

THE INHIBITION OF HUMAN IMMUNODEFICIENCY VIRUS-1 INTEGRATION BY DESIGNED ZINC FINGER PROTEIN

SUPACHAI SAKKHACHORNPHOP

DOCTOR OF PHILOSOPHY
IN BIOMEDICAL SCIENCE

THE GRADUATE SCHOOL CHIANG MAI UNIVERSITY AUGUST 2011 600256426

THE INHIBITION OF HUMAN IMMUNODEFICIENCY VIRUS-1 INTEGRATION BY DESIGNED ZINC FINGER PROTEIN

SUPACHAI SAKKHACHORNPHOP

A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOMEDICAL SCIENCE

THE GRADUATE SCHOOL
CHIANG MAI UNIVERSITY
AUGUST 2011

THE INHIBITION OF HUMAN IMMUNODEFICIENCY VIRUS-1 INTEGRATION BY DESIGNED ZINC FINGER PROTEIN

SUPACHAI SAKKHACHORNPHOP

THIS THESIS HAS BEEN APPROVED TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOMEDICAL SCIENCE

EXAMINING COMMITTEE	THESIS ADVISORY COMMITTEE
Kid Cham CHAIRPERSON (Awden Cappier ADVISOR
Prof. Kiat Ruxrungtham, M.D.	Assoc. Prof. Dr. Chatchai Tayapiwatana
Bu E. Lue MEMBER	
Assoc. Prof. Dr. Bruce E. Torbett	Prof. Dr. Carlos F. Barbas, III
Sweln Oggna MEMBER	CO- L CO-ADVISOR
Assoc. Prof. Dr. Chatchai Tayapiwatana	Prof. Dr. Watchara Kasinrerk
CO V C - MEMBER	CO-ADVISOR
Prof. Dr. Watchara Kasinrerk	Prof. Thira Sirisanthana, M.D.
MEMBER	

19 August 2011 © Copyright by Chiang Mai University

Prof. Thira Sirisanthana, M.D.

ACKNOWLEDGEMENTS

This thesis arose on several years of research that has been done since I came to Assoc. Prof. Dr. Chatchai's Lab. By that time, I have worked with a great number of people whose contribution in assorted ways on this research road. This thesis would not have been possible unless all these special people and funding. It is a pleasure to convey my gratitude to them all in my acknowledgments.

First and foremost, I would like to express my deepest gratitude and sincere appreciation to my thesis advisor, Assoc. Prof. Dr. Chatchai Tayapiwatana for giving me the opportunity to be a Ph.D student in his laboratory. He provided me the supervision, advice, and excellent guidance, valuable suggestions, extraordinary experiences and many encouragements from the very early stage throughout the period of study including to obtain the financial support from the Thailand Research Fund through the Royal Golden Jubilee Ph.D program. His truly scientist intuition has made him as a constant oasis of ideas and passions in science, which exceptionally inspire and enrich my growth and maturation.

It has been an honor to be a member for 6 months in laboratory of Prof. Dr. Carlos F. Barbas, III, my co-advisor at the Skaggs Institute for Chemical Biology and the Departments of Molecular Biology and Chemistry, the Scripps Research Institute, La Jolla, California, USA, for working on zinc finger protein and lentiviral vector technology. I am extremely grateful to thank for his help in providing me with excellent guidance, constructive suggestions and comments, and kind supports throughout my study, and revision of my manuscripts. I'm also thankful for Dr. Beatriz Gonzalez Alonso, Roberta Fuller, Thomas Gaj and Mishelle McClanahan-

Shinn for technical assistance and everybody in this laboratory for their warm friendship and kind help during working in La Jolla.

My deepest gratitude goes to my co-advisor, Prof. Dr. Watchara Kasinrerk, for his valuable suggestions kindly provide some monoclonal antibodies, and equipments throughout my thesis. I would also like to thank members in this laboratory for their friendship, kindness, and contributions for technical supports.

