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ABSTRACT 

 Prime ideals play an important role in the study of ring structures, 

especially in commutative algebras.  

 Motivating the definition of prime submodules of Sanh et al. in 2008, we 

introduced and investigated the class of IFP and nearly prime submodules. Using our 

notions, we generalized the Anderson’s Theorem, following that for a finitely 

generated, quasi-projective, fully IFP module M, which is a self-generator, if every 

minimal prime submodule over a proper fully invariant submodule U of M is finitely 

generated, then there are finitely many minimal prime submodules over U. 

 The main result in this thesis is that a finitely generated right R-module is 

Noetherian if and only if every nearly prime submodule is finitely generated. This can 

be considered as a generalization of Cohen’s Theorem in commutative rings. 
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CHAPTER I

INTRODUCTION

Throughout this thesis, all rings are associative with identity and all

modules are unitary right R-modules, i.e., for every m ∈M we have m·1 = m with

the unit element 1 of the ring R. For special cases, we describe with a precision.

1.1 On Ring and Ideal Theory

Ring theory was firstly founded by the works of Richard Dedekind [26]

and David Hilbert [46, 47] at the end of the 19th century with topics of algebraic

integers and commutative rings. The pioneers were Sir William Hamilton [43]

with noncommutative algebra of quaternions in 1843, Sir Arthur Cayley [18] with

theory of matrices in 1855, Benjamin Peirce [80] with linear associative algebra

in 1881. Then the examination of specific rings was continually enriched and

followed by abstract theory. In 1908, Wedderburn [90] invented hypercomplex

number then contributed to structure theorems for finite dimensional algebras. In

1914, Fraenkel [32] formulated the first abstract definition of ring. The concept of

ideals was defined and widely used in the works of Cartan, Molien and Frobenius,

but their important applications were found out and developed throughout the

works of Wedderburn, Noether and Artin (for instance, see [46,47,77,78] and [79]).

The basic of modern theory of ring was mainly developed in 1920s by

Emmy Noether [77,78] and Emil Artin [62,63]. Module structures and techniques

which were first used in algebraic number theory have been found useful for further

theoretic investigations then shown by Noether to have close connections with

both theory of algebras and theory of representations. In the development of

noncommutative ring theory, the thinking of representations played a major role
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and led to an emphasis on irreducible representation as basic building blocks.

The Fundamental Lemma of Ring Representation Theory (see [4], Proposition

4.10) said that every ring is isomorphic to a subring of the endomorphism ring

of an abelian group. In this direction, one of the most important achievement

was first built for semisimple rings by the famous Wedderburn-Artin theorem

(see [62], Chapter 1), which is the cornerstone of noncommutative ring theory. In

a very natural sense, the most perfect objects in noncommutative ring theory are

the division rings, i.e., (non-zero) rings in which each non-zero element has an

inverse. From division rings, we can build up matrix rings and form finite direct

product of such matrix rings. According to the Wedderburn-Artin theorem, the

rings obtained in this way comprise exactly the all importance class of semisimple

rings.

The theory of ring structures is enriched by the study of specific ring

structures which are constructively conditioned. Finiteness conditions such as

Ascending Chain Condition (ACC) and Descending Chain Condition (DCC) are

powerful tools in studying some classes of rings. The ascending chain condition

(for a class of ideals) which is also called the maximum condition (for a lattice of

ideals) was introduced by Dedekind in his researches in algebraic number fields.

Then Noether [79] applied it to her researches in her commutative rings which

were defined to be Noetherian rings as well as in studying abstract ring with

chain conditions. The descending chain condition (also called minimum condition)

was applied by many authors that we can mention to Wedderburn in studying

structure of algebras, Krull [60,61] with his works in abelian groups with operators

and Noether’s characterization of Dedekind rings. In 1944, by the joint work of

Artin, Nesbitt and Thrall [5], the first systematic study of Artinian modules and

rings was offered in the book “Rings with minimum conditions”.

Prime ideals play an important role in the structure of ring theory and

of major researches. Under suitable chain conditions for a ring, the knowledge

of the prime spectrum can lead to the understanding of the whole ring structure.

Prime, strongly prime, semiprime, strongly semiprime modules appear very pro-
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lific and have been strongly developed in research. In 1929, Krull [60] proved the

existence of minimal prime ideals in the commutative case, that every prime ideal

contains a minimal prime ideal.

The concepts of semiprime ideals were introduced in the commutative

case by Krull in 1929, and by Nagata [74] in 1951 in the noncommutative case.

Krull proved that a commutative ring is semiprime if and only if it has no non-

zero nilpotent elements. In 1945, Jacobson [53] initiated the general notion of the

radical of an arbitrary ring R by definition, the (Jacobson) radical of R, denoted

by Rad(R), is the intersection of the maximal left (or maximal right) ideals of R.

For rings satisfying an one-sided minimum condition, the Jacobson radical agrees

with the classical Wedderburn radical for left Artinian rings. In fact, Wedderburn

radical is defined only for certain classes of rings but Jacobson radical is defined

for all rings. Although, these are several other kinds of radicals which can be

defined for arbitrary rings and which can provide alternative generalizations of

the Wedderburn radical but we focus our attention on the Jacobson radical. In

1947, he created the theory of primitive ring and characterized primitive ring

by the celebrate Jacobson’s Density Theorem. The family of prime ideals was

shown very large and profound in structure. The constructing of prime ideals in

commutative rings by the Prime Ideal Principle was contributed by many authors

such as Krull, Cohen, Kaplansky, Herstein, Issacs, McAdam, Anderson, Lam and

Reyes. (See [22,23,57,60–65]).

In 1949, McCoy ( [73]) introduced the McCoy radical of a ring as the

set of its elements not contained in any multiplicative system, and also proved that

the McCoy radical of a ring R equals the intersection of the prime ideals of R. Then

McCoy radical coincides with Baer lower radical. Baer lower radical is the smallest

ideal N such that R/N has no non-zero nilpotent ideals. In 1951, Levitzky and

Nagata independently gave a criterion for semiprime ideals in noncommutative

rings. Nagata also studied the finiteness of the set of minimal prime ideals along

with its ring structure satisfying the ACC on semiprime ideals.
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1.2 On Primeness of Modules and Submodules

Prime submodules and prime modules have been appeared in many

contexts. Modifying the structure of prime ideals, many authors want to transfer

this notion to right or left modules over an arbitrary associative ring. By an

adaptation of basic properties of prime ideals, some authors introduced the notion

of prime submodules and prime modules and studied their structures. However,

these notions are valid in some cases of modules over a commutative ring such

as multiplication modules, but for the case of non-commutative rings, nearly we

could not find something similar to the structure of prime ideals.

In 1961, Andrunakievich and Dauns [24], [68] first introduced and in-

vestigated prime modules following that, a left R-module M is called prime if for

every ideal I of R, and every element m ∈ M with Im = 0, implies that either

m = 0 or IM = 0.

In 1975, Beachy and Blair [12,13] proposed another definition of prime-

ness, for which a left R-module M is called a prime module if (0 :R M) = (0 :R N)

for every non-zero submodule N of M.

In 1978, Dauns [24, 68] defined that a module M is a prime module if

(0 :R M) = A(M), where A(M) = {a ∈ R | aRm = 0,m ∈ M}. For the class of

submodules, he also created the definitions of prime submodules and semiprime

submodules. A submodule P of a left R-module M is called a prime submodule

if for any element r ∈ R and any element m ∈ M such that rRm ⊂ P, then

either m ∈ P or r ∈ (P :R M), and a submodule N of M is called a semiprime

submodule if N 6= M and for any elements r ∈ R and m ∈M such that rnm ∈ N,

then rm ∈ N.

Following Bican [16], we say that a left R-module M is B-prime if and

only if M is cogenerated by each of its non-zero submodules. It is easy to see that

B-prime implies prime. In [91], it is pointed out that M is B-prime if and only if

L ·HomR(M,N) 6= 0 for every pair L,N of non-zero submodules of M.

In studying noncommutative ring structures, Goodearl and Warfield

in 1983 [40] and McConnel and Robson in 1987 [72] called a left R-module M
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a prime module if for any non-zero submodule N of M, annR(M) = annR(X).

The authors also defined that a left R-module M is called a prime module if it

is a fully faithful module over the ring R/rR(M), i.e., every submodule and the

module itself are faithful as modules over the ring R/rR(M).

