ ∪
ݔ} ∈ ܺ (ݔ)஻ߤ ≤ ⁄(ݔ)஼ߤ < {(ݔ)஺ߤ ∪
ݔ} ∈ ܺ (ݔ)஼ߤ < ⁄(ݔ)஺ߤ ≤ {(ݔ)஻ߤ ∪
ݔ} ∈ ܺ (ݔ)஼ߤ < ⁄(ݔ)஻ߤ <   {(ݔ)஺ߤ

 
which we will denote as Ωଵ , Ωଶ , Ωଷ , Ωସ , Ωହ , Ω଺ respectively. 
We compute ீܨ ,௄(ܣ, in each of the subsets Ω௜ (ܤ , ݅ =
1,2,3,4,5,6. Then combine the results, thus we obtain 
ܨீ ,௄(ܣ,  .for the universe of discourse (ܤ
 
 In Ωଵ,ܣ ∪ ܥ ⇔ ஺∪஼ߤ (ݔ) = max{ߤ஺(ݔ), {(ݔ)஼ߤ =
 (ݔ)஼ߤ
 

ܤ ∪ ܥ ⇔ (ݔ)஻∪஼ߤ = max{ߤ஻(ݔ), {(ݔ)஼ߤ =   (ݔ)஼ߤ
ܣ ∩ ܥ ⇔ (ݔ)஺∩஼ߤ = min{ߤ஺(ݔ), {(ݔ)஼ߤ =   (ݔ)஺ߤ
ܤ ∩ ܥ ⇔ (ݔ)஻∩஼ߤ = min{ߤ஻(ݔ), {(ݔ)஼ߤ =   (ݔ)஻ߤ

 
 Therefore, ீܨ ,௄(ܣ ∪ ,ܥ ܤ ∪ ܨீ and 0 = (ܥ ,௄(ܣ ∩
,ܥ ܤ ∩ ܨீ = (ܥ ,௄(ܣ,  (ܤ
 
 Hence, max{ீܨ ,௄(ܣ ∪ ,ܥ ܤ ∪ ,(ܥ ܨீ ,௄(ܣ ∩ ,ܥ ܤ ∩  {(ܥ
ܨீ ≥ ,௄(ܣ,  holds good for Ωଵ, similarly the inequality holds (ܤ
for Ωଶ , Ωଷ , Ωସ , Ωହ ܽ݊݀ Ω଺. Thus ீܨ ,௄(ܣ, -is a valid mea(ܤ
sure of fuzzy directed divergence as represented graphically in 
Figure 3 (where ܽ = ௜݌ , ܾ = ݖ௜ܽ݊݀ݍ = ܨீ ,௄

௜ ,ܣ)  .((ܤ
 
 

 

Figure 3.   ீܨ ,௄
௜ ,ܣ)  (ܤ

Also,డிಸ,಼(஺,஻)
డఓಲ(௫೔)  = 

⎣
⎢
⎢
⎢
⎢
⎡

ସ(ఓಲ(௫೔)ାఓಳ(௫೔)ିଶ)య

଼(ఓಲ(௫೔)ିଵ)మା଼(ఓಳ(௫೔)ିଵ)మ − (௜ݔ)஻ߤ2

+ ସ൫ఓಲ(௫೔)ାఓಳ(௫೔)൯య

଼ఓಲ(௫೔)మା଼ఓಳ(௫೔)మ − ଵ଺ఓಲ(௫೔)൫ఓಲ(௫೔)ାఓಳ(௫೔)൯ర

(଼ఓಲ(௫೔)మା଼ఓಳ(௫೔)మ)మ

− (ଵ଺ఓಲ(௫೔)ିଵ଺)(ఓಲ(௫೔)ାఓಳ(௫೔)ିଶ)ర

(଼(ఓಲ(௫೔)ିଵ)మା଼(ఓಳ(௫೔)ିଵ)మ)మ + 1 ⎦
⎥
⎥
⎥
⎥
⎤

 