For the continued supports from master degree through Ph.D. program, I would like to express my sincere gratitude to my co-advisor, Professor Thira Sirisanthana, for his kindness, encouragement, valuable suggestions, providing the financial support from the Fogarty AIDS International for Research and Training Program, the Fogarty International Clinical Research Training for Scholars and Fellows Program, Johns Hopkins University, and support the construction and facilities for viral culture experiments at the Research Institute for Health Sciences (RIHES), Chiang Mai University. I am particularly indebted to thanks Mr. Rassamee Keawvichit, Mrs. Kanlaya Wongworapat, and all the staff in clinical laboratory of the RIHES for their kind help and support in viral load assay. I appreciate Mr. Peter Lange, Mrs. Paphawadee Damrongmanee, and all staff of administrative office, and extend thanks a librarian, Ms. Tippawan Kunkaew, for the best service, their friendship.

For the assistance to access the BIACORE 2000TM biosensor, my grateful thanks go to Assoc. Prof. Dr. Prachya Kongtawelert, Faculty of Medicine, Chiang Mai University and thank to Mr. Kanchanok Kodchakorn for technical support.

The Faculty of Allied Health Science, Chulalongkorn University and Rushmore Precision co., Ltd, have been a source to acquire many high quality pictures by a confocal laser scanning microscope LSM 700 (Carl Zeiss MicroImaging, Germany) and ZEN 2010 software.

Warm friendship, suggestions, and kind assistance from Asst. Prof. Dr. Khajornsak Tragoolpua, Asst. Prof. Dr. Songyot Anuchapreeda and sisters of lineage student code: Lect. Dr. Nutjeera Intasai and Asst. Prof. Dr. Sawitree Chiampanichayakul were appreciated in deepest in my mind.

I thank to Mr. Wutigri Nimlamool, Mr. Somphot Saoin, Dr. Sawitree Nangola, and all the staff in Assoc. Prof. Dr. Chatchai's Lab for kind helps, warm friendship. I have appreciated to Mrs. Kongkham Kruawan for her kindness in providing lunch boxes every day. The best services in official document preparations were obtained by kindness and friendship of Mrs. Tuanjai Ponsung. Thank you so much.

This work was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D program (grant number PHD/0112/2550), the Fogarty AIDS International for Research and Training Program, Johns Hopkins University, the National Center for Genetic Engineering and Biotechnology (BIOTEC) of the National Science and Technology Development Agency, Thailand, and the U.S. National Institutes of Health grant GM065059 (CFB), and the National Research University Project under Thailand's Office of the Higher Education-Commission for partial financial support.

The proof of English usage in this thesis was mainly from the valuable help of Assoc. Prof. Dr. Bruce E. Torbett an invited committee from the Scripps Research Institute, La Jolla, California, USA.

vi

Finally, I deeply express my special thanks to my parents, and my sister Tassanee Sakkhachornphop as a second mom to take care my family throughout my time in USA. Indispensably, I thanks to my wife Pranee Sakkhachornphop, son N' Angpao, and daughter N' Imm for their love, patience, understanding, and encouragement.

Supachai Sakkhachornphop

Thesis Title

The Inhibition of Human Immunodeficiency Virus-1

Integration by Designed Zinc Finger Protein

Author

Mr. Supachai Sakkhachornphop

Degree

Doctor of Philosophy (Biomedical Science)

Thesis Advisory Committee

Assoc. Prof. Dr. Chatchai Tayapiwatana Advisor

Prof. Dr. Carlos F. Barbas, III Co-advisor

Prof. Dr. Watchara Kasinrerk Co-advisor

Prof. Thira Sirisanthana, M.D. Co-advisor

ABSTRACT

E46240

Integration of the human immunodeficiency virus type 1 (HIV-1) genome into the host chromosome is a crucial step in the HIV life cycle. The highly conserved cytosine-adenine (CA) dinucleotide sequence immediately upstream of the cleavage site is imperative for integrase (IN) activity. As this viral enzyme has an important role early stage of infection, interference with the IN substrate has become an attractive strategy for therapeutic intervention. In this study, the integrase recognition sequence at the 2-LTR-circle junctions of HIV-1 DNA was used to design a six-contiguous zinc finger protein (ZFP), namely 2LTRZFP by using zinc finger tools. The designed motif fused to green fluorescent protein (GFP) was expressed and purified from *E. coli* to determine its binding properties. The binding affinity of 2LTRZFP-GFP to its target DNA via surface plasmon resonance (SPR) was on a

