
 

Songklanakarin J. Sci. Technol. 
40 (3), 506-521, May - Jun. 2018 

 
 
 

Original Article 
 
 

Corrected score estimators in linear multivariate multiple regression 
models with heteroscedastic measurement errors 

 
Wannaporn Junthopas, Jirawan Jitthavech*, and Vichit Lorchirachoonkul 

 
School of Applied Statistics, National Institute of Development Administration,  

Bang Kapi, Bangkok, 10240 Thailand 
 

Received: 28 September 2016; Revised: 9 December 2016; Accepted: 6 February 2017 
 
 

Abstract 
 
In this study, the knowledge of estimation theory based on the corrected score (CS) approach is extended in a linear 

multivariate multiple regression model with heteroscedastic measurement errors (HMEs) and an unknown HME variance. The 

heteroscedasticity of the HME variance is assumed to be capable of being grouped into similar patterns and can be estimated by 

the pooled variance of the observations of the variable with HME in repeated measurements. The statistical properties of the 

proposed CS estimator are analytically investigated. The simulation results confirm the theoretical results. The proposed CS 

estimator outperforms the OLS estimator under all simulation conditions. 
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1. Introduction 
 
 A heteroscedastic measurement error (HME) model 

is a statistical model in which some variables are measured 

with errors, and the variances of the measurement errors 

change across observations. HME models have been widely 

applied in epidemiology, analytical chemistry, and botany 

(Cheng & Riu, 2006; de Castro et al., 2008; Kulathinal et al., 

2002; Patriota et al., 2009; Veenendaal et al., 2008). In some 

environments, the precise measurement of a specific variable 

is impracticable or very expensive in terms of time and effort 

and, furthermore, the error variances of this variable across

 
observations may not be static. HME can occur in either the 

dependent variables (Y) or independent variables (Z), or both, 

and consequently, the ordinary least squares (OLS) assump-

tions are violated. Note that the OLS estimators in the case of 

HMEs in Y are unbiased whereas those in the case of HMEs 

in Z are biased and also inconsistent. Obviously, the HME 

problems in Z are more complicated than those in Y (Gujarati, 

2006). 

In the case of either measurement error (ME) or 

HME models, the methods used to correct the bias of the 

estimators can be grouped into either functional modeling or 

structural modeling. Some methods based on functional 

modeling are regression calibration, simulation-extrapolation, 

conditional score, corrected score (CS), and instrumental 

 
 

*Corresponding author 
  Email address: jirawan@as.nida.ac.th 

 



 W. Junthopas et al. / Songklanakarin J. Sci. Technol. 40 (3), 506-521, 2018 507 

variables. In linear functional modeling, estimators from these 

methods have been shown to be asymptotically consistent 

(Buzas et al., 2003).  

The CS method has been widely investigated in the 

literature (Chen et al., 2015; de Castro et al., 2006; Giménez 

& Bolfarine, 1997; Giménez & Galae, 2013; Giménez & 

Patat, 2005, 2014; Huang & Wang, 2001;) and deals with 

parameter estimation in the presence of the ME of an 

independent variable by determining the biased correction 

term to correct the biased score estimation function. Naka-

mura (1990) proposed CS functions for four different models: 

the generalized linear model, the normal regression model, the 

Poisson regression model, and the gamma regression model 

and, since then, the CS approach has come to prominence in 

the literature. Giménez and Bolfarine (1997) derived the 

asymptotic distribution of CS estimators in a simple linear 

regression and a comparative calibration model. Next, a 

number of methods have been used in comparisons between 

the four approaches for consistent estimators: sufficiency and 

conditional scores, maximum likelihood estimation, a CS 

function, and moment estimators. It has been empirically 

shown using simulation studies that, for small and moderate 

sample sizes (n = 30, 50), there is no one estimator more 

efficient than the others (Giménez & Bolfarine, 2000). The 

assumption of known ME variance or HME variance is 

commonly applied in the studies of parameter estimation in a 

model with only one independent variable (Chen et al., 2015; 

de Castro et al., 2006; Giménez & Galae, 2013; Huang & 

Wang, 2001). Giménez and Patat (2005, 2014) proposed a 

method for estimating the parameter in a comparative cali-

bration model under the unknown ME variance condition. 

In this study, the CS approach is extended to a linear 

multivariate multiple regression model subjected to an un-

known HME variance. The paper is structured as follows. 

Section 2 presents a novel method of parameter estimation in 

a linear multivariate regression model subject to an unknown 

HME variance, and the properties of proposed CS estimators 

are also investigated. In Section 3, the analytical results are 

confirmed by a simulation study, and conclusions drawn from 

the research are presented in Section 4. 

 

2. Research Methodology  
 

2.1 Model 
 

Consider a linear multivariate measurement error 

regression model in which the  p  correlated dependent varia-

bles, 1 2, ,..., pY Y Y , are explained by s  independent variables, 

where the first 1s  independent variables 1 2 1, ,..., sZ Z Z  are 

precisely observed and the last ( )1s s−  independent variables, 

1 21 1, ,...,s s sZ Z Z+ + , are imprecisely observed via their corres-

ponding surrogate variables, 1 21 1, ,...,s s sX X X+ + , with addi-

tive HME. In the thj  observation, only dependent variables 

and the surrogate variables are measured repeatedly jr  times, 

1, 2,...,j n=  where n  is the number of observations. Let q jz  

be the value of precisely observed independent variable qZ , 

11,2,...,q s=  at the thj  observation, i jky  and q jkx  be the 

thk  repeated measurement at the thj  observation of iY  and 

qX , respectively, 1,2,...,i p= , 1 11, 2, ...,q s s s= + + , 

1,2,...,j n= , 1,2,..., jk r= . Subsequently, the linear multi-

variate measurement error regression model can be expressed 

as 
 

= +Y ZB E                                    (1) 

q q q= +x z u  , 1, 2, ...,1 1q s s s= + + .                                (2) 

 

Denote Y  as the n p×  matrix of the average 

measurements of dependent variables with the thi  and thj  

elements 
1

/
rj

i i jj jkk
y y r⋅ =

= ∑ , 1,2,...,i p= , 1,2,...,j n= ; Z  as 

the ( )1n s× +  matrix of s  independent variables including a 

constant unit vector, 0 =z 1 ; B  as the ( )1s p+ ×  matrix of 

parameters; E  as the n p×  matrix of random errors with the 

thi  and thj  elements 
1

/
rj

i i jj jkk
rε ε⋅ =

= ∑ , where i jkε  is the
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mutually independent random error in the thk  repeated 

measurement of dependent variable Yi  at the thj  

observation; qx  as the 1n×  vector of the averages of 

measurements of qX  with the thj  observation, 

1
/

rj
q q jj jkk

x x r⋅ =
= ∑ ; qz  as the 1n×  vector of the thq  imprecisely 

observable variable, 1, 2,...,1 1q s s s= + + ; and qu  as the 

1n×  vector of the averages of the heterogeneous random 

measurement errors with the thj  observation, q ju ⋅ =
 

1
/

rj
q jjkk

u r
=
∑ , 1 11, 2,...,q s s s= + + . The heterogeneous random 

measurement errors of the thk  measurements of qX  at the 

thj  observation, q jku ’s, 1,2,..., jk r= , are independent 

across the measurements and distributed as ( )20, uq jN σ , 

where the variance 2
uq jσ  is assumed to be unknown and 

invariant at the measurement of the thj  observation.  