In 1983, Wisbauer [91, 92] investigated the structure of Wisbauer cat-

egory σ[M ]. He called it the full subcategory of Mod-R whose objects are M -

generated modules, i.e., modules which are isomorphic to submodules of M -

generated modules. Following him, M is called a strongly prime module if M is

subgenerated by any of its non-zero submodules, i.e., for any non-zero submodule

N of M, the module M belongs to σ[N ], or equivalently, for any x, y ∈M, there ex-

ists a set of elements {a1, · · · , an} ⊂ R such that annR{a1x, · · · , anx} ⊂ annR{y}.

In 1984, Lu [69] defined that for a left R-module M and a submodule

X of M , an element r ∈ R is called a prime to X if rm ∈ X implies m ∈ X. In this

case, X = {m ∈M | rM ⊂ X} = (X : r). Then X is called a prime submodule of

M if for any r ∈ R, the homothety hr : M/X → M/X defined by hr(m) = mr,

where m ∈ M/X is either injective or zero. This implies that (0 : M/X) is a

prime ideal of R and the submodule X is called a prime submodule if for r ∈ R

and m ∈M with rm ∈ X implies either m ∈ X or r ∈ (X : M).

In 1993, McCasland and Smith [68, 70, 71] gave a definition that a

submodule P of a right R-module M is called a prime submodule if for any ideal

I of R and any submodule X of M with IX ⊂ P, then either IM ⊂ P or X ⊂ P.

In 2002, Ameri [2] and Gaur, Maloo, Parkash [34, 35] examined the

structure of prime submodules in multiplication modules over commutative rings.

Following them, we say a left R-module M a multiplication module if every sub-

module X is of the form IM for some ideal I of R and M is called a weak

multiplication module if every prime submodule of M is of the form IM for some

ideal I of R. Although, multiplicative ideal theory of rings was first introduced

by Dedekind and Noether in the 19th century, multiplication modules over com-

mutative rings were newly created by Barnard [9] in 1980 to obtain a module

structure which behaves like rings. The structure of multiplication modules over
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noncommutative rings was first studied by Tuganbaev [89] in 2003.

In 2004, Behboodi and Koohy [14] defined weakly prime submodules.

Following them, a submodule P of a module M is called a weakly prime submodule

if for any ideals I, J of R and any submodule X of M with IJX ⊂ P, then either

IX ⊂ P or JX ⊂ P.

In 2008, Sanh [82] proposed a new definition of prime submodules.

Let R be a ring and M, a right R-module, and S, its endomorphism ring. A fully

invariant submodule X of M is called a prime submodule if for any ideal I of

S and any fully invariant submodule U of M, I(U) ⊂ X implies I(M) ⊂ X or

U ⊂ X. A fully invariant submodule is called semiprime if it is an intersection

of prime submodules. A right R-module M is called a semiprime module if 0 is

a semiprime submodule of M. Consequently, the ring R is semiprime ring if RR

is a semiprime module. By symmetry, the ring R is a semiprime ring if RR is a

semiprime left R-module.

In 2008, Sanh et al. [83] introduced the concepts of M -annihilator and

of Goldie modules as a generalization the concept of Goldie ring. Following that

definition, a right R-module M is called a Goldie module if M has finite Goldie

dimension and satisfies the ascending chain condition for M -annihilators. A ring

R is a right Goldie ring if RR is Goldie as a right R-module. It is equivalent to

say that a ring R is a right Goldie ring if it has finite right Goldie dimension

and satisfies the ascending chain condition for right annihilators. By using some

properties of prime modules and Goldie modules, our research group studied the

class of prime Goldie modules.

1.3 On Rings with Insertion Factor Property

With the help of [66, Proposition 3.2.1], the set of nilpotent elements

form an ideal that coincides with the prime radical in a commutative ring. This

property is also possessed by certain noncommutative rings, which is called 2-

primal. Shin [86] proved that given a ring R, Rad(R) coincides with the set of all
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nilpotent elements of R if and only if R/P is a domain for every minimal prime

ideal P of R (i.e. P is completely prime): Birkenmeier et al. [17] called such rings

2-primal; while Hirano [49] used the term N-ring for this concept.

A well-known property between “commutative” and “2-primal” is the

insertion-of-factors-property (or simply IFP) due to Bell [15]. A right (or left)

ideal I of a ring R is said to have the IFP if ab ∈ I implies aRb ⊂ I for a, b ∈ R.

A ring R is called IFP if the zero ideal of R has the IFP.

Many researchers studied IFP rings and called it by many terms. For

example, Shin [86] used the term SI for the IFP; while Habeb [42] used the term

zero insertive (or simply zi) for it, in the study of QF-3 rings. IFP rings are also

known as semicommutative in Narbonne’s paper [75]. They also investigated the

relationship between IFP rings and others, such as: Reduced rings ⇒ Symmetric

rings ⇒ Reversible rings ⇒ IFP rings ⇒ Abelian rings.

Weakly semicommutative rings, homomorphically rings, g-IFP rings,

nil-IFP rings, central semicommutative rings were introduced as the generalization

of IFP rings. The property and the relationship between these kinds of rings and

others as Baer rings, Armendariz rings, polynomial rings were also studied. Espe-

cially, homomorphically rings was applied to generalize the Anderson’s theorem

on noncommutative ring.

In 2003, N. K. Kim and Y. Lee [58] extended the class of semicom-

mutative rings in “Extensions of reversible rings”. They showed that reversible

rings are semicommutative rings, but the converse is not true (i.e. there is a

nonreversible semicommutative ring).

In 2006, M. Baser and N. Agayev [10] extended semicommutative rings

to semicommutative modules. They also investigated the relationship among re-

duced, semicommutative and principally quasi-Baer module.

In 2007, N. Agayev and A. Harmanci [1] continued to give properties

of semicommutative rings and modules related to Baer and Armendariz modules.

During the same year, other researchers, L. Liang, L. Wang and Z.

Liu [67] introduced the concept of weakly semicommutative rings which are gen-
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eralization of semicommutative rings. They also studied the relationship between

semicommutative rings and weakly semicommutative rings. From their results,

they showed that weakly semicommutative rings may not be semicommutative

rings.

Also in this year, S. U. Hwang, Y. C. Jeon, and K. S. Park [52] gave

the definition of g-IFP rings and studied the basic properties. Furthermore, they

showed that from any IFP rings there can be constructed a right g-IFP ring but

not IFP.

In commutative algebra, Anderson’s Theorem [3] is stated that there

are only finitely many prime ideals minimal over I whenever every prime ideal

minimal over I is finitely generated. In order to extend the class of rings that

satisfies this condition to noncommutative rings, in 2008, C. Huh, N. K. Kim, and

Y. Lee [50] introduced concept homomorphically IFP rings.

As a generalization of α-rigid rings as well as an extension of semicom-

mutative rings, the notion of an α-semicommutative ring with the endomorphism

α of ring R was introduced by M. Baser, A. Hamrnci and T. K. Kwak [11], in

2008. In that paper, various results of semicommutative rings was extended to

α-semicommutative rings and their related properties were obtained.

Continuing this work, in 2010, M. Baser and T. K. Kwak [10] inves-

tigated more properties of α-semicommutative rings and gave the relationship

between extended Armendariz rings and α-semicommutative rings and several

known results were obtained as consequences of their results.

Let R be a ring with identity, M is a right R-module and S = End(M).

Then M is a left S-module, right R-module and S − R−bimodule. From this,

in 2009, N. Agayev, T. Ozen and A. Harmanci [1] studied on a class of semi-

commutative modules. They introduced S-semicommutative, as well as S-Baer,

S-quasi-Baer and S-principally quasi -Baer modules and studied the relations be-

tween those modules. Furthermore, in 2011, they continued to give one more

a generalization of the class of semicommutative rings, which was called central

semicommutative.
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In 2010, A. O. Atagun [6] studied properties of IFP ideals in near-rings

which is extended to the ideals in near-rings. The relation between prime ideals

and IFP-ideals are investigated.

In 2012, J. Baek, W. Chin, J. Choi, T. Eom, J.C. Jeon, and Y. Lee [8]

studied the properties of IFP on nilpotent elements by giving the concept of nil-

IFP rings that was also a generalization of NI-rings. The class of minimal non-

commutative nil-IFP rings were determined definitely, up to isomorphism where

the minimal means having smallest cardinality.

