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Abstract 
 
Plant species of alpine and subalpine ecosystems in tropical mountains are prone to habitat loss due to future climate 

change. In the present study, the impact of climate change on the distribution of five endemic plant species of subalpine and 

alpine regions in New Guinea is assessed using Maxent. Models developed for all species had an AUC > 0.9, TSS > 0.7 and 

sensitivity, specificity and overall accuracy better than 0.8, indicating high model performance. Current suitable habitats of     

the species were predicted to occur mainly along the mountain ranges in the middle of the New Guinea Island, with elevation 

and extreme temperature related variables being the most influential factors. Future predictions for these species showed 

significant loss of suitable habitats, especially in Papua New Guinea. These results may serve as a basis for planning the 

conservation actions needed to conserve the species, especially in addressing potential future climate change. 
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1. Introduction 

 

One of the biggest issues facing the global com-

munity is climate change. The current level of atmospheric 

CO2 (402.26 ppm), an important heat-trapping gas, is the 

highest in the human history and global surface temperature 

has increased 0.87°C since 1884. This temperature increase is 

likely to continue up to 2.6-4.8°C by the end of 2100, if the 

human CO2 emissions are not strongly reduced. In order to 

survive, organisms and populations on earth are currently 

responding to the changing climate through phenotypic 

plasticity, genotypic evolution and shifts in distribution 

(Peñuelas et al., 2013). 

For mountain plant species, shifts in distributions in 

response to climate change are well documented (Brusca et 

al., 2013; Jump et al., 2012). The combination of high ele-

vation and cold environment makes the potential effects 

climate change on mountain plant species more dramatic. 

 
While most of these species tend to shift to cooler areas 

(uphill), some species shift in the opposite direction, and a 

small portion of them show no change (Lenoir et al., 

2010).Developing the ability to predict the responses of these 

species to ongoing climate change is very important for 

assessing vulnerabilities and avoiding potentially severe 

biodiversity loss (Dawson et al., 2011). 
Species distribution models (SDMs) are widely used 

tools in ecology and conservation biology that help assess 

factors affecting species distribution and predicting responses 

of species to climate change (Guillera‐Arroita et al., 2015; 

Guisan et al., 2013). In addition, SDMs are also used for the 

management of threatened species, controlling threatening 

processes, managing landscape, understanding phylogeo-

graphic patterns, and managing biological invasions (Guil-

lera‐Arroita et al., 2015). To estimate the species distribution, 

these models correlate species occurrence data and envi-

ronmental variables using statistical- or machine-learning 

procedures (Phillips et al., 2006; Roberts & Hamann, 2012). 

For presence-only data, Maximum Entropy (Maxent) (Phillips 

et al., 2006) is one of the best and most popular types of 

SDMs due to its user-friendliness and high predictive 

accuracy compared to other SDMs (Merow et al., 2013).
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In the present study, the impact of climate change 

on the distribution of five endemic plant species of subalpine 

and alpine regions in New Guinea is assessed using Maxent. 

These species are Deschampsiaklossii Ridl. (Poaceae), 

Epilobiumhooglandii Raven (Onagraceae), Rhododendron 

culminicolum F. Muell. (Ericaceae), Tasmanniapiperita 

(Hook. fil.) Miers (Winteraceae), and Tetramolopiumklossii 

(Moore) Mattf. (Asteraceae). The objectives of this study were 

to: (1) estimate the current distributions of all studied plant 

species in the Island of New Guinea, (2) identify the envi-

ronmental factors affecting distributions of the species, and 

(3) assess potential impacts of future climate on the future 

distributions of the species. Alpine ecosystems in tropical 

mountains are often considered as “islands” of cold climate in 

the warm tropics (Vuilleumier, 1970). Plant species in these 

regions are prone to habitat loss as it is predicted that climate 

change will extensively reduce the extent of these ecosystems 

(McCarthy, 2001). Furthermore, invasions from native and 

non-native plants as well as expansion of tourism and resource 

extraction increase the risk of plant species extinction in these 

environments (Pauchard et al., 2015). 