The matrix notation in (1) can be re-written in terms 

of vectors as  

 

[ ]1 2 n ′=Y y y y , 1 2j p jj jy y y ⋅⋅ ⋅
′ =   

y 
,  

1,2,...,j n= , [ ]1 2 n ′=Z z z z ,

( )0 1 11 1
j s sj j jsj j

z z z z z
+

′ 
 =
  

z  
, 

...1, 2, , nj = , [ ]0 1 s ′=B β β β , 

1 2q q q qpβ β β ′ =  β 
, 0,1,2,...,q s= , 

[ ]1 2 n ′=E ε ε ε  , 1 2j pj j jε ε ε⋅ ⋅ ⋅
′ =   

ε 
, 

1,2,...,j n= . 

 

 

 

 

Elements of the random error vector jε  are 

independent and identically distributed as  

( )0,p jN Σ . The p p×  variance-covariance matrix 

of jε  is assumed to be unknown and can be estimated by 

 

11 1

1

ˆ ˆ

ˆ

ˆ ˆ

j pj

j

p j ppj

σ σ

σ σ

 
 

=  
 
  

Σ



  



, 1,2,...,j n=  , 

 

where ˆ ˆii j ii jk jrσ σ′ ′= , , 1,2, ,i i p′ = 
, 1,2, , jk r= 

 . 
 

 

2.2 The parameter estimation method using  

      the corrected score approach 

 

The first subsection of this section is the parameter 

estimation based on the CS approach in the general case of a 

linear multivariate multiple regression with HME. The 

parameter estimation when the covariance matrix of random 

errors is invariant is presented in the second subsection and 

the estimators are shown to be asymptotically unbiased in a 

specific case when there are only two independent variables, 

one precisely observed and another observed via a surrogate 

variable. 

 

2.2.1 General case of linear multivariate  

         multiple regression 

 

Let X  be a surrogate for independent variables Z  

in model (1) with the last ( )1s s−  imprecisely observed 

variables, and be expressed as 
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[ ]1 2 n ′=X x x x , 

( ) ( )0 1 1 21 1 2
j s sj j js sj j j

z z z x x x ⋅+ +
⋅ ⋅

′ 
 =
  

x  
, 

1,2,...,j n= . 

Let ( ),L B Z Y  be the likelihood function of B  

given Z  and Y , ( ),l B Z Y  be the log-likelihood function of 

B  given Z  and Y , and ( ),U B Z Y  be the score function of 

B  given Z  and Y . Then the estimation of the parameters in 

the model in (1) and (2) using the CS approach (Giménez & 

Galae, 2013; Nakamura, 1990) can be described briefly as 

follows:  

1) Construct a corrected log-likelihood function, 

( ),c j jl B x y , which becomes an unbiased estimating function 

in the absence of an imprecise measurement and satisfies the 

following condition: 

 

( ) ( ), ,j j j jcE l l 
  

=x y z yB B .                 (3) 

 

2) Evaluate the CS functions of B  under regularity 

conditions, which yields a set of CS functions given by 

  

( ) ( ),
,

c j j
c j jq j q

l
U

∂
=

∂β

B x y
B x y

β
, 0,1,...,q s= .                (4) 

 

3) The CS estimators of B  are determined by 

( ), 0cE U  = B X Y  and ( ) ( ), ,cE U U  = B X Y B Z Y , 

where ( ),cU B X Y  is an unbiased score function of 

( ),U B Z Y . By applying the general theory of M-estimation 

(Carroll et al., 2006), Nakamura (1990) showed that  

 

( )ˆ
1

ˆ , 0c j j
q

n

j j
U

=
=∑

β
B x y , 0,1,...,q s= ,                 (5) 

where 0 1
ˆ ˆ ˆˆ ... s

′ =  B β β β  is a matrix of the CS 

estimators of B  and 1 2
ˆ ˆ ˆ ˆ

q q q qpβ β β ′ =  β 

, 

0,1,2,...,q s= , with a consistent, asymptotically normal 

sequence of solutions.  
 

Based on the model described in (1) and (2), the 

log-likelihood function is given by 

( ) ( ) ( ), , ,l l l= +X Y Z YΒ Β Z X .                 (6) 

 

Next, the score function can be written from (6) as 
 

( ) ( ) ( ),
,

,

1
j j

q q

l n

j

l
= = ∑

=

X Y
X Y

z y

β β

BΒ
ΒU

∂∂
∂ ∂

, where 

( ) ( )( )0 1 1 11 11 s sj sj j j jj
z z z x u+ +⋅ ⋅

= −




z 

( ) ( )( ) ( )2 21 1s s s sj jj j
x u x u+ + ⋅ ⋅⋅ ⋅

′
− − 


 .      (7) 

 

The likelihood function ( ),L Z YΒ  of Β  given Z and 

Y  is defined as 

 

( )
( )

( ) ( )

, 1 1
11 2 22

1exp 1
2

n
pj

j j jj j

j

L
π

  
 
  

−

⋅ ⋅∏
=

′′ ′− − −

=Z Y

y y B zΣB z

Σ
Β

.                                (8) 

 

From (8), the log likelihood function of B  given jz  and jy  

can be expressed as 

 
 

( ) ( ) ( )11
2

, 1 2 j jjj jj jl c c −′ ′− − −′+= y B z y zΣ Bz yB ,        (9) 

where ( )1 log 22
pc π= −   and   2

1 log2 jc = − Σ . 
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Let ( ),j jl B x y  be the log-likelihood function by 

substituting jz  in (7) into (9). Taking the expectation of 

( ),j jl B x y  and using the relationship ( )j jq qE x z⋅ = , 

1 11, 2,...,q s s s= + + , yield 

 

( )
( ) ( ) ( )1

1

1 2

1

, 1 2

1
2 jj j j j

j j

s
q q uq jjq s

j r

c cE l

σ−

+

−

=
′ ′− − +

 
  
  ′ ′∑ 
  

+ −=

y B z y B zΣ

B x y

β Σ β
. 