nanomolar scale. The competitive SPR indicated the 2LTRZFP-GFP specifically interacted with its target DNA. The qualitative binding activity was subsequently determined by electrophoretic mobility shift assay (EMSA) and demonstrated the aforementioned correlation. To investigate an intracellular function of 2LTRZFP-GFP, the 293T stable line of transduced with 2LTRZFP-GFP was produced and challenged with VSV-G pseudotyped lentiviral red fluorescent protein (RFP). The result demonstrated the dramatic suppression of RFP expression by 2LTRZFP-GFP. In addition, a third-generation lentiviral vector and pCEP4 expression vector were used to deliver the 2LTRZFP-GFP transgene into human T-lymphocytic cells for production of stable cell lines in long-term expression studies. These cell lines were challenged with HIV-1 _{NL4-3}. 2LTRZFP-GFP successfully inhibited viral integration and replication as measured by an Alu-gag qPCR and p24 antigen assay, respectively. These findings indicated that viral integration can be inhibited by intracellular immunization with 2LTRZFP-GFP indicating its potential for use in HIV gene therapy.

ชื่อเรื่องวิทยานิพนธ์

การยับยั้งการอินที่เกรทเชื้อ เอชไอวี-1 โดยซิงก์ฟังเกอร์โปรตีน

ที่ออกแบบ

ผู้เขียน

นายศุภชัย ศักดิ์ขจรภพ

ปริญญา

วิทยาศาสตรคุษฎีบัณฑิต (วิทยาศาสตร์ชีวการแพทย์)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

รศ. คร. ชัชชัย ตะยาภิวัฒนา อาจารย์ที่ปรึกษาหลัก
Prof. Dr. Carlos F. Barbas, III อาจารย์ที่ปรึกษาร่วม
ศ. คร. วัชระ กสิณฤกษ์ อาจารย์ที่ปรึกษาร่วม
ศ. นพ. ธีระ ศิริสันธนะ อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

E46240

กระบวนการอินทิเกรชั่นของเอชไอวี-1 คีเอ็นเอ เข้าสู่โครโมโซมเจ้าบ้านโคยเอนไซม์อินทิ เกรส เป็นขั้นตอนที่สำคัญในระยะแรกสำหรับการแบ่งตัวของไวรัส เอนไซม์อินทิเกรสทำการตัดคื เอ็นเอเป้าหมายบริเวณปลายสามไพร์มของแอลที่อาร์ เพื่อเตรียมชิ้นคีเอ็นเอเข้าไปเชื่อมต่อกับคีเอ็น ดังนั้นการรบกวนหรือยับยั้งไม่ให้อินทิเกรสทำงานได้จึงเป็นกลยุทธ์ที่น่าสนใจในการ รักษาในระดับยืน ในการศึกษานี้ผู้วิจัยได้ใช้โมเลกุลเป้าหมายคือ ดีเอ็นเอบริเวณรอยต่อของสอง แอลที่อาร์ของเชื้อไวรัสเอชไอวี-1 เป็นต้นแบบในการออกแบบซิงก์ฟิงเกอร์โปรตีนที่จำเพาะ ซิงก์ ฟิงเกอร์โปรตีนที่ออกแบบจากซิงก์ฟิงเกอร์ทูล มีจำนวน 6 ฟิงเกอร์มีชื่อว่า 2LTRZFP โปรตีนนี้ถูก เชื่อมต่อกับโปรตีนที่เรื่องแสงสีเขียว (GFP) ซึ่งสามารถเตรียมได้จากแบคทีเรียอีโคไล และทำให้ บริสุทธิ์เพื่อใช้ทำการทคสอบการเข้าจับกันระหว่างซิงก์ฟิงเกอร์โปรตีนและคีเอ็นเอเป้าหมาย วิธีเซอร์เฟสพลาสมอนเร โซแนนซ์ (SPR) โดยได้ค่าคงที่ในการเข้าจับในระดับนาโนโมลาร์ ในขณะที่วิธี คอมเพ็ททิทีฟเซอร์เฟสพลาสมอนเรโซแนนซ์ชี้ให้เห็นว่า 2LTRZFP-GFP จับกับคีเอ็น เอเป้าหมายอย่างจำเพาะ การเข้าจับกันเชิงคุณภาพระหว่างซิงก์ฟิงเกอร์โปรตีนและคีเอ็นเอเป้าหมาย ถูกทำการทคสอบ โดยวิธีอิเล็กโตร โมบิลิตี้ชิพแอสเซ (EMSA) ผลการทคลองที่ใด้มีความสอคคล้อง กับวิธีเซอร์เฟสพลาสมอนเรโซแนนซ์ คังกล่าว เพื่อศึกษาหน้าที่ของ 2LTRZFP-GFP ภายในเซลล์ เซลล์ 293T ถูกนำส่งยืน 2LTRZFP-GFP โดยไวรัสเพื่อสร้างเซลล์ที่มีการแสดงออกของ 2LTRZFP-GFP อย่างถาวร และทำการท้าทายด้วยเชื้อวีเอสวี-จี ซูโดไทป์เลนติไวรัสที่มีโปรตีนเรื่องแสงสีแดง (RFP) ผลการทคลองพบว่า 2LTRZFP-GFP ลดการแสดงออกของโปรตีนเรื่องแสงสีแดง (RFP) ได้ ยิ่งไปกว่านั้น ชัดเจน เลนติไวรัลเวคเตอร์และพีเซ็พโฟเวคเตอร์ถูกนำมาใช้ในการนำส่งยืน เข้าในเซลล์เพาะเลี้ยงชนิดที-ลิมโฟไซท์ของมนุษย์เพื่อทำการสร้างเซลล์ที่มีการ