 
డிಸ,಼(஺,஻)

డఓಲ(௫೔)
= ,ℎ݁݊ݓ  0 (௜ݔ)஺ߤ =   (௜ݔ)஻ߤ

 
Then, 
 
డమிಸ,಼(஺,஻)

డఓಲ(௫೔)మ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ଵଶ(ఓಲ(௫೔)ାఓಳ(௫೔)ିଶ)మ

଼(ఓಲ(௫೔)ିଵ)మା଼(ఓಳ(௫೔)ିଵ)మ + ଵ଺(ఓಲ(௫೔)ାఓಳ(௫೔)ିଶ)ర

(଼(ఓಲ(௫೔)ିଵ)మା଼(ఓಳ(௫೔)ିଵ)మ)మ

+ ଵଶ൫ఓಲ(௫೔)ାఓಳ(௫೔)൯మ

଼ఓಲ(௫೔)మା଼ఓಳ(௫೔)మ − ଵ଺൫ఓಲ(௫೔)ାఓಳ(௫೔)൯ర

(଼ఓಲ(௫೔)మା଼ఓಳ(௫೔)మ)మ

+ ଶ(ଵ଺ఓಲ(௫೔)ିଵ଺)మ(ఓಲ(௫೔)ାఓಳ(௫೔)ିଶ)ర

(଼(ఓಲ(௫೔)ିଵ)మା଼(ఓಳ(௫೔)ିଵ)మ)య − ଵଶ଼ఓಲ(௫೔)൫ఓಲ(௫೔)ାఓಳ(௫೔)൯య

(଼ఓಲ(௫೔)మା଼ఓಳ(௫೔)మ)మ

+ ହଵଶ(ఓಲ(௫೔))మ൫ఓಲ(௫೔)ାఓಳ(௫೔)൯ర

(଼ఓಲ(௫೔)మା଼ఓಳ(௫೔)మ)య − ଼(ଵ଺ఓಲ(௫೔)ିଵ଺)(ఓಲ(௫೔)ାఓಳ(௫೔)ିଶ)య

(଼(ఓಲ(௫೔)ିଵ)మା଼(ఓಳ(௫೔)ିଵ)మ)మ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

= ∑ {డమிಸ,಼(஺,஻)}೔
డఓಲ(௫೔)మ

௡
௜ୀଵ   

 

 Also
డమிಸ,಼(஺,஻)

డఓಲ(௫೔)మ ≥ 0 for 0 ≤ ,(௜ݔ)஺ߤ (௜ݔ)஻ߤ ≤  ݏܽ 1

shown in Figure 4. 
 

 
 

Figure 4.   
డమிಸ,಼(஺,஻)

డఓಲ(௫೔)మ  
 
 Thus ீܨ ,௄(ܣ,  has minimum value zero when(ܤ
(௜ݔ)஺ߤ =  .(௜ݔ)஻ߤ
 Thus ீܨ ,௄(ܣ,  is a valid measure of fuzzy directed (ܤ
divergence. In next section, we have proved various properties 
related to proposed fuzzy directed divergence. 
 
3. Properties of Proposed Fuzzy Directed Divergence 
 

Measure ீܨ ,௄(ܣ,  defined by (4) has the ,(ܤ
following properties: 
 
Theorem 1: Let A and B two fuzzy sets then following 
properties can be verified for ீܨ ,௄(ܣ,  :(ܤ
ܨீ  (1 ,௄(ܣ ∪ ,ܤ ܣ ∩ (ܤ = ܨீ ,௄(ܣ,  (ܤ
ܨீ  (2 ,௄(ܣ, ܣ ∪ (ܤ = ܨீ ,௄(ܤ, ܣ ∩ (ܤ
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ܨீ    (3 ,௄(ܣ, ܣ ∩ (ܤ = ܨீ ,௄(ܤ, ܣ ∪  (ܤ
ܨீ    (4 ,௄(ܣ, (ܣ̅ = ݊/4, when A is a crisp set i.e. ߤ஺(ݔ) =

 1 ݎ݋ 0   
 
Proof: Divide the universe of discourse into two subsets as 
Ω = ݔ} ∈ ܺ ⁄(ݔ)஺ߤ ≤ {(ݔ)஻ߤ ∪ ݔ} ∈ ܺ ⁄(ݔ)஻ߤ <  ,{(ݔ)஺ߤ
which we will denote as Ωଵ , Ωଶ respectively. 
 