For the structure of this thesis, Chapter I dealt with the early history

of commutative and noncommutative ring theory. The notion of primeness in

module category and the insertion factor property on rings of different authors

are also presented in this chapter. All the essential basic notions, examples and

their properties are given in Chapter II. Our recent results on primeness in mod-

ule category are also provided. Chapter III dealt with the modules which have

Insertion Factor Property (briefly, IFP Modules). In this chapter, we introduce

the definition of IFP modules and fully IFP modules. The equivalently properties

of IFP module are provided. Then we generalize the Anderson’s Theorem to fully

IFP modules. Chapter IV provides the definition of nearly prime submodules as

a generalization of prime submodule. The relation of nearly prime and nearly

strongly prime are given in this chapter. There are also given important result

that can be considered as a characterization of Noetherian modules. Finally, we

review and conclude the results in Chapter V.
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CHAPTER II

BASIC KNOWLEDGE

Let R be an arbitrary ring and Mod-R, the category of all right R-

modules. The notation MR indicates a right R-module M . The set Hom(M,N)

denotes the set of right R-module homomorphisms between two right R-modules

M and N and if further emphasis is needed, the notation HomR(M,N) is used.

For a right R-module M , we denote S = EndR(M) for its endomorphism ring.

A submodule X of M is denoted by writing X ⊂>M. Also I ⊂>RR means that

I is a right ideal of R and I ⊂>RR that I is a left ideal. The notation I ⊂>R is

reserved for two-sided ideals. The symbol ( is reserved for proper inclusion with

⊂ indicating the inclusion. As usual, N,Z,Q,R,C represent the sets of natural,

integers, rational, real and complex numbers. For a prime number p, the Prüfer

group Zp∞ denotes the abelian group {q ∈ Q | qpn ∈ Z for some n ∈ N}. The

result in this chapter can be found in [4], [20], [56], [62], [63], [83], [85], [82], [91].

2.1 Preliminaries

Before dealing with deeper results on the structure of rings with the

help of module theory, we provide first some essential elementary definition, ex-

amples and properties.

Definition 2.1.1. A right R-module M is said to be finitely generated if there

exists a finite set of generators for M, or equivalently, if there exists an epimor-

phism Rn −→M for some n ∈ N. In particular, M is cyclic if it is generated by a

single element, or equivalently, if there exists an epimorphism R −→M. It follows
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that M is cyclic if and only if M ∼= R/I for some right ideal I of R.

For example, let M be a right R-module and m ∈ M . Then m gener-

ates a cyclic submodule mR of M. There is an epimorphism f : R −→ mR given

by f(r) = mr and Ker(f) = {r ∈ M | mr = 0}, which is a right ideal of R.

Hence mR ∼= R/Ker(f)

Lemma 2.1.2 ( [87]). Let X be a submodule of a right R-module M .

(1) If M is finitely generated, then so is M/X.

(2) If X and M/X are finitely generated, then so is M .

Theorem 2.1.3 ( [56]). A right R-module M is finitely generated if and only if

for any family {Ai : i ∈ I} of submodules Ai ⊂>M with
∑
i∈I
Ai = M, there exits a

finite subfamily {Ai : i ∈ I0} where I0 ⊂ I and I0 is finite, such that
∑
i∈I0

Ai = M.

Definition 2.1.4. A right R-module M is said to be finitely cogenerated if and

only if for any family {Ai : i ∈ I} of submodules Ai ⊂>M with
⋂
i∈I
Ai = 0, there

exists a finite subfamily {Ai : i ∈ I0} where I0 ⊂ I and I0 is finite, such that⋂
i∈I0

Ai = 0.

For example, the Z-module ZZ is finitely generated but not finitely

cogenerated. On the other hand, the Prüfer group Zp∞ is finitely cogenerated.

A vector space V over a field K is finitely cogenerated if and only if it is finite

dimensional.

Definition 2.1.5. A ring R is called simple (or irreducible) if R 6= 0 and R has

precisely two nontrivial ideals 0 and R. A simple ring can have many nontrivial

left or right ideals.

A module M is said to be simple if M 6= 0 and the only submodules of

M are 0 and M. Every simple module is cyclic; in fact, it is generated by any non-

zero element x ∈ M. If M is a simple module, then S = EndR(M) is a division

ring. A maximal submodule X of M is a proper submodule of M such that for

any submodule Y of M, if X ⊂>Y ⊂>M then either Y = X or Y = M.

The submodule X is maximal if and only if M/X is simple. A right
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R-module M is simple if and only if M ∼= R/I for some maximal right ideal I of

R.

Definition 2.1.6. A submodule X of M is called a direct summand of M if there

exists a submodule Y of M such that X + Y = M and X ∩ Y = 0. We denote

M = X ⊕ Y and say that M is a direct sum of X and Y.

The direct summands of RR correspond to idempotent elements of R

(i. e. e ∈ R such that e2 = e). For any such element e ∈ R, we get a direct

sum decomposition R = eR ⊕ (1 − e)R. Conversely, if R = I ⊕ J with any right

ideals I and J , then we can write 1 = e + f with e ∈ I, f ∈ J which gives

e− e2 = fe ∈ I ∩ J = 0, so e = e2. For each a ∈ I, we similarly get a = ea ∈ eR.

So I = eR and J = (1− e)R.

Definition 2.1.7. A right R-module M is called indecomposable if it cannot be

decomposed into a direct sum of non-zero submodules, that is, if M = X ⊕ Y

then either X = 0 or Y = 0. A short exact sequence 0 −→ A
f−→ B

g−→ C −→ 0

is called split exact if Im(f) is a direct summand of B. The following theorem

gives some properties of split exact sequences.

Theorem 2.1.8 ( [87], page 9). Let 0 −→ A
f−→ B

g−→ C −→ 0 be a short exact

sequence. Then the following properties are equivalent:

(1) The sequence splits;

(2) There exists a homomorphism f ′ : B −→ A such that f ′ ◦ f = 1A;

(3) There exists a homomorphism g′ : C −→ B such that g ◦ g′ = 1C .

Definition 2.1.9. A ring R is called a reduced ring if it has no non-zero nilpotent

elements.

Example 2.1.10.

(1) The ring of integers Z is reduced ring.

(2) Every integral domain is a reduced ring.
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(3) Subrings, products and localizations of reduced rings are again

reduced rings.

Definition 2.1.11. A ring R is called an abelian ring if its idempotents are

central.

Definition 2.1.12. A module MR is said to be reduced if for any m ∈ M and

any a ∈ R,ma = 0 implies mR ∩Ma = 0.

Definition 2.1.13.

(1) A ring R is called a Baer ring if the right (left) annihilator of every

nonempty subset is generated by an idempotent.

(2) A ring R is called a quasi-Baer if the right (left) annihilator of

each right (left) ideal of R is generated (as a right (left) ideal) by

an idempotent.

(3) A ring R is called a right (left) principally quasi-Baer (or, simply,

right (left) p.q.-Baer) ring if the right (left) annihilator of a prin-

cipally right (left) ideal of R is generated by an idempotent. R is

called a p.q.-Baer ring if it is both right and left p.q.-Baer.

(4) A ring R is called a right (left) p.q.-ring if the right (left) annihila-

tor of an element of R is generated by an idempotent. R is called

p.q.-ring if it is both right and left p.q.-ring.

Definition 2.1.14.

(1) A right R-module M is called a Baer-module if for any subset X

of M, rR(X) = eR where e2 = e ∈ R.

(2) A right R-module M is called quasi-Baer if for any submodule N

of M, rR(N) = eR where e2 = e ∈ R.
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(3) A rightR-moduleM is called p.q.-module if for anym ∈M, rR(m) =

eR where e2 = e ∈ R.

Theorem 2.1.15 ( [3], Anderson’s Theorem). Let R be a commutative ring with

identity, and let I 6= R be an ideal of R. If every prime ideal minimal over I is

finitely generated, then there are only finitely many prime ideals minimal over I.

2.2 Generators and Cogenerators

Generators and cogenerators are notions in category of modules. They

play an important role in Module Theory and in some categories. Below we will

review these notions.

Definition 2.2.1.

(a) A module BR is called a generator for Mod-R, if

∀M ∈ Mod-R [M =
∑

ϕ∈HomR(B,M)

Imϕ].

(b) A module CR is called a cogenerator for Mod-R, if

∀M ∈ Mod-R [0 =
⋂

ϕ∈HomR(M,C)

Kerϕ].