 

2. Materials and Methods 
 

2.1 Species occurrence data 
 

The tropical Island of New Guinea is one of the 

least explored regions on the globe. The island politically was 

divided into two almost equal parts: Papua New Guinea on the 

east and Indonesian provinces of Papua and Papua Barat on 

the west. Extensive central mountain ranges divide the island 

into north and south. Several peaks of these mountains were 

covered by glaciers until recently. The Island is home for 

around 15,000 endemic plant species (Myers et al., 2000). 

Among them, D. klossii, E. hooglandii, R. culminicolum, T. 

piperita, and T. klossiiare only found in subalpine and alpine 

habitats. The conservation status of these plants is unknown as 

they have not been assessed for the IUCN Red List. Utteridge 

and Edwards (2009), however, argued that the conservation 

status of T. piperita is critically endangered based on their 

study in Mt. Jaya. In the present study, the occurrence data of 

these five plant species were obtained from the Global Bio-

diversity Information Facility (GBIF), an open access data 

portal that provides rich information about the known 

presence of organisms. The initial data were filtered for du-

plicate records and then used to create model predictions. 

Total counts of occurrence data used in modeling were 203, 

45, 105, 168 and 7 records for D. klossii, E. hooglandii, R. 

culminicolum, T. piperita, and T. klossii, respectively. 

 

2.2 Environmental variable selection 
 

In total 19 current bioclimatic and 3 topographic 

variables were used for model building. The bioclimatic 

variables were obtained from WorldClim 1.4 database 

(Hijmans et al., 2005) and are derived from monthly rainfalls 

and temperatures from weather stations across the globe, 

within the period 1950-2000. For topographic variables, the 

elevation data set was obtained from the Shuttle Radar 

Topography Mission (SRTM) global elevation data, from 

which slope and aspect data were derived using surface 

analysis extension in ArcMap 10.1 (ESRI, 2012). Initially, a 

model was produced using Maxent that included all 22 

environmental variables. Based on jackknife analysis provided 

by Maxent, variables contributing <1% to the full model were 

excluded and another spatial model was created. The resulting 

model was then tested for variable correlations. This test is 

important as a model with correlated variables removed can 

mislead interpretation. Pearson’s correlation coefficient was 

calculated using SDMtoolbox (Brown, 2014) and r ≤ ±0.8 was 

used as a cut-off threshold to determine the exclusion of 

highly correlated variables. In the final model, correlated 

variables were excluded by retaining the variables with the 

highest model contribution, as determined by Maxent. All the 

environmental layers used in the model had 30 arc-seconds or 

≈1 km resolution. These layers were clipped to the Papua New 

Guinea and Indonesian provinces of Papua and Papua Barat 

political boundaries, and then converted to ASCII raster files 

using ArcMap 10.1 (ESRI, 2012). 

 

2.3 Projection of future climate 
 

To predict the impacts of future climate onthe 

distributions of D. klossii, E. hooglandii, R. culminicolum, T. 

piperita, and T. klossii, global circulation models (GCM) of 

HadGEM2-ES (Hadley Centre Global Environment Model, 

version 2-Earth System), MIROC-ESM (Model for Interdis-

ciplinary Research on Climate-Earth System Models) and 

MRI-CGCM3 (Meteorological Research Institute-Coupled 

General Circulation Model v3.0) for 2050 (average for 2041-

2060) and 2070 (average for 2061-2080) were used (Hijmans 

et al., 2005). These three GCMs are among the most recent 

climate projections used in the Fifth Assessment IPCC Report. 

With each GCM, two representative concentration pathway 

(RCP) emission scenarios, namely RCP4.5 and RCP8.5, were 

used. While RCP4.5 represents a low emission scenario, 

RCP8.5 is a scenario with high greenhouse gas emissions and 

represents the worst case in climate model simulations in the 

Fifth Assessment IPCC report (Riahi et al., 2011). The final 

model used for each plant species was obtained by averaging 

the results from HadGEM2-ES, MIROC-ESM and MRI-

CGCM3. 