1)   In Ωଵ , ܣ ∪ ܤ ⇔ (ݔ)஺∪஻ߤ = max{ߤ஺(ݔ), {(ݔ)஻ߤ =   (ݔ)஻ߤ
      and ܣ ∩ ܤ ⇔ (ݔ)஺∩஻ߤ = min{ߤ஺(ݔ), {(ݔ)஻ߤ =
ܨீ(ݔ)஺ߤ        ,௄(ܣ ∪ ,ܤ ܣ ∩ (ܤ = ܨீ ,௄(ܤ, (ܣ = ܨீ ,௄(ܣ,     .(ܤ
      Similarly we can prove the result for Ωଶ. Hence 1) holds. 
2)   In Ωଵ , ܣ ∪ ܤ ⇔ (ݔ)஺∪஻ߤ = max{ߤ஺(ݔ), {(ݔ)஻ߤ =    (ݔ)஻ߤ
      and ܣ ∩ ܤ ⇔ (ݔ)஺∩஻ߤ = min{ߤ஺(ݔ), {(ݔ)஻ߤ =  (ݔ)஺ߤ
ܨீ         ,௄(ܣ, ܣ ∪ ܨீ =(ܤ ,௄(ܣ,  (ܤ
       = ܨீ ,௄(ܤ, ܨீ=(ܣ ,௄(ܤ, ܣ ∩  (ܤ
       In Ωଶ , ܣ ∪ ܤ ⇔ (ݔ)஺∪஻ߤ = max{ߤ஺(ݔ), {(ݔ)஻ߤ =     (ݔ)஺ߤ
       andܣ ∩ ܤ ⇔ (ݔ)஺∩஻ߤ = min{ߤ஺(ݔ), {(ݔ)஻ߤ =  (ݔ)஻ߤ
ܨீ         ,௄(ܣ, ܣ ∪ ܨீ =(ܤ ,௄(ܣ, (ܣ = ܨீ =0 ,௄(ܤ,  (ܤ

                                            = ܨீ ,௄(ܤ, ܣ ∩  (ܤ
       Hence ீܨ ,௄(ܣ, ܣ ∪ ܨீ=(ܤ ,௄(ܤ, ܣ ∩  (ܤ
       Similarly, 3) holds. Further, 4) holds due to membership   
            values of crisp set. 
 
Corollary 1: For any two fuzzy sets A and B, ீܨ ,௄(ܣ, ܣ ∪
(ܤ + ܨீ ,௄(ܣ, ܣ ∩ (ܤ = ܨீ ,௄(ܣ,  .(ܤ
 
Proof: It follows from 2) and 3) of Theorem 1. 
 
Corollary 2: For any two fuzzy sets A and B, 
ܨீ ,௄(ܤ, ܣ ∪ (ܤ + ܨீ ,௄(ܤ, ܣ ∩ (ܤ = ܨீ ,௄(ܤ,  (ܣ
 
Proof: It followed from 2) and 3) of Theorem1. 
 