 

Thus, the corrected log-likelihood function satisfying (3) can 

be written as 

      

( ), 1 2j jc c cl + −=B x y

( ) ( ) ( )1 1 2

11

1
2 j j j jj

s
q q uq jjj

q s
rσ− −

= +
′ ′− − −

  ′ ′∑ 
  

y B x y B xΣ β βΣ . (10) 

 

It can be deduced from (4) and (10) that the CS function can 

be expressed as 

 

( )

( ) ( )

( ) ( )

1
11

1

1 2

1 1

,

0,1,..., ,,
/ ,

1, 2,..., .

j j j s j

c j jq j
j j j q q uq jj j

U

z

q s

x r

q s s s

σ

−
+ ⋅

−
⋅

  ′−   
== 
  ′− +   

 = + +

β B

Σ y B x

x y
Σ y B x β

         

             (11) 

From (5) and (11), the ( )1p s +  estimating equations can be 

written as 

( )1 1ˆ
1 1

j jj j
n n

j j
=− −′∑ ∑

= =
B x Σ yΣ  

( )1
1 1

1ˆ
1 1

jj j jj j
n

j j
z

n
z− −′ =∑ ∑

= =
B x yΣ Σ  

  

( )1 1
1 1

ˆ
1 1

js s j
j j

j j
n

j
z

n
z

j
=− −′∑ ∑

= =
B x yΣ Σ  

( ) ( ) ( ) ( )

( )

11 1
1 2

1 11

1
11

ˆˆ
1

1

j j js u s sj j

j js j

x r

x

n

j
n

j

σ =+ + +⋅

−

+ ⋅
−

 ′ +  





 
 

∑
=

∑
=

B x βΣ

yΣ
 

  
 

( ) ( )21 1ˆˆ
1 1

s j us j sj j j s jj jx r
n n

j j
xσ− =⋅

−
⋅

  


′ +


∑ ∑
= =

Σ B x β yΣ .      (12) 

 

Solving the ( )1p s +  linear equations in (12) yields 

( ) ( ) ( )

( ) ( )

1
1

1

ˆ
cs p p

p

vec

vec

−
−

−

  ′= ⊗ ⊗ +    

′ ′⊗

B X I V X I C

X I V Y

,                 (13) 

 

which can be expressed in the term of the OLS estimator with 

HME, /ˆ ols hmeB , as  

 

( ) ( ) ( )/1
ˆ ˆcs ols hmep svec vec+

 
  

= −B I Ψ B ,              (14) 

 

where 

( ) ( )

( ) ( ) ( )

1
1

11
1

1

p p

p pp s

−
−

−−
−

+

 ′= ⊗ ⊗ 
 

  ′ + ⊗ ⊗    

Ψ X I V X I

C I X I V X I C

, 1−V  is 

the estimates of ( )1 1 1
1 2 ndiag − − −Σ Σ Σ  of size np , C  

is a block-diagonal matrix of size ( )1p s +  where the first 

( )1 1s +  diagonal square sub-matrices of size p are zero and 

the last ( )1s s−  diagonal square sub-matrices of size p are the 

estimates of  ( ) ( )2 2
111

1

1

1,...,
n n

j us ju s jj j
j

j
j r rσ σ+

= =

− − − −∑ ∑ 
 

Σ Σ , 

respectively, and 

( ) ( ) ( )

( ) ( )

1
1

1

/ˆ
p p

p

ols hme

vec

vec
−

−

−

 ′= ⊗ ⊗ 
 

′ ′⊗

X I V X I

X I V Y

B
. 
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The bias and variance of the CS estimators in (14) 

are respectively given by 

 

( )
( ) ( ) ( )/ /

ˆ

ˆ ˆ ,

cs

ols hme ols hme

Bias vec

Bias vec E vec

  = 
   −   

B

B Ψ B

( ) ( ){ } ( )/1
ˆ ˆcs ols hmep sVar vec Var vec+

  
     

= −B I Ψ B  

 

2.2.2 Invariant covariance matrix of  

         the random error 
 

Consider the special case where the covariance 

matrix of the random error is invariant, i.e. j =Σ  

, 1,2,...,j n∀ =Σ . An example of the real-life application of 

this special case is the study of cholesterol as a function of 

blood pressure and weight. The measurement of blood 

pressure is objected to HME, depending on the time of 

measurement and the physical activity as well as the

emotional condition of the patient but the weight can be 

precisely measured. The random error associated with the 

dependent variable, cholesterol, is assumed to be 

homogeneous across the observations. In this case, the 

term ( ) 1
p

−′⊗X I V  in (13) can be easily reduced to 

 

( )
( ) ( ) ( )

1 1 11 2

1 11 1 11 2

1 1 11 1 11 2

1 2.

1 1 1

ˆ

n

s s s np

s s s n

s s sn

z z z

z z z

x x x

x x x

− −

+ + +⋅ ⋅ ⋅

⋅ ⋅ ⋅

 
 
 
 
 
 ′⊗ = ⊗ 
 
 
 
 
  

X I V Σ





   





   



,   

             (15) 
 

which leads to express the term ( ) ( )1
p p

−′⊗ ⊗ +X I V X I C  as 
 

( ) ( )1
p p

−′⊗ ⊗ +X I V X I C

 

( )

( )

( )

( ) ( )

1 1
1 1 1 1

2
1 1 1 1 11

1 1 1 1 1

1 1
1 1 1 1 1

11 1
1 1

1 1

1 1

2
1 1 1 1 11

1 1 1

n n n n
s ss

j j j j

n n n n n
s ss

j j j j j

n n n n n
s s s ss

j j j j j

n n
s s s

j j

j jjj

j j j j j jjj

s sj jjj j j j j

jj j

n z z x x

z z z z z x z x

z z z z z x z x

x x z x

+
= = = =

+
= = = = =

+
= = = = =

+ +
= =

⋅⋅

⋅⋅

⋅⋅

⋅ ⋅

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑

=

 

 

      

 

 ( ) ( ) ( ) ( )

( ) ( )

2 2
1 1 1 111 1 1 1

2 2
1 1

1 1 1 1 1 1

1

1 1 1

1 1

ˆ

n n n n
s j ss u s s

j j j j

n n n n n n
s s s s s s us js

j j j j j j

jj j j jj

j j j j j j jjj

z x S r x x

x x z x z x x x S r

+ + + +
= = = =

+
= = = = = =

−

⋅⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅⋅

−∑ ∑ ∑ ∑

−∑ ∑ ∑ ∑ ∑ ∑

 
 
 
 
 
 
 
 
  ⊗ 
 
      
 
 
 
  

Σ



      

 

 

( ) 1ˆ
u

−′= + ⊗X X C Σ ,                                (16) 

 

where uC  is a diagonal matrix of size ( )1s +  where the first ( )1 1s +  diagonal elements are zero and the last ( )1s s−  elements 

are the estimates of ( ) ( ) ( )2 2 2
1 21 11 1 1

, , ,
n n n

j j us ju s u s jj jj j j
r r rσ σ σ+ +

= = =

   − − −∑ ∑ ∑   
   

 .  