For any module B and M ,

Im(B,M) =
∑

ϕ∈HomR(B,M)

Imϕ

is itself, as a sum of submodules in M, a submodule of M . The property that B

is a generator for Mod-R means that for any right R-module M, Im(B,M) is as

large as possible for every M and so equals M.

For any modules C and M ,

Ker(M,C) =
⋂

ϕ∈HomR(M,C)

Kerϕ

is itself, as an intersection of submodules of M, a submodule of M . The property

that CR is a cogenerator for Mod-R means that Ker(M,C) is as small as possible

for every M and so equals 0.
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An R-module M is called a self-generator (self-cogenerator) if it gen-

erates all its submodules (cogenerator all its factor modules). A submodule of an

M -generated module is called M -subgenerated if it is isomorphic to a submodule

of an M -generated module.

Following [91], a subcategory C of Mod− R is subgenerated by M , or

that M is a subgenerator for C, if every object in C is M -subgenerated. We denote

by σ [M ] the full subcategory of Mod− R whose objects are all M -subgenerated

R-modules.

Corollary 2.2.2.

(a) If B is a generator and A is a module such that Im(A,B) = B,

then A is also a generator;

(b) Every module M such that there is an epimorphism from M to RR

is also a generator;

(c) If C is a cogenerator and D is a module such that Ker(C,D) = 0,

then D is also a cogenerator.

Generators and cogenerators can be characterized in the following the-

orem by properties of homomorphisms.

Theorem 2.2.3.

(a) B is a generator⇔ ∀µ ∈ HomR(M,N), µ 6= 0, ∃ϕ ∈ HomR(B,M) :

µϕ 6= 0.

(b) C is a cogenerator⇔ ∀λ ∈ HomR(L,M), λ 6= 0, ∃ϕ ∈ HomR(M,C) :

ϕλ 6= 0.

2.3 Injectivity, Projectivity and Generalizations

Injective modules may be regarded as modules that are “complete”

in the following algebraic sense: Any “partial” homomorphism (from a submod-
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ule of a module B) into an injective module A can be “completed” to a “full”

homomorphism (from all of B) into A.

Injective modules first appear in the context of abelian groups. The

general notion for modules was first investigated by Baer in 1940. The theory

of these modules was studied long before the dual notion of projective modules

was considered. The “injective” and “projective” terminology invented in 1956

by Cartan and Eilenberg.

Definition 2.3.1. Let M be a right R-module.

(1) A submodule N of M is called essential or large in M if for any

submodule X of M, X ∩M = 0 ⇒ X = 0. If N is essential in M

and we denote N ⊂∗>M .

(2) A submodule N of M is called superfluous or small in M if for any

submodule X of M, N + X = M, then X = M. In this case we

write N ⊂◦>M .

(3) A right ideal I of a ring R is called an essential right ideal of R if it

is essential in RR as a right R-module. Similarly, a right ideal I of

a ring R is called a superfluous right ideal of R if it is superfluous

in RR as a right R-module.

(4) A homomorphism α : MR → NR is called essential if Imα ⊂∗>N.

The homomorphism α is called superfluous if Kerα ⊂◦>M.

Remark From the definition, we have the following:

(1) A ⊂◦>M ⇔ ∀U $> M, A+ U $> M.

(2) A ⊂∗>M ⇔ ∀U ⊂>M, U 6= 0⇒ U ∩ A 6= 0.

(3) M 6= 0 and A ⊂◦>M ⇒ A 6= M.

(4) M 6= 0 and A ⊂∗>M ⇒ A 6= 0.

Example 2.3.2.

(1) For any module M, we have 0 ⊂◦>M, M ⊂∗>M.
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(2) A module M is called semisimple if every submodule is a direct

summand. If M is a semisimple module, then only 0 is co-essential

in M and only M is essential in M.

(3) In any free Z-module (free abelian group), only 0 is co-essential.

(4) Every finitely generated submodule of QZ is superfluous in QZ.

Lemma 2.3.3 ( [56], Lemma 5.1.3).

(1) A ⊂>B ⊂>M ⊂>N, B ⊂◦>M ⇒ A ⊂◦>N.

(2) Ai ⊂◦>M, i = 1, 2, · · ·n⇒
n∑
i=1

Ai ⊂◦>N.

(3) A ⊂◦>M and ϕ ∈ HomR(M,N)⇒ ϕ(A) ⊂◦>N.

(4) If α : A → B and β : B → C are superfluous epimorphisms, then

βα is also a superfluous epimorphism.

Lemma 2.3.4 ( [56], Lemma 5.1.4). For a ∈MR, the submodule aR of M is not

superfluous in M if and only if there exists a maximal submodule C ⊂>M such

that a /∈ C.

Lemma 2.3.5 ( [56], Lemma 5.1.5).

(1) A ⊂>B ⊂>M ⊂>N and A ⊂∗>N ⇒ B ⊂∗>M.

(2) Ai ⊂∗>M, i = 1, 2, · · ·n⇒
n⋂
i=1

Ai ⊂∗>N.

(3) B ⊂∗>N and ϕ ∈ HomR(M,N)⇒ ϕ−1(B) ⊂∗>M.

(4) If α : A → B and β : B → C are essential monomorphisms, then

βα is also a essential monomorphism.

Lemma 2.3.6 ( [56], Lemma 5.1.6). Let A ⊂>MR. Then A ⊂∗>MR ⇔ ∀m ∈

M, m 6= 0⇒ ∃r ∈ R : 0 6= mr ∈ A.

Definition 2.3.7. Let M and U be two right R-modules. A right R-module

U is said to be M-injective if for every monomorphism α : L → M and every
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homomorphism ψ : L → U , there exists a homomorphism ψ̄ : M → U such that

ψ̄α = ψ.

0 L M

U

- -

?

pppppppppppp
	

α

ψ ψ̄

A right R-module E is injective if it is M -injective, for all right R-

module M. A right R-module M is called quasi-injective (or self-injective) if it is

M -injective.

The following Theorem gives us a characterization of injective module:

Theorem 2.3.8 ( [56], Lemma 5.3.1). Let M be a right R-module. The following

conditions are equivalent:

(1) M is injective;

(2) Every monomorphism ϕ : M → B splits (i.e. Im(ϕ) is a direct

summand of B);

(3) For every monomorphism α : A→ B, Hom(α, 1M) : HomR(B,M)→

HomR(A,M) is an epimorphism.

A powerful test of injectivity is given by Baer’s Criterion which guar-

antees the equivalence between injectivity and R-injectivity.

Theorem 2.3.9 ( [91], 16.4). For a right R-module E, the following conditions

are equivalent:

(1) E is an injective R-module;

(2) E is R-injective;
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(3) For every right ideal I of R and every homomorphism h : I → E,

there exists y ∈ E with h(a) = ya, for all a ∈ I.

Definition and basic properties of projective module are dual to those

of injective module.

Definition 2.3.10. A right R-module P is said to be M-projective if for every

epimorphism β : M → N and every homomorphism ϕ : P → N , there exists a

homomorphism ϕ̄ : P →M such that βϕ̄ = ϕ.

P

NM 0- -

?

pppppppppppp
	

β

ϕϕ̄

Now we have the following fundamental characterizations of projective

modules.

Theorem 2.3.11 ( [56], Lemma 5.3.1). The following properties of a right R-

module P are equivalent :

(1) P is projective;

(2) Every epimorphism ϕ : M → P splits (i.e. Ker(ϕ) is a direct

summand of M);

(3) For every epimorphism α : B → C, Hom(1P , β) : HomR(P,B) →

HomR(P,C) is an epimorphism.

Theorem 2.3.12 ( [56], Lemma 5.4.1). A module is projective if and only if it is

isomorphic to a direct summand of a free module.

Proposition 2.3.13 ( [4], Proposition 16.10). Let M be a right R-module and

(Uα)α∈A be a set of right R-modules with index α ∈ A. Then

(1) A direct sum
⊕
A

Uα is M-projective if and only if each Uα is M-

projective.
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(2) A direct product
∏
A

Uα is M-injective if and only if each Uα is M-

injective.

Proposition 2.3.14 ( [4], Corollary 16.11). Let (Uα)α∈A be a set of right R-

modules with index α ∈ A. Then

(1) A direct sum
⊕
A

Uα is projective if and only if each Uα is projective.

(2) A direct product
∏
A

Uα is injective if and only if each Uα is injective.