Theorem 2: For any fuzzy sets A, B and C, then 
ܨீ (1 ,௄(ܣ, ܤ ∪ (ܥ + ܨீ ,௄(ܣ, ܤ ∩ ܨீ = (ܥ ,௄(ܣ, ܨீ+(ܤ ,௄(ܣ,  (ܥ
ܨீ (2 ,௄(ܣ ∪ ,ܤ (ܥ + ܨீ ,௄(ܣ ∩ ,ܤ ܨீ = (ܥ ,௄(ܣ, ܨீ+(ܥ ,௄(ܤ,  (ܥ
 
Proof: 1) Divide the universe of discourse into two subsets as 
Ω = ݔ} ∈ ܺ (ݔ)஻ߤ ≥⁄ {(ݔ)஼ߤ ∪ ݔ} ∈ ܺ ⁄(ݔ)஻ߤ <  ,{(ݔ)஼ߤ
which we will denote as Ωଵ , Ωଶ respectively. Then in Ωଵ, 
 
ܤ ∪ ܥ ⇔ (ݔ)஻∪஼ߤ = max{ߤ஻(ݔ), {(ݔ)஼ߤ =  Then .(ݔ)஻ߤ
ܨீ                   ,௄(ܣ, ܤ ∪ (ܥ = ܨீ ,௄(ܣ,  (4)                                (ܤ

 
And ܤ ∩ ܥ ⇔ (ݔ)஻∩஼ߤ = min{ߤ஻(ݔ), {(ݔ)஼ߤ =           Then.(ݔ)஼ߤ
ܨீ                               ,௄(ܣ, ܤ ∩ (ܥ = ܨீ ,௄(ܣ,  (5)                               (ܥ

Adding equation 4 and 5, we obtain 
ܨீ ,௄(ܣ, ܤ ∪ (ܥ + ܨீ ,௄(ܣ, ܤ ∩ ܨீ = (ܥ ,௄(ܣ, ܨீ+(ܤ ,௄(ܣ,  .(ܥ
Similarly, we can also prove that the result hold in Ωଶ. 
Analogously, 2) can also be proved. 
 
Theorem 3: For any fuzzy set A, B and C, 
ܨீ (1 ,௄(ܣ ∪ ,ܤ (ܥ ≤ ܨீ ,௄(ܣ, (ܥ + ܨீ ,௄(ܤ,  (ܥ
ܨீ (2 ,௄(ܣ ∩ ,ܤ (ܥ ≤ ܨீ ,௄(ܣ, (ܥ + ܨீ ,௄(ܤ,  (ܥ
 
Proof: 1) Divide the universe of discourse into two subsets as 
Ω = ݔ} ∈ ܺ ⁄(ݔ)஺ߤ ≤ {(ݔ)஻ߤ ∪ ݔ} ∈ ܺ ⁄(ݔ)஻ߤ <  ,{(ݔ)஺ߤ
which we will denote as Ωଵ , Ωଶ respectively. 

In Ωଵ, ܣ ∪ ܤ ⇔ (ݔ)஺∪஻ߤ = max{ߤ஺(ݔ), {(ݔ)஻ߤ =
ܣ and (ݔ)஻ߤ ∩ ܤ ⇔ (ݔ)஺∩஻ߤ = min{ߤ஺(ݔ), {(ݔ)஻ߤ =  .(ݔ)஺ߤ
 Let us consider the expression in Ωଵ, 
ܨீ ,௄(ܣ, (ܥ + ܨீ ,௄(ܤ, (ܥ − ܨீ ,௄(ܣ ∪ ,ܤ  (ܥ
= ܨீ ,௄(ܣ, (ܥ + ܨீ ,௄(ܤ, (ܥ − ܨீ ,௄(ܤ,  (ܥ
= ܨீ ,௄(ܣ, (ܥ ≥ 0 
 

In Ωଶ, ܣ ∪ ܤ ⇔ (ݔ)஺∪஻ߤ = max{ߤ஺(ݔ), {(ݔ)஻ߤ =
ܣand (ݔ)஺ߤ ∩ ܤ ⇔ (ݔ)஺∩஻ߤ = min{ߤ஺(ݔ), {(ݔ)஻ߤ =  (ݔ)஻ߤ
ܨீ ,௄(ܣ, (ܥ + ܨீ ,௄(ܤ, (ܥ − ܨீ ,௄(ܣ ∪ ,ܤ  (ܥ
= ܨீ ,௄(ܣ, (ܥ + ܨீ ,௄(ܤ, (ܥ − ܨீ ,௄(ܣ,  (ܥ
= ܨீ ,௄(ܤ, (ܥ ≥ 0. 
Similarly, 2) holds. 
 