From (16), the inverse of ( ) ( )1
p p

−′⊗ ⊗ +X I V X I C  can be expressed as 

( ) ( ) ( )
1

11 ˆ
p p u

−
−− ′ ′⊗ ⊗ + = + ⊗ 

 
X I V X I C X X C Σ .                   (17)
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For simplicity of notation, let ( ) ( )pvec ′= ⊗F X I  

( )1vec− ′V Y . Substituting ( ) 1
p

−′⊗X I V  in (15) into the 

right hand side of the definition of ( )vec F  yields 

 

( ) 1
0 1

1 1
ˆ n n

j jj jj j
vec vec z z−

= =

 
= ∑ ∑  

F Σ y y   

( )11 11 1 1
.

n n n
s j j s js jj jj j j

z x x+
= = =


∑ ∑ ∑ 

y y y                     (18) 

 

Substituting (17) and (18) into (13) gives 

( ) ( )( )1ˆˆ
ucsvec vec −′ += ΣF XX CB  

( )0 1 11 11 1 1 1

n n n n
j j s j js

j j j jj j j j
vec z z z x +

= = = =


 ∑ ∑ ∑ ∑

= y y y y

( ) 1

1

n
s j u

j jx −

=
′ +


∑   

X X Cy

                (19) 

where the thi  CS estimator, _
ˆ

i csβ , 1,2, ,i p=   can be 

expressed as 

 

( ) 1
_

ˆ
ui cs i

−′ ′= +β XX C X y ,                (20) 

where 
1 2 ni i i iy y y⋅ ⋅ ⋅

 
 

′=y 
, 1,2,...,i p= . The _

ˆ
i csβ  

can be reduced to the same results given by Giménez and 

Patat (2005) when the MEs are homogeneous. In this study, 

the heterogeneous variance of the MEs is unknown and it is 

being estimated by the pooled sample variance. In the case of 

grouped heteroscedasticity, the observations are grouped into 

several subsets such that the variance of the MEs is 

homogeneous within a group but heterogeneous across the 

groups (Judge et al., 1985). Let the number of groups be g , 

the size of the thh  group be hn , 1,2,...,h g= , 2
uqhσ  be the 

homogeneous variance of the MEs of qX  in the thh  group 

and hr  be the number of repeated measurements of each 

observation in the thh  group. Then the sample variance of 

qX  in the thh  group is given by 

( )2
1 12

n rh h
q qj k jh hj kh

uqh
h h

x x
S

n r

⋅= =
−∑ ∑

= . 

Therefore, the thq  diagonal element of uC , 

2

1
/

n
uq jjj

S r
=

− ∑ , can be estimated by the pooled variance as 

2

1
/

g
h uqh h

h
n S r

=
− ∑ , 1 11, 2, ,q s s s= + +  .  

 
The estimator directly obtained by the OLS method 

without score correcting is the case in (20) where uC  is a zero 

matrix. Thus, from (20), the _ /
ˆ

i ols hmeβ  estimator can be 

expressed as 

 

( ) 1
_ /

ˆ
i ols hme i

−′ ′=β XX X y .                (21) 

 

Consider the specific case where 1 1s = , 2s = , i.e. the 

independent variable 1Z  is precisely observed and the 

independent variable 2Z  is measured by the surrogate 2X  

with HME. Then, the CS estimators in (19) yields 

 

( )
( )

0 1 2
1 1 1

1

ˆ
n n n

j j jj j jj j j

u

cs
z z x

vecvec ⋅= = =

−

  
 ∑ ∑ ∑    
 
 ′ + 

=
y y y

X X C

B .      (22) 

 

The thi  vector in ˆ( )csvec B  in (22) can be written as 
 

( ) 1
_ˆ

ui cs i
−′ ′= +β XX C Xy ,                (23) 

 

where _ 0 1 2ˆ ˆ ˆ ˆi cs i i iβ β β 
  

′=β , 
1 2 ni i i iy y y⋅ ⋅ ⋅

 
 

′=y 

,  

1,2,...,i p= , 

 

1 21 1

1 22 2

1 2

1

1

1 n n

z x

z x

z x

⋅

⋅

⋅

 
 
 

=  
 
 
 

X
  

, 
0 0 0
0 0 0
0 0

u
A

 
 
 
  

=
−

C  and 
2
2

1

g
h u h

h h

n SA
r=

= ∑ . 
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Lemma 1. In a grouped heteroscedasticity, the n  

observations can be grouped into h  groups such that the 

variance of the measurement errors, 2
2u hσ , is homogeneous 

within the thh  group but heterogeneous across the groups. Let 

jr  be the number of repeated measurements of the thj  

observation and 2u jk  be the random measurement error of 

the thj  observation of 2x j  in the thk  repeated measurement 

independently distributed as  2
2(0, )u jN σ .    Then, as n →∞ , 

( )
2

2 2 2 2
2 221 1

gn h u h
ujj h h

nu n S u
r
σ

⋅= =
= + →∑ ∑ . 

 

Theorem 1. In the linear multivariate measurement error 

regression model described in (1) and (2) where 1 1s =  and 

2s = , 2 2
2 2u zσ σ  and 2 2

2 2zu σ , 1 _
ˆ

i csβ  is an unbiased 

estimator but 0 _
ˆ

i csβ  and 2 _
ˆ

i csβ  are asymptotically unbiased 

estimators, 1,2, ,i p=  . 

In summary, the estimators 1 _ol /
ˆ

i s hmeβ  and 1 _
ˆ

i csβ  

are both unbiased. The biases of 0 _ol /
ˆ

i s hmeβ  and 2 _ol /
ˆ

i s hmeβ  

asymptotically approach to 
2

2 2 2
2
2

i u

z

z

S

β σ
, and 

2
2 2

2
2

i u

zS

β σ
− , res-

pectively. In the case that 2 0iβ > , 0 _ol /
ˆ

i s hmeβ  may be either 

an overestimated or underestimated parameter depending on 

the signs of 0iβ  and 2z  whereas 2 _ol /
ˆ

i s hmeβ  is definitely an 

underestimated parameter. On the other hand, 0 _
ˆ

i csβ  and 

2 _
ˆ

i csβ  are asymptotically unbiased estimators. 

The proofs of Lemma 1 and Theorem 1 are included 

in Appendix A. 