 

2.4 Model performance 
 

In the present study, the Maxent software was set to 

the “auto feature”, logistic output format and ASCII output 

file type following the suggestions of Phillips and Dudík 

(2008). To minimize the level of uncertainty and increase 

model accuracy, 10-fold cross-validation was used. Model 

performance was assessed from area under the curve (AUC) 

of the receiver operating characteristic, true skill statistic 

(TSS), sensitivity, specificity and overall accuracy (Allouche 

et al., 2006). Furthermore, a maximum training sensitivity 

plus specificity (MTSS) logistic threshold was used to convert 

the continuous suitability index into suitable and unsuitable 

areas for the plant species. This MTSS thresholding is the best 

method for threshold selection when only presence data are 

available (Liu et al., 2013). 
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3. Results and Discussion 
 

3.1 Model performance 
 

 The Maxent models developed for D. klossii, E. 

hooglandii, R. culminicolum, T. klossii, and T. piperita pre-

dicted the distributions significantly better than random 

expectation. All models had an AUC >0.9, TSS >0.7 and 

sensitivity, specificity and overall accuracy better than 0.8, 

indicating high model performance (Table 1).Compared to 

other model types, Maxent is known to be robust against small 

sample sizes (Kumar & Stohlgren, 2009). This was the case 

for T. klossii with only 7 occurrence records in the present 

study; the model was similar in terms of accuracy, sensitivity 

and specificity to models for the other species that had more 

records. 

 

3.2 Current distribution of the species 
 

Using MTSS logistic threshold, model estimates of 

the current distributions identified a total area of 95,577.55 

km2 (10.96% of total land area) as suitable habitat for D. 

klossii, 108,555.31 km2 (12.45%) for E. hooglandii, 112, 

823.47 km2 (12.94%) for R. culminicolum, 114,203.4 km2 

(13.01%) for T. klossii, and 83,626.88 km2 (9.59%) for T. 

piperita (Table 2). As can be seen in Figure 1, most of the 

suitable habitats for the studied species were found along the 

mountain ranges in the middle of New Guinea Island. They 

extended from Jayawijaya Mountains in Indonesian provinces 

of Papua in the west to Easter Highland in Papua New Guinea 

in the east. The habitat estimates for all species excepting T. 

klossii extended to Owen Stanley Range in the Bird’s Tail 

Peninsula of Papua New Guinea. In addition, except for D

klossii, suitable habitats for all studied species were also  

predicted in Tambrauw Mountains located in the north central 

region of the Bird's Head Peninsula.  

Since all of the species are endemic to alpine and 

subalpine habitats, it is understandable that habitats consi-

dered suitable were found along the mountain ranges with 

high elevation for all the studied species. In New Guinea, 

alpine and subalpine zones are generally found above 3000m 

(Johns et al., 2007; Utteridge & Edwards, 2009).Subalpine 

areas, however, can also occur in valleys below the 3000m 

rule of thumb, as a consequence of various factors, including 

wet soil (Ashton & Hargreaves, 1983), periodic droughts and 

fire (Johns, 1986), cold air drainage (Paton, 1988), and ex-

posure to strong winds(Ashton & Williams, 1989). In the 

present study, this kind of areas were found in Tambrauw 

Mountains located in the north central region of the Bird’s 

Head Peninsula, and these were estimated to be suitable 

habitats for E. hooglandii, R. culminicolum, T. klossii, and T. 

piperita (Figure 1). 

 

3.3 Contributions of environmental variables in the 

models 
 

In total, five to nine environmental variables con-

tributed inthe predictive models developed for the studied 

species (Table 3). D. klossii, E. hooglandii, R. culminicolum 

were affected by four environmental variables, whereas T. 

klossiiand T. piperita were influenced by five and nine 

variables, respectively. The environmental variable with the 

highest contribution to the model was minimum temperature 

of coldest month for D. klossii (65.4%), elevation for E. 

hooglandii (61.1%) and T. klossii (34.3%), maximum 

temperature of the warmest month (70%) for R. culminicolum,  

 

 
Table 1. Model performances for D. klossii, E. hooglandii, R. culminicolum, T. klossii, and T. piperita 

in terms of area under the curve (AUC), true skill statistic (TSS), sensitivity, specificity and 

overall accuracy. Values given are mean ± standard deviation from 10-fold cross-validation. 