Theorem 4: For any two fuzzy sets A and B 

ܨீ (1 ,௄(ܣ, (ܤ = ܨீ ,௄(̅ܣ,  (തܤ
ܨீ (2 ,௄(ܣ, (തܤ = ܨீ ,௄(̅ܣ,  (ܤ

 
Proof: 1) Simply follows from the relation of membership 
value of an element and its complement. 
 
2) Consider ீܨ ,௄(ܣ, (തܤ − ܨீ ,௄(̅ܣ,  (ܤ

 
  = 0 
 

This proves that 
ܨீ ,௄(ܣ, (തܤ = ܨீ ,௄(̅ܣ,  .(ܤ
 

 
 

4. Comparative Study 
 
 In this section, we compare the efficiency of pro-
posed fuzzy directed divergence with existing fuzzy directed 
divergence measures given by Bhandari and Pal (1993), Fan 
and Xie (1999), Bhatia and Singh (2012)  and  Kapur (1997) 
at different values of α. 
 Let us consider two fuzzy setsܣ = {0.2, 0.9, 0.6, 0.1,  
0.7} and ܤ = {0.6, 0.8, 0.1, 0.9 ,0.5}. Calculated values of fuzzy 
divergence measures are given in Table 1.  
 
     Table 1. Comparative Study 

 Fuzzy Directed Measure Discrimination value 
 

1 
 

D(A,B) 
 

1.286481 
2 I(A,B) 0.650619 
3 T(A,B) 0.215987 
4 Iα(A,B) at α=0.1 0.276511 
5 Iα(A,B) at α=0.2 0.544951 
6 Iα(A,B) at α=0.3 0.810034 
7 Iα(A,B) at α=0.9 2.587437 
8 FG,K (A,B) 0.167164 
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 As suggested in Tomar and Ohlan (2014) minimi-
zation of degree of difference depicts the efficiency of 
divergence measure. Table 1 clearly shown the value of the 
proposed divergence measure minimum as compared to other 
existing measure. It suggests that the measure of fuzzy 
divergence is more efficient than the existing divergence 
measures. 
 
5. Application to Decision Problem 
 
 In this section, we present a method to solve 
decision-making problems using proposed fuzzy directed 
divergence. 
 Decision making is a process that involves many 
course of action under uncertain environment. In order to take 
decision the decision maker needs to select the best option 
from all available courses of action. To select the best course 
of action various research designed different divergence, 
similarity and entropy measures. Based on divergence 
measure, let us consider a decision-making problem involving 
a set of options ܲ = {Pଵ , ଶܲ, … … … . , P௠ } to be considered on 
the basis of certain criteriaܦ = {Cଵ , ,ଶܥ … … … . , C௡ }. For 
decision making, characteristic sets for each option are 
determined as assigning appropriate values to membership 
values and ideals solution ∗ܲ to the problem is having 
maximum membership values in each criterion. The 
divergence for each case is calculated and option with 
minimum divergence selected. 
 To exhibit the applicability of proposed fuzzy 
directed divergence, we consider few decision-making 
problems. 
 