 

3. Simulation Study 
 

The objective of the simulation study is to empi-

rically analyze the parameter estimations by the OLS and CS 

methods when varying the sample size n  and the number of 

repeated measurements at the thj  observation, jr . The 

proposed CS estimator is compared to the OLS estimator by 

considering bias and mean square error (MSE). Data sets are 

generated from the model defined in (1) and (2) with two 

dependent variables ( )2p =  and two independent variables 

( )2s = . One of the independent variables, 1Z , is precisely 

observable and is generated with the uniform distribution 

[ ]1,1U −  to allow a small variation in 1Z  whereas the other, 

2Z , cannot be precisely observed and is generated with the 

standard normal distribution ( )0,1N to take into account the 

random error in measurement. The parameters in the model 

are set as follows: 0 0iβ = , 1 2 1i iβ β= = , 1i =  and 2 and the 

variance-covariance matrix is set as 
0.8 0.5

,
0.5 1.0j
 

=  
 

Σ  

1,2,...,j n= . The surrogate variable 2X  instead of 2Z  is 

observed with the same r  repeated measurements at each 

observation. The observations for each sample size are 

grouped into five sub-samples such that the variance of the 

random ME is homogeneous within a group but 

heterogeneous between groups. The HME variance in the 

simulation is set in two forms: the step-up function form ( )1F  

and the step-down function form ( )2F , as specified in Table 

1, and are referred to as HME forms. Each HME form is 

grouped into five sub-samples of equal size ( )1,2,3,4,5h = . 

The random measurement error 2u   in the thh  group is 

distributed as ( )2
20, u hN σ . In the simulation, three sample 

sizes, n , are specified: 50, 100 and 500, and the number of 

repeated measurements, :r  5, 10, 20 and 40. One hundred 

replications are simulated for a particular combination of n  

and r . 
 

Table 1. 4HME Variances in HME Forms 1F and 2F  
 

HME 
Form 

HME Variance  

2
21uσ  2

22uσ  2
23uσ  2

24uσ  2
25uσ  

1F  0.1 0.2 0.4 0.6 0.8 

2F  0.8 0.6 0.4 0.2 0.1 
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3.1 Simulation Results 
 
Before the analysis of the simulation data, the 

means of the estimated sample variances, 2
2u hS , of the MEs in 

each group in HME form 1F  and 2F  are tested with the 
given values in Table 1. The results of the estimation of HME 
variance based on grouped heteroscedasticity reveal that the 

null hypothesis of the population parameter 2
2u hσ  value in 

Table 1 is not rejected at the .05 significance level. The 
number of replications, r , does not affect the magnitude of the 
bias of 2

2u hS . The value of 2
2u hS  approaches to the population 

parameter 2
2u hσ  when the sample size n  increases, and the 

standard error decreases when either r  or n  increases. The 
results of the estimators under HME forms 1F  and 2F  reach 

the same conclusions. Thus, the tables of the simulation 
results are shown only in the case of HME form 1F . 

Tables 2 and 3 summarize the statistics and MSEs 
of the CS and OLS estimators under HME form 1F . Table 2 
shows the sample mean, standard error (SE), p-value, bias, 
and MSE of the parameter estimator 1̂iβ , 1i =  and 2, of the 

precisely observed variable 1Z . For any given values of r  or 

n , the sample means of 1̂iβ , 1i = and 2, estimated by the 
OLS and CS methods are not significantly different from the 
true value of parameter 1iβ , 1i = and 2, with .05p > . The 

bias and MSE of the parameter estimator 1̂iβ , 1i =  and 2, of 

the precisely observed variable, 1Z , are practically indifferent 
in the OLS and CS methods as shown by the ratios of the SE, 
absolute bias and MSE in the OLS method over the proposed 
CS method in the last three columns in Table 2.   

    Table 2.   Statistics and MSEs of 11β̂ , 12β̂  under HME Form 1F . 

n r Para-
meter 

Sample Mean SE Bias MSE Ratio of ( ) ( )abs OLS abs CS  

 
OLS 

 
CS 

 
OLS 

 
CS 

 
OLS 

 
CS 

 
OLS 

 
CS 

 
SE 

 
Bias 

 
MSE 

              
              

50 

5 21β  0.9984 0.9986 0.0102 0.0103 -0.0016 -0.0014 0.0103 0.0104 0.9971 1.1429 0.9933 

 22β  0.9945 0.9946 0.0115 0.0117 -0.0055 -0.0054 0.0132 0.0135 0.9889 1.0185 0.9785 

10 21β  1.0067 1.0066 0.0070 0.0070 0.0067 0.0066 0.0049 0.0049 0.9971 1.0152 0.9959 

 22β  0.9997 0.9996 0.0077 0.0077 -0.0003 -0.0004 0.0059 0.0059 0.9935 0.7500 0.9865 

20 21β  1.0023 1.0023 0.0052 0.0052 0.0023 0.0023 0.0026 0.0027 0.9961 1.0000 0.9925 

 22β  1.0007 1.0007 0.0054 0.0054 0.0007 0.0007 0.0029 0.0029 0.9963 1.0000 0.9932 

40 21β  0.9979 0.9978 0.0032 0.0032 -0.0021 -0.0022 0.0010 0.0010 1.0000 0.9545 1.0000 

 22β  0.9970 0.9970 0.0039 0.0039 -0.0030 -0.0030 0.0016 0.0016 1.0000 1.0000 1.0000 

100 

5 21β  0.9959 0.9962 0.0067 0.0067 -0.0041 -0.0038 0.0044 0.0044 1.0030 1.0789 1.0045 

 22β  0.9988 0.9990 0.0077 0.0078 -0.0012 -0.0010 0.0058 0.0059 0.9846 1.2000 0.9949 

10 21β  1.0014 1.0013 0.0052 0.0052 0.0014 0.0013 0.0027 0.0027 0.9981 1.0769 0.9963 

 22β  1.0024 1.0022 0.0059 0.0059 0.0024 0.0022 0.0034 0.0035 0.9966 1.0909 0.9942 

20 21β  0.9984 0.9983 0.0037 0.0037 -0.0016 -0.0017 0.0014 0.0014 0.9973 0.9412 0.9928 

 22β  0.9972 0.9972 0.0042 0.0042 -0.0028 -0.0028 0.0017 0.0017 0.9976 1.0000 0.9943 

40 21β  0.9963 0.9962 0.0027 0.0027 -0.0037 -0.0038 0.0007 0.0007 1.0000 0.9737 1.0000 

 22β  1.0006 1.0006 0.0029 0.0029 0.0006 0.0006 0.0008 0.0008 0.9966 1.0167 0.9881 

500 

5 21β  1.0005 1.0006 0.0030 0.0030 0.0005 0.0006 0.0009 0.0009 0.9933 0.8333 0.9888 

 22β  1.0013 1.0015 0.0034 0.0034 0.0013 0.0015 0.0001 0.0012 0.9854 0.8667 0.0948 

10 21β  1.0020 1.0020 0.0024 0.0024 0.0020 0.0020 0.0006 0.0006 0.9959 1.0000 0.9828 

 22β  1.0012 1.0012 0.0028 0.0028 0.0012 0.0012 0.0008 0.0008 0.9964 1.0000 1.0000 