 

Species AUC TSS Sensitivity Specificity Overall accuracy 

D. klossii 0.95 ± 0.022 0.79 ± 0.075 0.9 ± 0.079 0.89 ± 0.005 0.89 ± 0.005 
E. hooglandii 0.95 ± 0.063 0.73 ± 0.14 0.86 ± 0.15 0.88 ± 0.013 0.88 ± 0.13 

R. culminicolum 0.94 ± 0.036 0.77 ± 0.078 0.9 ± 0.082 0.87 ± 0.007 0.87 ± 0.007 

T. klossii 0.94 ± 0.116 0.73 ± 0.34 0.86 ± 0.38 0.87 ± 0.049 0.87 ± 0.048 
T. piperita 
 

0.93 ± 0.045 
 

0.72 ± 0.14 
 

0.82 ± 0.15 
 

0.90 ± 0.007 
 

0.90 ± 0.006 
 

 

 
Table 2. Prediction of current and future distribution area of D. klossii, E. hooglandii, R. culminicolum, T. klossii, and T. piperita. Future 

habitat predictions are givenfor the years 2050 and 2070 under the representative concentration pathway scenarios RCP4.5 and 

RCP8.5, for the average of results from HadGEM2-ES, MIROC-ESM and MRI-CGCM3 climate models. Values are givenin km2 and 

as percentages of total land area. 

 

Species Current 
RCP4.5 RCP8.5 

2050 2070 2050 2070 
 

D. klossii 95,577.55 (10.96 %) 70,069.13 (8.04 %) 63,216.19 (7.25 %) 62,443.18 (7.16 %) 47,016.21 (5.39 %) 

E. hooglandii 108,555.31 (12.45 %) 92,612.10 (10.62 %) 84,662.04 (9.71 %) 85,500.59 (9.81 %) 69,886.88 (8.02 %) 

R. culminicolum 112,823.47 (12.94 %) 84,989.74 (9.75 %) 78,058.69 (8.95 %) 75,471.22 (8.66 %) 59,389.75 (6.81 %) 

T. klossii 114,203.40 (13.01 %) 64,892.39 (7.44 %) 53,281.09 (6.11 %) 50,486.23 (5.79 %) 42,981.48 (4.93 %) 
T. piperita 
 

83,626.88 (9.59 %) 
 

74,055.38 (8.49 %) 
 

66,941.18 (7.68 %) 
 

64,334.86 (7.38 %) 
 

47,279.27 (5.42 %) 
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Figure 1. Estimate of the current distribution of D. klossii (A), E. hooglandii (B), R. culminicolum (C), T. klossii (D), and T. piperita (E). 

 
Table 3. Relative contributions of the environmental variables (%) inthe Maxent modelsfor D. klossii, E. hooglandii, R. 

culminicolum, T. klossii, and T. piperita. 

 

Variables D. klossii E. hooglandii R. culminicolum T. klossii T. piperita 
 

Aspect 
 

- 
 

1.8 
 

4.6 
 

- 
 

1.3 
Elevation 17.4 61.1 11.6 34.3 32.5 

Isothermality (Bio 3) - - - - 2.4 

Max Temperature of Warmest Month (Bio 5) - - 70 - - 

Mean Diurnal Range (Bio 2) 3 - - - 2.5 

Mean Temperature of Coldest Quarter (Bio 11) - 30.8 - - - 

Mean Temperature of Driest Quarter (Bio 9) - - - - 38.3 
Mean Temperature of Wettest Quarter (Bio 8) - - - 34.1 - 