E46240

แสดงออกของ 2LTRZFP-GFP อย่างถาวร เซลล์เหล่านี้ถูกท้าทายด้วยเชื้อเอชไอวี-วัน เอ็นแอลโฟว์-ทรี พบว่า 2LTRZFP-GFP ยับยั้งกระบวนการอินทิเกรชั้นและการแบ่งตัวของไวรัสได้สำเร็จโดยวัด จาก Alu-gag qPCR และ p24 antigen assay ตามลำคับ การค้นพบนี้แสดงให้เห็นว่ากระบวนการอินทิเกรชั่นของไวรัสสามารถถูกยับยั้งได้โดย 2LTRZFP-GFP ในเซลล์ ซึ่งแนวความคิดใหม่นี้เป็นการสร้างนวัตกรรมการรักษาผู้ติดเชื้อเอชไอวีในระดับยืนต่อไปในอนาคต

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	vii
ABSTRACT (THAI)	ix
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
ABBREVIATIONS AND SYMBOLS	xxi
CHAPTER I INTRODUCTION	1
1.1 Statement and significance of the problem	1
1.2 Literature review	3
1.2.1 HIV-1 and AIDS	3
1.2.2 HIV-1 structure	4
1.2.3 HIV-1 genomic structure	6
1.2.4 HIV-1 replication cycle	9
1.2.4.1 Early phase	9
1.2.4.1.1 Virus entry	9
1.2.4.1.2 Reverse transcription	11
1.2.4.1.3 Nuclear transport and	d integration 13
1.2.4.2 Late phase	13
1.2.4.2.1 HIV transcription	13

		1.2.4.2.2 HIV translation, assembly and budding	14
		1.2.4.2.3 Assembly, budding and maturation	15
	1.2.5	Antiretroviral drugs	16
	1.2.6	Gene therapy for HIV-1	18
	1.2.7	HIV-1 integration as an important step for intracellular	19
		immunization	
		1.2.7.1 The structure of HIV-1 IN	20
		1.2.7.2 The function of HIV-1 IN	21
		1.2.7.3. Detection of HIV-1 integration	25
	1.2.8	ZFP technology	31
		1.2.8.1 The structure of Cys ₂ His ₂ zinc finger and	31
		its interaction with DNA	
		1.2.8.2 Design and selection of novel zinc finger proteins	35
		1.2.8.3 Applications of designer Cys ₂ His ₂ zinc fingers	36
		1.2.8.4 Intracellular targeting of designed	39
		zinc finger proteins	
	1.2.9	Lentivirus gene transfer system	42
1.3	Objectiv	ves	51
CHAPTER	II MAT	TERIALS AND METHODS	52
2.1	Chemi	cals and equipments	52
2.2	Zinc F	inger Protein Design	52
2.3	Plasmi	id construction	53
2.4	Expre	ession and purification of His6-2LTRZFP-GFP	53