20 21β  1.0006 1.0006 0.0016 0.0016 0.0006 0.0006 0.0003 0.0003 1.0000 1.0000 1.0000 

 22β  0.9986 0.9986 0.0018 0.0018 -0.0014 -0.0014 0.0003 0.0003 1.0000 1.0000 1.0000 

40 21β  1.0005 1.0006 0.0012 0.0012 0.0005 0.0006 0.0002 0.0002 1.0000 0.8333 1.0000 
 22β  1.0000 1.0000 0.0012 0.0012 0.0000 0.0000 0.0002 0.0002 1.0000 1.0000 1.0000 
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   Table 3.   Statistics and MSEs of 21β̂ , 22β̂  under HME Form 1F . 

n r Para-
meter 

Sample Mean SE Bias MSE Ratio of ( ) ( )abs OLS abs CS  

OLS CS OLS CS OLS CS OLS CS SE Bias MSE 
              

50 

5 21β  0.9782 1.0016 0.00261 0.00265 -0.0218 0.0016 0.001148 0.00077 0.9849 13.6250 1.4909 

 22β  0.98 1.0034 0.00301 0.00307 -0.02 0.0034 0.001298 0.000945 0.9805 5.8824 1.3735 

10 21β  0.9908 1.0019 0.00196 0.00195 -0.0092 0.0019 0.000464 0.00038 1.0051 4.8421 1.2211 

 22β  0.9904 1.0015 0.00207 0.00207 -0.0096 0.0015 0.000514 0.000426 1.0000 6.4000 1.2066 

20 21β  0.9962 1.0018 0.00143 0.00143 -0.0038 0.0018 0.000216 0.000206 1.0000 2.1111 1.0485 

 22β  0.9956 1.0012 0.00166 0.00162 -0.0044 0.0012 0.000291 0.000275 1.0247 3.6667 1.0582 

40 21β  0.9949 0.9977 0.00112 0.00112 -0.0051 -0.0023 0.000149 0.00013 1.0000 2.2174 1.1462 

 22β  0.9955 0.9983 0.00125 0.00124 -0.0045 -0.0017 0.000174 0.000155 1.0081 2.6471 1.1226 

100 

5 21β  0.9781 0.9993 0.00223 0.00227 -0.0219 -0.0007 0.000974 0.000509 0.9824 31.2857 1.9136 

 22β  0.9762 0.9975 0.00216 0.00218 -0.0238 -0.0025 0.001027 0.000478 0.9908 9.5200 2.1485 

10 21β  0.9882 0.9988 0.00143 0.00148 -0.0118 -0.0012 0.000341 0.000217 0.9662 9.8333 1.5714 

 22β  0.9882 0.9988 0.00145 0.00147 -0.0118 -0.0012 0.000347 0.000215 0.9864 9.8333 1.6140 

20 21β  0.9964 1.0017 0.00107 0.00109 -0.0036 0.0017 0.000126 0.00012 0.9817 2.1176 1.0500 

 22β  0.996 1.0013 0.00125 0.00127 -0.004 0.0013 0.000171 0.000162 0.9843 3.0769 1.0556 

40 21β  0.9979 1.0006 0.00069 0.00069 -0.0021 0.0006 0.000052 0.000047 1.0000 3.5000 1.1064 

 22β  0.9977 1.0004 0.00078 0.00078 -0.0023 0.0004 0.000066 0.000061 1.0000 5.7500 1.0820 

500 

5 21β  0.9797 1.0003 0.00099 0.00102 -0.0203 0.0003 0.00051 0.000103 0.9706 67.6667 4.9515 

 22β  0.9797 1.0003 0.00115 0.00116 -0.0203 0.0003 0.000543 0.000134 0.9914 67.6667 4.0522 

10 21β  0.9892 0.9996 0.00063 0.00064 -0.0108 -0.0006 0.000156 0.00004 0.9844 18.0000 3.9000 

 22β  0.9893 0.9997 0.00076 0.00077 -0.0107 -0.0007 0.000171 0.000058 0.9870 15.2857 2.9483 

20 21β  0.995 1.0003 0.00047 0.00048 -0.005 0.0003 0.000046 0.000023 0.9792 16.6667 2.0000 

 22β  0.9948 1.0001 0.00053 0.00054 -0.0052 0.0001 0.000055 0.000029 0.9815 52.0000 1.8966 

40 21β  0.9977 1.0003 0.00035 0.00036 -0.0023 0.0003 0.000018 0.000013 0.9722 7.6667 1.3846 
 22β  0.9972 0.9998 0.0004 0.0004 -0.0028 -0.0002 0.000024 0.000016 1.0000 14.0000 1.5000 

              
 

 

Table 3 shows the statistics and MSEs of the 

parameter estimator 2
ˆ

iβ , 1,2i =  of the variable 2Z  under 

HME. The t-test for the sample means of 2
ˆ

iβ , 1i = and 2, 

estimated by the OLS method shows that the estimate is 

significantly different from the true value 2iβ , 1i = and 2, 

with  .05p < , and the bias is negative. Thus, it can be con-

cluded that the sample means of 2iβ , 1i = , and 2, estimated 

by the OLS method are underestimated as shown in Section 2. 

Meanwhile, the t-test for the sample means of 2iβ , 1i = , and 

2, estimated by the CS method shows that the estimate is not

 

significantly different from the true value 2iβ , 1i = , and 2, 

with .05p < . The simulation confirms the analytical results 

of the estimator bias in Section 2. In Table 3 it can be seen 

that the SEs of the sample mean estimated by the OLS method 

and the proposed CS method are slightly different and 

converge to the same value when r  increases. The ratios of 

the SE in the OLS method over the proposed CS method are 

between 0.9662 and 1.0247. The absolute bias and MSE in the 

OLS method are greater than the corresponding ones in the 

proposed CS method as shown by the ratios of the absolute 

bias and MSE in the OLS method over the proposed CS
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method in the last two columns in Table 3. Additionally, the 

bias of the CS estimator approaches to zero as n  increases 

whereas the absolute bias of the OLS estimator decreases but 

does not approach to zero. 

 

4. Conclusions 

 
This study extends the estimation theory based on 

the CS to cover a linear multivariate multiple regression 

model consisting of 1s  precisely observed independent 

variables and ( )1s s−  independent variables with HMEs. The 

HME variance is assumed to be unknown and is estimated 

based on grouped heteroscedasticity. In each group, the 

variance of the MEs of the surrogate variable is estimated by 

the pooled variance of the variable with HMEs observed in the 

repeated measurements.  

In the case of independently and identically 

distributed random errors and homogeneous measurement 

error, the analytical results agree with the findings of Giménez 

and Patat (2005). In  the specific case where the multivariate 

regression model consists of p  dependent variables, one 

precisely observed independent variable and one independent 

variable with HME, it is shown that the estimates of 

0 _ /i ols hmeβ  and 2 _ /i ols hmeβ  are biased but the estimates of 

0 _i csβ  and 2 _i csβ  are asymptotically unbiased, and that the 

estimates of 1 _ /i ols hmeβ  and 1 _i csβ  are both unbiased for 

1,2, ,i p=  .  