2.4 Noetherian and Artinian modules and rings

In the 1920s, Emmy Noether [77,78] provided the appropriate notions

and interpretations and thereby sowed the seeds for the further development. As

finiteness assumptions she introduced maximal and minimal condition which can

also be formulated as chain conditions. In other parts of algebra these have turned

out to be just as significant and natural. These conditions are now about to be

provided so that in the following considerations we can always refer back to them.

Definition 2.4.1.

(1) A right R-module MR is called Noetherian if every nonempty set

of its submodules has a maximal element. Dually, a module MR

is called Artinian if every set of its submodules has a minimal

element.

(2) A ring R is called right Noetherian (resp. right Artinian) if module

RR is Noetherian (resp. Artinian)

(3) A chain of submodules of MR

· · · ⊂>Ai−1 ⊂>Ai ⊂>Ai+1 ⊂> · · ·

(finite or infinite) is called stationary if it contains only a finite

number of distinct Ai, i.e, there is n0 ∈ N such that An = An+1 for
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any n ≥ n0.

Remarks

(a) Clearly, the definitions above are preserved by isomorphisms.

(b) Noetherian modules are called module with ascending chain condi-

tion or module with ACC on submodules.

(c) Artinian modules are called module with descending chain condi-

tion or module with DCC on submodules.

(d) A module M is of finite length if there exists a finite chain

0 = A0 ⊂ A1 ⊂ · · · ⊂ An = M such that Ai+1/Ai is simple.

Theorem 2.4.2 ( [56], Theorem 6.1.2). Let M be a right R-module and A, its

submodule.

I. The following statements are equivalent:

(1) M is Artinian;

(2) A and M/A are Artinian;

(3) Every descending chain A1 ⊃ A2 ⊃ · · · ⊃ An−1 ⊃ An ⊃ · · · of

submodules of M is stationary;

(4) Every factor module of M is finitely cogenerated;

(5) For every family {Ai | i ∈ I} 6= φ of submodules of M, there exists

a finite subfamily {Ai | i ∈ I0} (i.e. I0 ⊂ I and finite) such that

⋂
i∈I
Ai =

⋂
i∈I0

Ai.

II. The following conditions are equivalent:

(1) M is Noetherian;

(2) A and M/A are Noetherian;
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(3) Every ascending chain A1 ⊂ A2 ⊂ · · · ⊂ An−1 ⊂ An ⊂ · · · of

submodules of M is stationary;

(4) Every submodule of M is finitely generated;

(5) For every family {Ai | i ∈ I} 6= φ of submodules of M, there exists

a finite subfamily {Ai | i ∈ I0} (i.e. I0 ⊂ I and finite) such that

∑
i∈I
Ai =

∑
i∈I0

Ai.

III. The following conditions are equivalent:

(1) M is Artinian and Noetherian;

(2) M is a module of finite length.

The condition (I)(3) in Theorem 2.4.2 is called descending chain condi-

tion, brief DCC. The condition (II)(3) in Theorem 2.4.2 is called ascending chain

condition, brief ACC. Thus, Theorem 2.4.2 asserts that a module M if Noetherian

if it satisfies ACC, and Artinian if it satisfies DCC.

Corollary 2.4.3 ( [56], Corollary 6.1.3).

(1) If M is a finite sum of Noetherian submodules, then it is Noethe-

rian; If M is a finite sum of Artinian submodules, then it is Ar-

tinian.

(2) If the ring R is right Noetherian (resp. right Artinian), then ev-

ery finitely generated right R-module MR is Noetherian (resp. Ar-

tinian).

(3) Every factor ring of right Noetherian (resp. Artinian) ring is again

right Noetherian (resp. Artinian).

Let MR be a right R-module and ϕ an endomorphism of M. Then

ϕn(n ∈ N) is also an endomorphism of M. We have:

Ker(ϕ) ⊂ Ker(ϕ2) ⊂ Ker(ϕ3) ⊂ . . . ,
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Im(ϕ) ⊃ Im(ϕ2) ⊃ Im(ϕ3) ⊃ . . . .

For Noetherian (resp. Artinian) module, the first (resp. the second)

chain is stationary. It follows the interesting results:

Theorem 2.4.4. Let ϕ be an endomorphism of the module M. Then

(1) M is Artinian ⇒ ∃n0 ∈ N ∀n ≥ n0 : M = Im(ϕn) +Ker(ϕn).

(2) M is Artinian and ϕ is an monomorphism ⇒ ϕ is an automor-

phism.

(3) M is Noetherian ⇒ ∃n0 ∈ N ∀n ≥ n0 : 0 = Im(ϕn) ∩Ker(ϕn).

(4) M is Noetherian and ϕ is an epimorphism ⇒ ϕ is an automor-

phism.

In the next part, we will provide some examples.

(1) Any finite dimensional vector space is a module of finite length. So

any finite dimensional vector space is Noetherian and Artinian.

(2) Infinite dimensional vector space VK is neither Artinian nor Noethe-

rian.

(3) Module ZZ is Noetherian but not Artinian. Note that the ring Z is

right and left Noetherian but it is not Artinian. Conversely, every

right Artinian with identity is right Noetherian.

2.5 Radicals and Socles

In mathematics, more specifically ring theory, a branch of abstract

algebra, the Jacobson radical of a ring R is the ideal consisting of those elements

in R that annihilate all simple right R-modules. It happens that substituting

“left” in place of “right” in the definition yields the same ideal, and so the notion

is left-right symmetric. The radical of a module extends the definition of the
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Jacobson radical to include modules. It plays a prominent role in many ring and

module theoretic results.

The concept dual to that of the radical is the socle. The socle of

a module M over a ring R is defined to be the sum of all non-zero minimal

submodules of M .

Definition 2.5.1. Let M be a right R-module. The Jacobson radical of M ,

denoted by Rad(M), is defined to be the intersection of all maximal submodules

of M.

In case M = R, we have Rad(RR) = Rad(RR) (by [56], Theorem

9.3.2). So we define Rad(R) := Rad(RR) = Rad(RR)

The prime radical or lower nil radical, denoted by P (R), is defined to

be the intersection of all prime ideals of R.

We now review the relation between the concepts of nilpotent ideal,

nil ideal and the concepts of radical.

Proposition 2.5.2 ( [62], Proposition 10.16). For any ring R, the following are

equivalent:

(1) R is a semiprime ring;

(2) P (R) = 0;

(3) R has no non-zero nilpotent ideal;

(4) R has no non-zero nilpotent left ideal.

Proposition 2.5.3 ( [40]). Let R be a ring. Then any semiprime ideal of R will

contain all nilpotent one-sided ideals of R.

Since the prime radical of R is a semiprime ideal of R, we have:

Corollary 2.5.4 ( [40]). The prime radical of R contains all nilpotent one-sided

ideal of R.
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Proposition 2.5.5 ( [87], Proposition XV.1.4). If R satisfies ACC on two-sided

ideals, then the prime radical of R is a nilpotent ideal.

Proposition 2.5.6 ( [40], Corollary 4.14). For a right or a left Artinian ring R,

the Jacobson radical coincides with the prime radical.

Theorem 2.5.7 ( [40], Theorem 3.11). Let R be a right or left Noetherian ring

and let N be the prime radical of R. Then N is a nilpotent ideal of R containing

all the nilpotent right or left ideals of R.

The following theorem due to Hopkins and Levitzki.

Theorem 2.5.8 ( [40], Theorem 4.15). If R is a right Artinian ring, then R is

also right Noetherian and Rad(R) is nilpotent.

In this case, we have Rad(R) = P (R).

Corollary 2.5.9 ( [56], Corollary 9.3.7). For any ring R, we have the following:

(1) The sum of two nilpotent right (left or two-sided) ideals is again

nilpotent.

(2) If RR is Noetherian, then every two-sided nil ideal is nilpotent.

Proposition 2.5.10 ( [56]). Let I be a nil ideal of R.

(1) If J/I is a nil ideal of R/I, then J is a nil ideal of R.

(2) An arbitrary sum of nil ideals is nil.

Definition 2.5.11. Let R be an arbitrary ring, then its nil radical Nil(R) is the

sum of all nil two-sided ideals of R.

From proposition 2.5.10, we see that Nil(R/Nil(R)) = 0.

Theorem 2.5.12 ( [56], Theorem 9.3.8). Every (one-sided or two-sided) nil ideal

is contained in Rad(R).
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Proposition 2.5.13 ( [64], Proposition 10.27). For any ring R, we have P (R) ⊂

Nil(R) ⊂ Rad(R). If R is left Artinian, then P (R) = Nil(R) = Rad(R).