xiii

	2.5	cen culture and transfection of Hela cens	33
	2.6	Double-stranded DNA preparation	55
	2.7	Surface plasmon resonance (SPR)	56
	2.8	Electrophoretic mobility shift assay (EMSA)	57
	2.9	Construction of expression vectors	57
	2.10	Cell cultures	59
	2.11	Production of VSV-G pseudotyped lentiviral particles	59
	2.12	HIV-1 viral stocks	60
	2.13	Determination of viral production by p24 Ag ELISA	60
	2.14	Generation of stable lines expressing either 2LTRZFP-GFP	
		or Aart-GFP by lentiviral gene transfer	61
	2.15	Generation of SupT1 cells stably expressing either	62
		2LTRZFP-GFP or Aart-GFP by non-viral gene transfer	
	2.16	Quantitation of integrated HIV-1 DNA (provirus) by	62
		an Alu-gag qPCR assay	
	2.17	Challenge of 2LTRZFP-GFP-expresing cells with VSV-G	64
		pseudotyped lentiviral RFP	
	2.18	Flow cytometric analysis for CD4 expression	65
	2.19	HIV-1 infection	66
СНА	PTER I	III RESULTS	67
	3.1	Procurement of the target sequence and designing the 2LTRZFP	67
	3.2	Construction of pTriEx-4- 2LTRZFP-GFP	73
	3.3	Protein expression and purification	73

	3.4	Expression of 2L1 RZFP-GFP in HeLa cells	74
	3.5	Evaluating of dissociation constants and competitive	80
		DNA binding activity by SPR	
	3.6	DNA binding activity by EMSA	84
	3.7	Cloning of lentiviral-based vectors and non-viral vectors	86
		for stable line production	
	3.8	Production and expression of VSV-G pseudotyped	86
		lentiviruses containing 2LTRZFP-GFP Aart-GFP, and RFP	
	3.9	2LTRZFP-GFP inhibits VSV-G pseudotyped	94
		lentiviral RFP integration in 293T cells	
	3.10	2LTRZFP-GFP inhibits HIV-1 replication in viral-transduced	97
		SupT1 cell line	
	3.11	Inhibition of HIV-1 replication in non-viral transfected	104
		SupT1 expressing 2LTRZFP-GFP	
CHA	PTER I	V DISCUSSION	113
CHA	PTER V	CONCLUSION	120
REFE	ERENC	ES	122
APPE	ENDICE	ES	145
	APPE	NDIX A List of the chemicals and instruments	146
	APPE	NDIX B List of cell lines and microorganisms	152
	APPE	NDIX C List of antibodies and conjugated antibodies	153

	APPENDIX D List of enzymes	154
	APPENDIX E Reagent preparations	155
	APPENDIX F Presentations and publications	163
av.		
CUR	RICULUM VITAE	165

LIST OF TABLES

Table		Page
1.1	Current licenced antiretroviral drugs	17
3.1	The results of searching for zinc finger target sites at HIV-1 DNA	69
	sequence of 2-LTR-circle junctions	
3.2	The amino acid sequence in α -helix of each finger predicted to bind	70
	to the triplet DNA target at 2-LTR-circle junctions	
3.3	The results of p24 Ag and viral load assay in a production of VSV-G	91
	Pseudotyped lentiviruses containing 2LTRZFP-GFP, Aart-GFP, and RFF)

xvii

LIST OF FIGURES

Figure	Figure	
1.1	The structure of human immunodeficiency virus	5
1.2	HIV-1 genomic structures	8
1.3	HIV-1 replication cycle	10
1.4	Reverse transcription of HIV-1	12
1.5	The structure of HIV-1 integrase	22
1.6	Schematic representations of non-covalent 2-LTR circle junctions	23
	of HIV-1	
1.7	3' processing and strand transfer activities of IN	24
1.8	Schematic representation of the integrated and unintegrated	27
	HIV-DNA	
1.9	Illustration of the linker-primer PCR assay and the inverse PCR assay	28
1.10	An overview of Alu-gag qPCR assay	30
1.11	Three dimension picture of the Cys ₂ His ₂ ZFP	33
1.12	The model of DNA recognition by the classical zinc finger proteins	34
1.13	Applications of designer Cys ₂ His ₂ zinc finger proteins	38
1.14	Intracellular targeting of designer zinc finger proteins	41
1.15	The overall picture of lentiviral gene therapy	44
1.16	The construction of transfer vector	46
1.17	The construction of packaging vector	46