A simulation study is carried out on the model 

specified above. The simulation results show that the 

proposed CS method outperforms the OLS method in terms of 

MSEs of the parameter estimates and the OLS estimation of 

the parameters of the precisely observed variable is unaffected 

by HME, but the parameter estimators of the variable 

measured with HME are underestimated. The bias of the CS 

estimator approaches to zero when the sample size increases.  

 

 

 

The current study could easily be extended to allow 

for non-equal numbers of repeated measurements of the 

surrogate variables by changing jr , the number of repeated 

measurements at the thj  observation, to q jr , the number of 

repeated measurements of the thq  surrogate variable at the 

thj  observation. In future work, some other approaches to 

solving the problem of the HME variance estimation should 

be investigated intensively to support other types of HME. 
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Appendix A. Proofs of Lemma 1 and Theorem 1. 
 

Proof of Lemma 1. 
 

The sample variance of the average of the random measurement errors can be written as 

( )22
2 22 .1

1 n
u jj

S u u
n =

= −∑ ,                     (24) 

which can be estimated by the pooled variance as 

2
2 2
2 1

1 g
h u h

u
h h

n SS
n r=

= ∑ ,                     (25) 

where 2
2u hS  is the sample variance of the measurement error in the thh  group of hn  observations, hr  is the number of repeated 

measurements of the observation in the 
thh  group. 

From (24), the sum of squares of the average of random measurement errors of the thj  observation can be expressed as  

( )2 2 2
2 2. 21

n
ujj

u n S u
=

= +∑ .                     (26) 

Substituting (25) into (26) yields 

2
2 22
2 2.1 1

gn h u h
jj h h

n Su nu
r= =

= +∑ ∑ .                     (27) 

As n →∞ , (27) becomes 

2
2 2
2 .1 1

gn h u h
jj h h

nu
r
σ

= =
→∑ ∑ . 

This completes the proof of Lemma 1. 

 

Proof of Theorem 1.  
 

The bias of  _
ˆ

i csβ  can be written from (23) as 

( )_
1ˆ

i cs uBias of i iE − 
 ⋅
 

+ −′ ′=β X X C X y β  

                        ( ) ( ) ( ) ( )
11 1 1 1

u ui i iE
−− − − −

⋅ ⋅
       

′ ′ ′ ′ ′ ′= − + −X X X y X X C I X X C X X X y β .              (28) 

The bias of the _ /
ˆ

i ols hmeβ  estimator from (21) can be expressed as  

_ /
ˆ

i ols hmeBias of β  ( ) 1
i iE − 

 
 

′ −= ′ X y βX X  

         ( ) ( )1
i i iE − 

 
 

′ + −= ′ X Xβ v βX X  

       
   ( ) 1

iE − 
 
 

′= ′ XX X v ,                       (29) 
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where 2 2i i iβ= −v ε u . Substituting (29) into (28) yields  

( ) ( )
11 1

_ _ / _ /
ˆ ˆ ˆ

u ui cs i ols hme i ols hmeBias of Bias of E
−− −       

′ ′= − +β β XX C I XX C β .            (30) 

From the definition of X  in (23) and by using the independent property of 1z  and 
2

x , the inverse of ′X X  can be 

expressed in terms of the statistics of the observations as  

( )

( ) ( )

( )

2 2 2
1 2 2 2 211

2 2 2 2 2 2
1 2 2 1 2 2

1 1
2 2
1 1

2 2
2 2 2 2
2 2 2 2

1 1 0

10

z

z z u z z u

z z

z u z u

S z z u z uz
S S S S S S

z
n S S

z u
S S S S

−

 + + + + − −
 + +
 
 

′ = − 
 
 

+ − + + 

X X , 

which is denoted by 

( )

1311 12

1 2321 22

31 32 33

q q q

q q q

q q q

−

 
 
 ′ =
 
 
 

X X .                    (31) 

Again, from the definition of X  in (23) and the definition of iv  in (29), the term i′X v  in (29) can be expressed as 

( )
( )
( )

2 2
1

1 2 2
1

2 2 2
1

n
i ij jj

n
i i ij j jj

n
i ij j jj

u

z u

x u

ε β

ε β

ε β

⋅ ⋅=

⋅ ⋅ ⋅=

⋅ ⋅ ⋅=

 
−∑ 

 
 
 ′ = −∑
 
 
 −∑  

X v , 

which is denoted by  

1

2

3

i

d
d
d

 
 ′ =  
  

X v .                     (32) 

By substituting (31) and (32) into (29), the bias of the _ /
ˆ

i ols hmeβ  becomes 

1311 120 _ / 1 2 3
2321 221 _ / 1 2 3

31 32 33
1 2 32 _ /

ˆ

ˆ

ˆ

i ols hme

i ols hme

i ols hme

Bias of q d q d q d

Bias of E q d q d q d

q d q d q dBias of

β

β

β

   + +
   
   = + +
   
   + +  

.                  (33) 

From (31), it can be easily seen that the term ( )

13

1 23

33

0 0

0 0

0 0
u

Aq

Aq

Aq

−

 −
 
 ′ = −
 
 − 

X X C  which leads to the expression of the last 

term in (30) as 
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( ) ( )( )
13

2 _ /
11 1 23

_ / 2 _ /33
33

2 _ /

ˆ
1ˆ ˆ

1
ˆ

i ols hme

u u i ols hme i ols hme

i ols hme

Aq

E E Aq
Aq

Aq

β

β

β

−− −

 
    −  ′ ′+ =       −     
  

X X C I X X C β .              (34) 

Substituting the bias of _ /
ˆ

i ols hmeβ  in (33) and the RHS in (34) into (30) yields 

131311 12 2 _ /0 _ 1 2 3
23 2321 221 _ 1 2 3 2 _ /33

31 32 33 331 2 32 _ 2 _ /

ˆˆ
1ˆ ˆ

1
ˆ ˆ

i ols hmei cs

i cs i ols hme

i cs i ols hme

AqBias of q d q d q d

Bias of E q d q d q d E Aq
Aq

q d q d q dBias of Aq

ββ

β β

β β

     + +             = + + +         −      + +      






 
 

.            (35) 

From the definitions of ijq  and 
i

d  in (31) and (32), respectively, the bias of _ /
ˆ

i ols hmeβ  in (33) can be expressed in 

terms of statistical properties of the variables as 

( )
22 22 2 2 2 2

0 _ / 2 22 2 12 22 2
2 22 2
2 2

ˆ

1 1

n j
i ols hme i i

ju u
z z

z z

uz u u z uBias of E E
nS S

S S
S S

β β β ⋅

=

   
   