The following theorem is called Levitzki’s Theorem.

Theorem 2.5.14 ( [64], Theorem 10.30). Let R be a right Noetherian ring. Then

every nil one-sided ideal N of R is nilpotent. We have P (R) = Nil(R), and this

is the largest nilpotent right (resp. left) ideal of R.

Now, we will review the concept of locally nilpotent.

Definition 2.5.15. Let I be a right ideal of a ring R. I is called locally nilpotent

if for any finite subset {s1, · · · , sn} ⊂ I, there exists an integer k such that any

product of k elements from {s1, · · · , sn} is zero.

Proposition 2.5.16 ( [64], Proposition 10.31). Let I, J be locally nilpotent one-

sided ideals in R. Then I + J is locally nilpotent right ideals.

Definition 2.5.17. The Levitzki radical of a ring R, denoted by L-rad(R), is the

sum of all locally nilpotent ideals of R. It is the largest locally nilpotent ideal of

R, and contains every locally nilpotent one-sided ideal of R.

Moreover, we have:

Proposition 2.5.18 ( [64]). P (R) ⊂ L-rad(R) ⊂ Nil(R) ⊂ Rad(R).

2.6 Primeness in module category

In this section, before stating our new results we are interested to list

some basic properties from [40].

Definition 2.6.1. A proper ideal P in a ring R is called a prime ideal of R if for

any ideals I, J of R with IJ ⊂ P, then either I ⊂ P or J ⊂ P. An ideal I of a

ring R is called strongly prime if for any a, b ∈ R with ab ∈ I, then either a ∈ I

or b ∈ I. A ring R is called a prime ring if 0 is a prime ideal. (Note that a prime

ring must be non-zero).
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Proposition 2.6.2 ( [40], Proposition 3.1). For a proper ideal P of a ring R, the

following conditions are equivalent:

(1) P is a prime ideal;

(2) If I and J are any ideals of R properly containing P , then IJ * P ;

(3) R/P is a prime ring;

(4) If I and J are any right ideals of R such that IJ ⊂ P, then either

I ⊂ P or J ⊂ P ;

(5) If I and J are any left ideals of R such that IJ ⊂ P, then either

I ⊂ P or J ⊂ P ;

(6) If x, y ∈ R with xRy ⊂ P, then either x ∈ P or y ∈ P.

By induction, it follows from Proposition 2.6.2 that if P is a prime

ideal in a ring R and J1, . . . , Jn are right ideals of R such that J1 · · · Jn ⊂ P, then

some Ji ⊂ P. By a maximal ideal in a ring is meant a maximal proper ideal, i.e.,

an ideal which is a maximal element in the collection of proper ideals.

Proposition 2.6.3 ( [40], Proposition 3.2). Every maximal ideal of a ring R is

a prime ideal.

Proposition 2.6.3 together with Zorn’s Lemma guarantees that every

non-zero ring has at least one prime ideal.

Definition 2.6.4. A prime ideal P in a ring R is called a minimal prime ideal if

it does not properly contain any other prime ideals. For instance, if R is a prime

ring, then 0 is the unique minimal prime ideal of R.

Proposition 2.6.5 ( [40], Proposition 3.3). Any prime ideal P in a ring R con-

tains a minimal prime ideal.

Theorem 2.6.6 ( [40], Theorem 3.4). In a right or left Noetherian ring R, there

exist only finitely many minimal prime ideals, and there is a finite product of

minimal prime ideals (repetitions allowed) that equals zero.
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Definition 2.6.7. An ideal P in a ring R is called a semiprime ideal if it is an

intersection of prime ideals. A ring R is called a semiprime ring if 0 is a semiprime

ideal.

Remark In Z, the intersection of any infinite number of prime ideals is 0. The

intersection of any finite list p1Z, . . . , pkZ of prime ideals, where p1, . . . , pk are

distinct prime integers, is the ideal p1 · · · pkZ. Hence the non-zero semiprime ideals

of Z are nZ, where n is any square-free positive integer.

It follows from [40, Proposition 3.6] that an ideal I in a commutative

ring R is semiprime if and only if, whenever x ∈ R and x2 ∈ I, then x ∈ I.

The example of a matrix ring over a field shows that this criterion fails in the

noncommutative case. However, there is an analogous criterion due to Levitzki-

Nagata, as we will see in the next theorem.

Theorem 2.6.8 ( [40], Theorem 3.7). An ideal I in a ring R is semiprime if and

only if

(?) whenever x ∈ R with xRx ⊂ I, then x ∈ I.

The reader should be aware that many authors define semiprime ideals

by the condition (?) in Theorem 2.6.8. From that view point, the theorem then

says that an ideal is semiprime if and only if it is an intersection of prime ideals.

Corollary 2.6.9 ( [40], Corollary 3.8). For an ideal I in a ring R, the following

conditions are equivalent:

(1) I is a semiprime ideal;

(2) If J is any ideal of R such that J2 ⊂ I, then J ⊂ I;

(3) If J is any ideal of R such that J % I, then J2 * I;

(4) If J is any right ideal of R such that J2 ⊂ I, then J ⊂ I;

(5) If J is any left ideal of R such that J2 ⊂ I, then J ⊂ I.



Fac. of Grad. Studies, Mahidol Univ. Ph.D. (Mathematics) / 29

Corollary 2.6.10 ( [40], Corollary 3.9). Let I be a semiprime ideal in a ring R.

If J is a right or a left ideal of R such that Jn ⊂ I for some positive integer n,

then J ⊂ I.

Definition 2.6.11. An element x in a ring R is called a nilpotent element if

xn = 0 for some n ∈ N. A right or a left ideal I in a ring R is called a nilpotent

ideal if In = 0 for some n ∈ N. More generally, I is called a nil ideal if each of its

elements is nilpotent. The prime radical P (R) of a ring R is the intersection of

all the prime ideals of R.

Remarks ( [40, page 53])

(a) In Noetherian rings, all nil one-sided ideals are nilpotent.

(b) If R is the zero ring, it has no prime ideals, and so P (R) = R. If

R is non-zero, it has at least one maximal ideal, which is prime by

Proposition 2.6.3. Thus, the prime radical of a non-zero ring is a

proper ideal.

(c) A ring R is semiprime if and only if P (R) = 0. In any case, P (R) is

the smallest semiprime ideal of R, and because P (R) is semiprime,

it contains all nilpotent one-sided ideals of R.

Now, let R be a semiprime ring and let A and B be right ideals of R

with AB = 0, then (BA)2 = 0 and (A∩B)2 = 0, so that BA = 0 and A∩B = 0.

Thus if I is an ideal of R then Ir(I) = 0, hence r(I)I = 0. Similarly, Il(I) = 0.

Therefore l(I) = r(I). If I is a right annihilator, then I = r(l(I)) = l(r(I)) is also

a left annihilator, and in these circumstances we call I an annihilator ideal. We

have the following lemmas

Lemma 2.6.12 ( [91], Proposition 3.13). For a ring R with identity, the following

conditions are equivalent:

(1) R is a semiprime ring (i.e. P (R) = 0);

(2) 0 is the only nilpotent ideal in R;
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(3) For ideals I, J in R with IJ = 0 implies I ∩ J = 0.

Lemma 2.6.13. Let R be a semiprime ring with the ACC (equivalently DCC)

for annihilators ideals, then R has only finite number of minimal prime ideals. If

P1, · · · , Pn are the minimal prime ideals of R then P1∩· · ·∩Pn = 0. Also a prime

ideal of R is minimal if and only if it is an annihilator ideal.

Proposition 2.6.14 ( [40], page 54). In any ring R, the prime radical equals the

intersection of the minimal prime ideals of R.

Definition 2.6.15. Let X be a subset of a right R-module M. The right annihi-

lator of X is the set rR(X) = {r ∈ R : xr = 0 for all x ∈ X} is a right ideal of

R. If X is a submodule of M, then rR(X) is a two-sided ideal of R. Annihilators

of subsets of left R-modules are defined analogously, and are left ideals of R. If

M = R, then the right annihilator of X ⊂ R is

rR(X) = {r ∈ R | xr = 0 for all x ∈ X}

as well as a left annihilator of X is

lR(X) = {r ∈ R | rx = 0 for all x ∈ X}.

A right annihilator is a right ideal of R which is of the form rR(X) (or

simply r(X)) for some subset X of R and a left annihilator is a left ideal of the

form lR(X) (or simply l(X)).