xviii

1.18	The construction of envelop genes in the third plasmid	46
1.19	Structure of SIN HIV-derived vectors	48
1.20	Construction and replication cycle of self-inactivating vector	49
1.21	Schematic drawing of the HIV provirus and the four constructs used to	50
	make a lentivirus vector of the SIN system	
3.1	The pop-up ELISA graphs for predicted binding activity in each	71
	finger to triplet DNA target	
3.2	Full-length amino acid and optimized nucleotide sequence of 2LTRZFP	72
3.3	Construction of pTriEx-4- 2LTRZFP-GFP	75
3.4	Restriction digest analysis of the pTriEx-4-2LTRZFP-GFP	76
3.5	Protein construction and expression of 2LTRZFP-GFP	77
3.6	SDS-PAGE and Western blot analysis of His6-2LTRZFP-GFP	78
3.7	Expression of green fluorescent protein in HeLa cells 24 h after	79
	transfection	
3.8	Kinetic binding analysis between 2LTRZFP-GFP and its	81
	target DNA sequence	
3.9	Kinetic binding analysis in the competitive SPR	82
3.10	Kinetic binding of 2LTRZFP-GFP to its target DNA sequence	83
	depend on zinc ion	
3.11	Electrophoretic mobility shift assay (EMSA)	85
3.12	Schematic drawing of the expression vectors for	88
	2LTRZFP-GFP, Aart-GFP, and RFP	
3.13	The restriction enzyme analysis of lentiviral-based vectors	89
	expressing for 2LTRZFP-GFP, Aart-GFP, and RFP	

3.14	The restriction analysis of vector pCEP4-2L1RZFP-GFP	90
	and pCEP4-Aart-GFP	
3.15	Expression of 2LTRZFP-GFP, Aart-GFP, and RFP in 293T cells	92
3.16	Long term expression of 2LTRZFP-GFP and	93
	Aart-GFP in 293T cells	
3.17	Inhibition of VSV-G pseudotyped lentiviral RFP expression	95
	by 2LTRZFP-GFP	
3.18	RFP expression in cells stably transfected with	96
	either 2LTRZFP-GFP or Aart-GFP	
3.19	GFP expression in SupT1 cells stably transduced with	99
	either 2LTRZFP-GFP or Aart-GFP	
3.20	CD4 expression on the surface of cells stably transduced with	100
	either 2LTRZFP-GFP or Aart-GFP	
3.21	A comparison of HIV-1 p24 Ag in culture supernatants of	101
	each stably transduced with either 2LTRZFP-GFP or	
	Aart-GFP after infection	
3.22	The relative inhibition of HIV-1 integration in stably	102
	transduced SupT1 with 2LTRZFP-GFP by Alu-gag qPCR	
3.23	Differentiation between HIV-1 and VSV-G pseudotyped	103
	lentivirus integration by Alu-gag qPCR	
3.24	GFP expression in SupT1 cells stably transfected with	106
	either 2LTRZFP-GFP or Aart-GFP	
3.25	CD4 expression on the surface of cells stably transfected with	107
	either 2LTRZFP-GFP or Aart-GFP	

3.26	A comparison of HIV-1 p24 Ag in culture supernatants	108
	of each stably transfected with either 2LTRZFP-GFP or	
	Aart-GFP after infection	
3.27	Inhibition of HIV-1 replication in	109
	2LTRZFP-GFP-transfected T-lymphoid cells	
3.28	The relative inhibiton of HIV-1 integration in stably	110
	transfected SupT1 with 2LTRZFP-GFP by Alu-gag qPCR	
3.29	The percentage of cell viability in stably transfected	111
	SupT1 cells on day 13 after the challenge	
3.30	Inhibition of cytopathic effects by 2LTRZFP-GFP	112

xxi

ABBREVIATIONS AND SYMBOLS

% Percent

α Alpha

β Beta

Ψ Psi-sequences

°C Degrees Celsius

AIDS Acquired immunodeficiency syndrome

Alu Arthrobacter luteus

BBQ BlackBerry Quencher

bp Base pair (s)