   + +   = − + ∑

      
      + +
            

.             (36) 

By Lemma 1, the bias of 0 _ /
ˆ

i ols hmeβ  in (36) can be written after the first order approximation under the assumption 2 2
2 2u zS S  

as 

2 2 22 2 2
0 _ / 2 2 2 22 2 2 2 1 12 2 2

2 3 2 2 2ˆ 1 1 1 .
n ni

i ols hme u j lj l jz z z

z zBias of z E u u
n n nS nS n S

β
β σ

⋅ ⋅= = +

        − + − + −∑ ∑               


           (37) 

As n →∞ , the bias of 0 _ /
ˆ

i ols hmeβ  in (37) approaches  

2
2 2 2

0 _ / 2
2

ˆ i u
i ols hme

z

z
Bias of

S

β σ
β → .                    (38) 

Now consider the bias of 0 _
ˆ

i csβ , which is given in (35) , as 

13 2 _ /
0 _ 0 _ / 33

ˆ ˆ
ˆ

1
i ols hme

i cs i ols hme
Aq

Biasof Biasof E
Aq

β β
β 

 
 
 
 

= +
−

.                             (39) 

With the result in (33), the last term in the RHS of (39) can be written as 

( )13 31 32 3313 2 1 2 32 _ /
33 33

ˆ

1 1

ii ols hme Aq q d q d q dAq
E E

Aq Aq

ββ    + + +
   =   − −    

.                 (40) 

From the definitions of ijq and id  in (31) and (32), respectively, by Lemma 1, (40) can be expressed in terms of 

statistical properties of the variables as 
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13
2 _ /

33

ˆ

1
i ols hmeAq

E
Aq

β 
 
 − 

( ) ( ) ( )
( )

( )

( )( )
( )

( )( ) ( )( )
( )

22 22 2 2
22 2 2 22 2 2 2 2 2 222 2 2

2 22 2 2 22 1
2 22

2 2 2 32 2 2
2 22 2 2 2 2 2 2 2 22 2 2

2 2 22 21
22 2

2

2

1 .

nu iu i u i
u i

jz zz

z nu i u i u i

j zz z

j j

j j

z uz u S uz u S u z u S
z S

nS SS
E

S z uz u S z u S z u S

n SS S

ββ β
β

β β β

=

=

⋅

⋅

++ +
− − + + ∑

+ + +
− + −∑

      
  

 
      

   



(41) 

It can be shown that under the condition 2
2 2(0, )ujk ju N σ , the following expressions are valid: 

2 2 2 2 3 2 2 4 2 4 2
2 2 2 2 22 2 2 2 2

( ) 0; ( ) (1 / ); ( ) (1 / ); (u ) 0; ( ) (1 / );u u u u uE u S E u S O n E u S O n E S E u S O n= =    

3 4 2 2 4 2
2 2 2 2 2 22 2 2 21 1 1

(u ) 0; ( ) 0; ( ) 0; ( ) (1 / );
n n n

u u u uj j jj j j
E S E S u E S u u E S u u O n⋅ ⋅ ⋅= = =

= = =∑ ∑ ∑   

4 2 6 3 6
22 2 2( ) 3 / (1 / ); ( ) (1 / ); ( ) 0.u u uE S n O n E S O n E u S= + =  

Then, as n →∞ , 
13

2 _ /
33

ˆ

1
i ols hmeAq

E
Aq

β 
 
 − 

 in (41) approaches 

2
2 2 2

2
2

13 2 _ /
33

ˆ

1
ui

z

i ols hme z
S

Aq
E

Aq
β σβ 

 
 
 
 

→ −
−

.                                         (42) 

Thus, from (38) and (42), it can be concluded that the bias of 0 _
ˆ

i csβ  approaches zero as n →∞ .   

              

Similarly, it can be shown that the estimators 1 _ /
ˆ

i ols hmeβ  and 1 _
ˆ

i csβ  are both unbiased. By following the same 

approach, the bias of 2 _ /
ˆ

i ols hmeβ  in (33) can be written as 

( )
2

2 2 222
2 _ / 2 2 22 1 1

2 2

ˆ 2 2
1 1 3 2

1 1
n ni u i

i ols hme
j l jz z

j lE u u
n n nS nS

Bias of β
β σ β

= = +
⋅ ⋅− − + − + ∑ ∑

     
            


.               (43) 

As n →∞ , the bias of 2 _ /
ˆ

i ols hmeβ  in (43) approaches 

2
2 2

2 _ / 2
2

ˆ i u
i ols hme

z
Bias of

S

β σ
β → − .                    (44) 

The bias of 2 _
ˆ

i csβ  in (35) can be written as 2 _
ˆ

i csBias of β  

( ) ( )( )
( )

( ) ( )

( )
( )

( )
( )

( )
( )

22 2 2
2 2 2 2 2 22 2 22 22

2 2

22 22
2 22 22 2 221 1

2 2 2

2 32 2
2 22 22 2

2 2

2 _ / 2 2

1 1

1 1ˆ

1 1

u u u
z z

n ni
u u

j jz z z

u u

z z

i ols hme j j j j

E S E z u u S E z u u S
S S

E S z u E S z u
S nS n S

E S E S
S S

Bias of β
β

= =
⋅ ⋅

+ + − +

+ − +∑ ∑

− +

 
     

 
 

    
        

 
           

 

 .




           (45) 

As n →∞ , it can be shown that the bias of 2 _
ˆ

i csβ  in (45) approaches zero. 

This completes the proof of Theorem 1. 

 


	A heteroscedastic measurement error (HME) model is a statistical model in which some variables are measured with errors, and the variances of the measurement errors change across observations. HME models have been widely applied in epidemiology, ana...
	observations may not be static. HME can occur in either the dependent variables (Y) or independent variables (Z), or both, and consequently, the ordinary least squares (OLS) assump-tions are violated. Note that the OLS estimators in the case of HMEs i...
	In the case of either measurement error (ME) or HME models, the methods used to correct the bias of the estimators can be grouped into either functional modeling or structural modeling. Some methods based on functional modeling are regression calibrat...
	The CS method has been widely investigated in the literature (Chen et al., 2015; de Castro et al., 2006; Giménez & Bolfarine, 1997; Giménez & Galae, 2013; Giménez & Patat, 2005, 2014; Huang & Wang, 2001;) and deals with parameter estimation in the pre...
	In this study, the CS approach is extended to a linear multivariate multiple regression model subjected to an un-known HME variance. The paper is structured as follows. Section 2 presents a novel method of parameter estimation in a linear multivariate...
	2. Research Methodology
	2.1 Model
	Consider a linear multivariate measurement error regression model in which the    correlated dependent varia-bles,  , are explained by   independent variables, where the first   independent variables   are precisely observed and the last   independent...