We now give the following basic properties of right and left annihilators

which have important consequences.

Properties 2.6.16 ( [20]). Let R be a ring and let X, Y be subsets of R. Then

we have the following properties:

(1) X ⊂ Y implies that r(X) ⊃ r(Y ) and l(X) ⊃ l(Y );

(2) X ⊂ l(r(X)) ∩ r(l(X));
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(3) r(l(r(X))) = r(X) and l(r(l(X))) = l(X).

From these relationships, it follows easily that the ACC for right an-

nihilators is equivalent to the DCC for left annihilators.

Definition 2.6.17. Let M be a right R-module and S = EndR(M), its endomor-

phism ring. A submodule X of M is called a fully invariant submodule of M if

for any f ∈ S, we have f(X) ⊂ X.

By definition, the class of all fully invariant submodules ofM is nonempty

and closed under intersections and sums. Indeed, if X and Y are fully invariant

submodules of M, then for every f ∈ S, we have f(X+Y ) = f(X)+f(Y ) ⊂ X+Y

and f(X ∩ Y ) ⊂ f(X) ∩ f(Y ) ⊂ X ∩ Y . In general, if {Xi : i ∈ I} where I is an

index set, is a family of fully invariant submodules of M, then
∑
i∈I
Xi and

⋂
i∈I
Xi

are fully invariant submodules of M . Especially, a right ideal I of a ring R is a

fully invariant submodule of RR if it is a two-sided ideal.

Now, let I, J ⊂ S and X ⊂ M. For convenience, we denote I(X) =∑
f∈I

f(X), Ker(I) =
⋂
f∈I

Ker(f), and IJ = {
∑

1≤i≤n
xiyi | xi ∈ I, yi ∈ J, 1 ≤ i ≤

n, n ∈ N}. With these notations, we can see that for any right R-module M and

any right ideal I of R, the set MI is a fully invariant submodule of M. We now

are ready to define prime submodules that was introduced by Sanh in [82].

Definition 2.6.18. Let M be a right R-module and X, a fully invariant proper

submodule of M. Then X is called a prime submodule of M (we say that X is

prime in M) if for any ideal I of S, and any fully invariant submodule U of

M, I(U) ⊂ X implies I(M) ⊂ X or U ⊂ X. A fully invariant submodule X of

M is called strongly prime if for any f ∈ S and any m ∈ M, f(m) ∈ X implies

f(M) ⊂ X or m ∈ X.

The following theorem gives some characterizations of prime submod-

ules similar to that of prime ideals and we use it as a tool for checking the prime-

ness.

Theorem 2.6.19 ( [82]). Let M be a right R-module and P, a proper fully in-

variant submodule of M. Then the following conditions are equivalent:
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(1) P is a prime submodule of M ;

(2) For any right ideal I of S and any submodule U of M , if I(U) ⊂ P,

then either I(M) ⊂ P or U ⊂ P ;

(3) For any ϕ ∈ S and any fully invariant submodule U of M, if

ϕ(U) ⊂ P, then either ϕ(M) ⊂ P or U ⊂ P ;

(4) For any left ideal I of S and any subset A of M, if IS(A) ⊂ P,

then either I(M) ⊂ P or A ⊂ P ;

(5) For any ϕ ∈ S and any m ∈ M, if ϕ(S(m)) ⊂ P, then either

ϕ(M) ⊂ P or m ∈ P.

Moreover, if M is quasi-projective, then the above conditions are equiv-

alent to:

(6) M/P is a prime module.

In addition, if M is quasi-projective and a self-generator, then the

above conditions are equivalent to:

(7) If I is an ideal of S and U, a fully invariant submodule of M such

that I(M) and U properly contain P, then I(U) 6⊂ P.

Example 2.6.20.

(1) Let Z4 = {0, 1, 2, 3} be the additive group of integers modulo 4.

Then X =< 2 > is a prime submodule of Z4.

(2) If M is a semisimple module having only one homogeneous com-

ponent, then 0 is a prime submodule. Especially, if M is simple,

then 0 is a prime submodule.

Definition 2.6.21. A prime submodule P of a right R-module M is called a

minimal prime submodule if it is minimal in the class of prime submodules of M.

The following proposition gives us a property similar to that of rings

(see Proposition 2.6.5).
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Proposition 2.6.22 ( [82]). If P is a prime submodule of a right R-module M,

then P contains a minimal prime submodule of M.

Lemma 2.6.23 ( [82]). Let M be a right R-module and S = EndR(M). Suppose

that X is a fully invariant submodule of M. Then the set IX = {f ∈ S | f(M) ⊂

X} is a two-sided ideal of S.

Theorem 2.6.24 ( [82]). Let M be a right R-module, S = EndR(M) and X, a

fully invariant submodule of M. If X is a prime submodule of M, then IX is a

prime ideal of S. Conversely, if M is a self-generator and if IX is a prime ideal

of S, then X is a prime submodule of M.

Definition 2.6.25. A fully invariant submodule X of a right R-module M is

called a semiprime submodule if it is an intersection of prime submodules of M.

A right R-module M is called a prime module if 0 is a prime submodule of M. A

ring R is a prime ring if RR is a prime module.

A right R-module M is called a semiprime module if 0 is a semiprime

submodule of M. Consequently, the ring R is a semiprime ring if RR is a semiprime

module. By symmetry, the ring R is semiprime if RR is a semiprime left R-module.

Example 2.6.26.

(1) Every semisimple module with only one homogeneous component

is a prime module. Especially, every simple module is prime.

(2) Every semisimple module is semiprime.

(3) As a Z-module, the module Z4 is not semiprime.

Theorem 2.6.27 ( [82]). Let M be a prime module. Then its endomorphism ring

S is a prime ring. Conversely, if M is a self-generator and S is a prime ring,

then M is a prime module.

Lemma 2.6.28 ( [82]). Let M be a quasi-projective module, P be a prime sub-

module of M, A ⊂ P be a fully invariant submodule of M. Then P/A is a prime

submodule of M/A.
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Lemma 2.6.29 ( [82]). Let M be a quasi-projective module and A a fully invariant

submodule of M. If P̄ ⊂ M/A is a prime submodule of M/A, then ν−1(P̄ ) is a

prime submodule of M.

For a right R-module M, let P (M) be the intersection of all prime

submodules of M. By our definition, M is a semiprime module if P (M) = 0. We

want to get some properties similar to that of prime radical of rings and at first

step, the following theorem is true for quasi-projective modules.

Theorem 2.6.30 ( [82]). Let M be a quasi-projective module. Then M/P (M) is

a semiprime module, that is, P (M/P (M)) = 0.

Theorem 2.6.31 ( [82]). If M is a semiprime module, then S is a semiprime

ring.

In ( [82, Theorem 2.9]), it was proved that if M is a semiprime module,

then its endomorphism ring S is a semiprime ring. For the converse part, M needs

to be a self-generator and finitely generated module as follows:

Proposition 2.6.32 ( [83]). Let M be a quasi-projective, finitely generated right

R-module which is a self-generator. If S is a semiprime ring, then M is a

semiprime module.

Theorem 2.6.33 ( [82]).

(1) If M is a prime module, then so is Mn for any n ∈ N.

(2) If M is a semiprime module, then so is Mn for any n ∈ N.

Proposition 2.6.34 ( [84]). Let M be a quasi-projective, finitely generated right

R-module which is a self-generator. Then:

(1) If X is a minimal prime submodule of M, then IX is a minimal

prime ideal of S.
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(2) If P is a minimal prime ideal of S, then X := P (M) is a minimal

prime submodule of M and IX = P.

Theorem 2.6.35 ( [84]). Let M be a quasi-projective, finitely generated right

R-module which is a self-generator. Let X be a fully invariant submodule of M.

Then the following conditions are equivalent:

(1) X is a semiprime submodule of M ;

(2) If J is any ideal of S such that J2(M) ⊂ X, then J(M) ⊂ X;

(3) If J is any ideal of S properly containing X, then J2(M) 6⊂ X;

(4) If J is any right ideal of S such that J2(M) ⊂ X, then J(M) ⊂ X;

(5) If J is any left ideal of S such that J2(M) ⊂ X, then J(M) ⊂ X;

Corollary 2.6.36 ( [84]). Let M be a quasi-projective, finitely generated right

R-module which is a self-generator and X, a semiprime submodule of M. If J is

a right or left ideal of S such that Jn(M) ⊂ X for some positive integer n, then

J(M) ⊂ X.