Min Temperature of Coldest Month (Bio 6) 65.4 - - - - 

Precipitation of Coldest Quarter (Bio 19) - 2 - - - 
Precipitation of Driest Quarter (Bio 17) - - - - 1.8 

Precipitation Seasonality (Bio 15) 3.6 4.3 6.7 30.4 3.9 

Slope  - - - - 1 
Temperature Annual Range (Bio 7) 
 

 

10.5 
 

- 
 

7.1 
 

1.2 
 

16.2 
 

 

and mean temperature of driest quarter (38.3%) for T. pipe-

rita. In general, elevation and extreme temperature related 

variables (Bio 5, Bio 6, Bio 8, Bio 9, Bio 11) had stronger 

effects on distributions of the species than other variables. The 

probability of presence increased for all the studied species 

with elevation (Figure 2). 

The results of the present study are in line with 

previous studies showing the importance of elevation as 

dominant factor affecting plants species distribution in 

mountain habitats (Körner, 2004, 2007). Small changes in 

elevation relate to changes in microclimate and is often 

associated with local precipitation and temperature features 

(Austin, 2002; Körner, 2007). In terms of predictive modeling, 

Oke and Thompson (2015) have shown that inclusion of 

elevation as a predictor variable can improve the quality of 

SDMs for high-elevation plant species. In the present study, 

elevation was included in all final models as a significant 

factor retained by the variable selection procedures. This may 

be the reason why the models achieved high values of AUC, 

TSS, sensitivity, specificity and overall accuracy. Further-

more, all the models were able to predict suitable elevation 

ranges for all the studied species, at 3000-5000m, as shown in 

Figure 2, which matches the elevation range of alpine and 

subalpine habitats in New Guinea. 

Among the various environmental factors in high 

mountain habitats, temperatures are a main factor limiting 

plant species distribution. The present study found that the 

probability of presence for all the studied species decreased 

with increasing the temperature related variables. This nega-

tive effect of warming temperature on alpine and subalpine 

plant species is caused by several factors, including 1) 

reduction of growth period due to winter dormancy period 

extension (Heide, 2003; Myking & Heide, 1995), 2) damage 

of buds released from dormancy under warmer temperature 

caused by late-season frost, 3) damage caused by wintertime 

and frozen soil (Sevanto et al., 2006), and 4) increased high 

temperature-induced photo inhibition during summer (Dumais 

& Prévost, 2007; Mooney & Billings, 1961). 
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Figure 2. Response curves showing the relationships between elevation (m above sea level) and the probability of presence of D. klossii (A), E. 

hooglandii (B), R. culminicolum (C), T. klossii (D), and T. piperita (E). Values shown are averages over 10 replicate runs; blue 

margins show ±1 SD calculated over 10 replicates. 

 
3.4 Impact of climate change on species distributions 
 

Climate change is predicted to increase the 

temperature over New Guinea in the range of 0.2-0.3°C per 

decade (Boer & Faqih, 2004). Under this temperature in-

crease, suitable habitats for all the studied species are 

predicted to decline by 2050, with both RCP4.5 and RCP8.5 

scenarios (Table 2). Decline of the suitable habitats would 

then worsen by 2070, especially for T. klossii that had the 

smallest suitable habitats with both RCP4.5 and RCP8.5. As 

RCP8.5 is the worst case scenario among climate model 

simulations, it gave more detrimental effects on the species 

distributions than RCP4.5. 

In 2050 under RCP4.5, the suitable habitats would 

be decreased by 2.92% for D. klossii, 1.83% for E. hooglandii, 

3.19% for R. culminicolum, 5.57% for T. klossii, and 1.1% for 

T. piperita (Table 2). These species are unable to cope with 

increased temperature especially at the outer areas of their 

suitable habitats or in the suitable areas with low elevation 

(Figure 3). These estimated reductions would mostly occur in 

Papua New Guinea. Although generally all the species would 

suffer from habitat loss by 2050 under RCP4.5, the model for 

T. piperita indicates that some populations of this species 

could deal with future climate, and some of them even could 

expand their ranges to higher altitude. 