Example 1: Suppose customers want to buy a mobile con-
nection. Customer wants to select a service provider from five 
options: Aଵ , ଶܣ , Aଷ, Aସ, Aହ mobile service providers on the 
basis of Network Quality (Pଵ), Triff Plan (Pଶ), Value Added 
Services (Pଷ)  and Customer Care (Pସ). For evaluating five 
alternatives, the decision makers formed five fuzzy sets as 
Aଵ = {(Pଵ , 0.5), (Pଶ , 0.6), (Pଷ, 0.3), (Pସ, 0.2)} 
ଶܣ = {(Pଵ , 0.7), (Pଶ, 0.7), (Pଷ, 0.7), (Pସ , 0.4)} 
Aଷ = {(Pଵ , 0.6), (Pଶ , 0.5), (Pଷ, 0.5), (Pସ, 0.6)} 
Aସ = {(Pଵ , 0.8), (Pଶ , 0.6), (Pଷ, 0.3), (Pସ, 0.2)} 
Aହ = {(Pଵ , 0.6), (Pଶ , 0.4), (Pଷ, 0.7), (Pସ, 0.5)} 
 
Optimal solution is  
A∗ = {(Pଵ , 0.8), (Pଶ, 0.7), (Pଷ , 0.7), (Pସ, 0.6)} 
 
Divergence of A∗ , w.r.t. each option given as 
D (Aଵ, A∗) = 0.027728 
D (Aଶ, A∗) = 0.000876 
D (Aଷ, A∗) = 0.002917 
D (Aସ, A∗) = 0.023099 
D (Aହ, A∗) = 0.005059 
 
 Optimal solution is with minimum divergence is 
Aଶwith preference order given asAଶAଷ, Aହ,Aସand Aଵ. So, 
customer should buy connection from operator Aଶ. 
 
Example 2: A wants to open manufacturing plant and they 
need to select the location out of six locations  Lଵ , ଶܮ , ଷܮ , ସܮ , 

ହܮ , L଺ on the basis of Business Climate (Dଵ), Infrastructure 
(Dଶ), Quality of Labor (Dଷ), Suppliers(Dସ), Total Costs (Dହ), 
Proximity to customers (D଺), Free Trade Zone (D଻). For 
evaluating six locations, the management formed six fuzzy 
sets as follows: 
 

 Dଵ Dଶ Dଷ Dସ Dହ D଺ D଻ 

Lଵ 0.4 0.7 0.5 0.9 0.4 0.6 0.6 

 ଶ 0.7 0.9 0.6 0.7 0.6 0.6 0.8ܮ

 ଷ 0.9 0.6 0.4 0.5 0.7 0.5 0.3ܮ

 ସ 0.5 0.5 0.6 0.3 0.6 0.8 0.7ܮ

 ହ 0.6 0.5 0.7 0.6 0.7 0.5 0.5ܮ

L଺ 0.4 0.3 0.2 0.5 0.5 0.4 0.3 
 
Optimal solution is  
L∗ = {(Dଵ,0.9), (Dଶ ,0.9), (Dଷ, 0.7), (Dସ, 0.9), (Dହ, 0.7), (D଺, 
0.8), (D଻, 0.8)} 
 
Divergence of L∗ from each given optionLଵ , ଶܮ , ଷܮ , ସܮ , ହܮ , L଺ 
is given as 
D(Lଵ , L∗) =0.038389 
D(Lଶ , L∗)=0.005637 
D(Lଷ , L∗)=0.056027 
D(Lସ , L∗)=0.081290 
D(Lହ , L∗)=0.038227 
D(L଺ , L∗)=0.158639 
 
 The optimal solution is with the minimum 
divergence. So, management should open manufacturing plant 
at location Lଶ with preference orderLଶ , Lହ , Lଵ,Lଷ , Lସ , L଺ . 
 
6. Conclusions 
 
 In this paper we have presented a new measure of 
divergence based on aggregation operators and its properties 
are validated.  The efficiency of the proposed fuzzy directed 
divergence measure has been presented by comparing it with 
some existing divergence measures. Further, the application of 
the proposed fuzzy divergence measure is discussed in 
decision making process. Finally, the introduced fuzzy 
directed divergence measure has been applied to a few 
illustrative examples of decision making problems, which 
shows how it helps in decision making by minimizing fuzzy 
directed divergence. 
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