BSA Bovine serum albumin

CA Capsid protein

CCR5 C-C chemokine receptor type 5

CD4 Cluster of differentiation 4

cDNA Complementary DNA

CMV Cytomegalovirus

cPPT Central polypurine tract

 C_{t} S Cycle thresholds

CXCR4 C-X-C chemokine receptor type 4

Cys Cysteine

DAPI 4',6-diamidino-2-phenylindole

DMEM Dulbecco's Modified Eagle's medium

xxii

DNA

Deoxyribonucleic acid

ds-DNA

Double-stranded DNA

DTT

Dithiothreitol

EBV

Epstein-Barr virus

E. coli

Escherichia coli

EIA

Enzyme immunoassay

ELISA

Enzyme-linked immunosorbent assay

EMSA

Electrophoretic mobility shift assay

ECL

Enhanced Chemiluminescence

ENV

Envelope

ERD

ERF repressor domain

FAM

6-carboxyfluorescein

FBS

Fetal bovine serum

FP

Fusion protein

GAPDH

Glyceraldehyde 3-phosphate dehydrogenase

GAG

Group specific antigens

GFP

Green fluorescent protein

gm

Gram (s)

HAART

Highly active antiretroviral therapy

HEPES

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

hr

Hour (s)

HIV

Human Immunodeficiency virus-1

His

Histidine

HCl

Hydrochloric acid

xxiii

HRP

Horseradish peroxidase

HSCs

Hematopoietic stem cells

IN

Integrase

IPTG

Isopropyl β-*D*-thiogalactopyranoside (IPTG)

kb

Kilo base pair (s)

KCl

Potassium chloride

Kd

Dissociation constant

kDa

Kilodaltons

KRAB

Kruppel associated box

LB

Luria-Bertani

Leu

Leucine

LTR

Long terminal repeat

M

Molar (s)

MA

Matrix protein

mAb

Monoclonal antibody (-ies)

MFI

Mean fluorescence intensity

MHC

Major histocompatibility complex

MgCl₂

Magnesium Chloride

min

Minute (s)

ml

Milliliter (s)

MOI

Multiplicity of infection

mPGK

Murine phosphoglycerate kinase

Mw

Molecular weight

NaCl

Sodium chloride

xxiv

NaN₃

Sodium azide

NaOH

Sodium hydroxide

NC

Nucleocapsid protein

NEF

Negative Regulatory Factor

ng

Nanogram (s)

NLS

Nuclear localization signal

NNRTIs

Non-nucleoside reverse transcriptase inhibitors

nin

Nanometer (s)

nM

Nanomolar (s)

NRTIs

Nucleoside/nucleotide reverse transcriptase inhibitors

OD

Optical density

OriP

Origin of replication

PBS

Phosphate buffered saline

PBS

Primer binding site

PCR

Polymerase chain reaction

Phe

Phenylalanine

pI

Isoelectric point

PICs

Preintegration complexs

PMSF

Phenylmethylsulfonylfluoride

POL

Polymerase

PPT

Polypurine tract

PRIs

Protease inhibitors

qPCR

Quantitative polymerase chain reaction

RCL

Replication competent lentiviruses

RFP

Red fluorescent protein

RNA

Ribonucleic acid

rpm

Revolutions per minute

RRE

Rev-responsive element

RT

Reverse transcriptase

S

Second (s)

scFv

Single-chain variable fragments

SD

Standard deviation

SDS-PAGE

Sodium dodecyl sulfate polyacrylamide gel

electrophoresis

SIN

Self-inactivating

siRNAs

Small interfering RNAs

shRNAs

Short hairpin RNAs

SPR

Surface plasmon resonance

ss-DNA

Single-stranded DNA

TAT

Transactivator of transcription

TBP

TATA-box binding protein

TSO

Target site overlap

Tyr

Tyrosine

μg

Microgram (s)

μl

Microliter (s)

μm

Micrometer (s)

 μM

Micromolar (s)

V

Volt(s)

xxvi

VIF

Viral infectivity factor

VPR

Viral protein R

Vpu

Viral protein U

VSV-G

Vesicular stomatitis virus G glycoprotein

V/V

Volume /Volume

WHO

World Health Organization

WPRE

Woodchuck hepatitis virus post-transcriptional

regulatory element

W/V

Weight/Volume

ZFP

Zinc finger protein

ZnSO₄

Zinc sulfate