Under RCP8.5, the suitable habitat reduction for all 

the species would be higher by 2050 than under RCP4.5. The 

suitable habitats would decrease by 3.8% for D. klossii, 2.64% 

for E. hooglandii, 4.28 % for R. culminicolum, 7.22% for T. 

klossii, and 2.21% for T. piperita (Table 2).Similar to RCP4.5, 

the reduction of suitable habitats occurred mainly in Papua 

New Guinea. Furthermore, some habitat gains for T. piperita 

were also observed under this emission scenario, although 

they were smaller than under RCP4.5 (Figure 4). 
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Figure 3. Predicted distribution in 2050 for D. klossii (A), E. hooglandii (B), R. culminicolum (C), T. klossii (D), and T. piperita (E) under 
RCP4.5 emission scenario. 

 

 
 

Figure 4. Predicted distribution in 2050 for D. klossii (A), E. hooglandii (B), R. culminicolum (C), T. klossii (D), and T. piperita (E) under 

RCP8.5 emission scenario. 

 

 

By 2070, further decline in suitable habitats for all 

the species would happen as the temperatures continue to 

increase. Under RCP4.5, the suitable habitats would decrease 

by 3.71% for D. klossii, 2.74% for E. hooglandii, 3.99% for R. 

culminicolum, 6.9 % for T. klossii, and 1.73% for T. piperita. 

Under RCP8.5, significantly larger reductions of the habitats 

are predicted, due to higher carbon emissions. The suitable 

habitats would decrease by 5.57% for D. klossii, 4.43% for E. 

hooglandii, 6.13% for R. culminicolum, 8.08 % for T. klossii, 

and 4.17% for T. piperita (Table 2). These losses were 

predicted to occur evenly throughout all suitable habitats of 

the species in New Guinea. In addition, new suitable habitats 

of T. piperita in Papua New Guinea gained by 2050 would 

significantly decrease by 2070 under RCP4.5 and would 

totally disappeared under RCP8.5 (Figure 5, 6). 
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Figure 5. Predicted distribution in 2070 for D. klossii (A), E. hooglandii (B), R. culminicolum (C), T. klossii (D), and T. piperita (E) under 
RCP4.5 emission scenario. 

 

 
 

Figure 6. Predicted distribution in 2070 for D. klossii (A), E. hooglandii (B), R. culminicolum (C), T. klossii (D), and T. piperita (E) under 

RCP8.5 emission scenario. 

 

Plant species in alpine and subalpine habitats exhibit 

morphological and physiological adaptations, which allow 

them to live in a stress-limiting environment. Many of these 

adaptations heavily depend on air temperature (Buytaert et al., 

2011). Climate change is likely to disrupt and alter all of these 

processes, forcing species to track their new climatic niche or 

to die out. In the present study, D. klossii, E. hooglandii, R. 

culminicolum, T. klossii, and T. piperita seemed unable to 

keep up with the increasing temperature, leading to significant 

habitat loss in the future. The last of these was able to track it 

climatic niche and gain suitable habitats by 2050, although 

they will significantly decrease or even totally disappear by 

2070.  
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4. Conclusions 
 

Using Maxent and published occurrence data, the 

present study was able to match the current and predict the 

future distributions of five endemic alpine and subalpine 

plants in New Guinea with high sensitivity, specificity and 

accuracy. Most of the suitable habitats for the studied species 

were found along the mountain ranges in the middle of New 

Guinea Island. Concerning future distributions, the present 

modeling study suggests that there will be significant losses of 

suitable habitats of the species due to climate change. This 

habitat loss may already be happening, or is likely to happen 

sooner as human exploitations and land use transformation are 

very massive in these areas. For this reason, immediate 

conservation actions are needed to protect these species from 

extinction. The results of this study may serve as a basis for 

conservation actions concerning alpine and subalpine plant 

species in New Guinea. However, further modeling studies 

using other methods and direct field studies are required to 

validate the present modeling results. 
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