Finally, applications are made to semiprime modules as the following

theorem shows.

Theorem 2.6.37 ( [82]). Let M be a quasi-projective, finitely generated right

R-module which is a self-generator. Then the following conditions are equivalent:

(1) M is semisimple;

(2) M is semiprime Artinian;

(3) M is semiprime and satisfies the DCC on M-cyclic submodules.

We next mention the concept of Goldie dimension (also known as uni-

form dimension) of a module.

Definition 2.6.38. A nonzero module M is said to be uniform if any two non-zero

submodules of M have non-zero intersection, i.e., if every non-zero submodule of

M is essential in M.
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Let M be a right R-module. Then M is said to have finite Goldie

dimension if M does not contain a direct sum of a infinite number of non-zero

submodules.

It is easy to show thatM has finite Goldie dimension ifM is Noetherian

or Artinian. A ring R is said to have finite right Goldie dimension if R has finite

Goldie dimension as a right R-module. A ring R is called a right Goldie ring if it

has finite right Goldie dimension and satisfies the ACC for right annihilators. A

right Noetherian ring is right Goldie, but the converse is not true.

The next lemma gives the basic properties of modules of finite Goldie

dimension.

Lemma 2.6.39 ( [20], Lemma 1.9). Let M be a non-zero right R-module.

(1) If M has finite Goldie dimension, then every non-zero submodule of

M contains a uniform submodule of M and there is a finite number

of uniform submodules of M whose sum is direct and essential in

M.

(2) Suppose that M has uniform submodules U1, . . . , Un such that the

sum U1 + · · ·+ Un is direct and essential in M, then M has finite

Goldie dimension and the positive integer n is independent of the

choice of Ui. We call n the Goldie dimension of M and it is denoted

by dim(M).

Let M be a module of finite Goldie dimension. Then by definition,

submodules of M also have finite Goldie dimension, but it is not always true that

arbitrary factor modules of M have finite Goldie dimension. For example, Q has

Goldie dimension 1 as a Z-module but Q/Z does not have finite Goldie dimension.

If V is a vector space, then V has finite Goldie dimension if and only if V has

finite dimension in the usual sense of linear algebra and in these circumstances,

the two dimensions are equal.

Proposition 2.6.40 ( [83]). Let M be a quasi-projective, finitely generated right

R-module which is a self-generator. Then M has finite Goldie dimension if and
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only if S has finite right Goldie dimension. Moreover, in this case, dim(M) =

dim(SS).

Definition 2.6.41. Let M be a right R-module. A submodule X of M is called

an M-annihilator if X = Ker(I) =
⋂
f∈I

Ker(f) for some subset I of S.

We call M a Goldie module if M has finite Goldie dimension and sat-

isfies the ACC on M -annihilators.

A ring R is called a right Goldie ring if RR is a Goldie module, or

equivalently, if R has finite right Goldie dimension and satisfies the ACC on right

annihilators.

Lemma 2.6.42 ( [83]). Let M be a right R-module and S = EndR(M), its

endomorphism ring. If M satisfies the ACC (resp. DCC) on M-annihilators,

then S satisfies the ACC (resp. DCC) on right annihilators.

Theorem 2.6.43 ( [83]). Let M be a quasi-projective, finitely generated right

R-module which is a self-generator. If M is a Goldie module, then S is a right

Goldie ring.

Proposition 2.6.44 ( [83]). Let M be a right R-module with finite Goldie di-

mension and f ∈ S, a monomorphism. Then f(M) is an essential submodule of

M.

Definition 2.6.45. The right singular ideal of a ring R is denoted and defined by

ZR(R) = {x ∈ R | xK = 0 for some essential right ideal K of R}.

In other words, if x ∈ R, then x ∈ ZR(R) if and only if rR(x) is an

essential right ideal of R. If ZR(R) = 0, then R is called a right nonsingular ring.

Let M be a right R-module. An element x ∈ M is called a singular

element of M if the right ideal rR(x) is essential in RR. The set of all singular

elements of M is a submodule of M and it is called the singular submodule of M.

Denoted it by Z(M). If Z(M) = M, then M is a singular module and if Z(M) = 0,

then M is nonsingular. A ring R is right nonsingular if the right R-module RR is

a nonsingular module.



Nguyen Dang Hoa Nghiem Basic Knowledge / 38

Theorem 2.6.46 ( [63], Lemma 7.2). Let M be a right R-module.

(1) Z(M) · soc(RR) = 0, where soc(RR) denotes the socle of RR.

(2) If f : M → N is any R-homomorphism, then f(Z(M)) ⊂ Z(N).

(3) If X ⊂M, then Z(X) = X ∩ Z(M).

Proposition 2.6.47 ( [83]). Let M be a quasi-projective, finitely generated right

R-module which is a self-generator. If X is an essential submodule of M, then

IX = {f ∈ S | f(M) ⊂ X} is an essential right ideal of S.

Proposition 2.6.48 ( [83]). Let M be a nonsingular right R-module with finite

Goldie dimension. Then M satisfies the ACC and DCC on M-annihilators. Es-

pecially, if R is a right nonsingular ring with finite Goldie dimension, then R

satisfies the ACC and DCC on right annihilators.

Proposition 2.6.49 ( [83]). Let M be a nonsingular right R-module with the ACC

on M-annihilators and let f ∈ S be such that f(M) is an essential submodule of

M. Then f is a monomorphism.

Definition 2.6.50. Let M be a right R-module. The set of all prime submodules

of M is called the prime spectrum of M and denoted by Spec(M). Recall that

the set of all prime ideals of R is called the prime spectrum of R and denoted by

Spec(R) or XR. The topological structure on Spec(R) will help us to determine

the topological on Spec(M). There are some useful facts about the topological on

Spec(R).

Let R be a ring. Denote Spec(R) (or XR) for the set of all prime ideals

of R. For any ideal I of R, we define:

V R(I) = {P ∈ Spec(R) | I ⊂ P}

Proposition 2.6.51. We have the following properties

(1) V R(0) = XR and V R(R) = φ;

(2) If {Ei}i∈J is any family of ideals of R, then
⋂
i∈J

V R(Ei) = V R(
⋃
i∈J

(Ei);
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(3) If I, J are ideals of R, then V R(I)∪V R(J) = V R(IJ) = V R(I∩J).

Let Γ(R) = {V R(I) | I is an ideal of R}. From (1)− (3), there exists

a topology, say ΓR, on Spec(R) having Γ(R) as the family of all closed sets. This

topology is called the Zariski topology on Spec(R). With this topology, we have

the following lemma:

Lemma 2.6.52 ( [88]). Let R be a ring. Then we have the following:

(1) XR is compact;

(2) A subset Y of XR is irreducible if and only if J?(Y ) is a prime

ideal of R, where J?(Y ) denote the intersection of all elements in

Y.
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CHAPTER III

ON MODULES WITH INSERTION FACTOR

PROPERTY

3.1 IFP Modules and Their Endomorphism Rings

In this section we define the IFP modules that we shall study, and we

investigate some of their basic properties.

Definition 3.1.1. A submodule X of a right R-module M is said to have “in-

sertion factor property” (briefly, an IFP-submodule) if for any endomorphism ϕ

of M and any element m ∈ M, if ϕ(m) ∈ X, then ϕSm ⊂ X. A right ideal I of

R is an IFP-right ideal if it is an IFP submodule of RR, that is for any a, b ∈ R,

if ab ∈ I, then aRb ⊂ I. A right R-module M is called an IFP-module if 0 is an

IFP-submodule of M . A ring is IFP if 0 is an IFP ideal.

By definition, we can see that any intersection of a family of IFP-

submodules is again IFP. Clearly, every ideal in a commutative ring is IFP.

The following examples are due to [1].

Example 3.1.2.

1. There exists a semicommutative R-module M such that it is not

IFP. Let F be a field, R =

F 0

0 F

 and M =

F 0

F 0

 .

It is easy to check that M is a semicommutative module.

Now, let m =

0 0

1 0

 ∈M ; f, g ∈ S is defined by

f

a 0

b 0

 =

a 0

0 0

 ; g

a 0

b 0

 =

b 0

0 0

 where

a 0

b 0

 ∈M.

Then we have:
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f(m) = f

0 0

1 0

 =

0 0

0 0

 and fg(m) = fg

0 0

1 0

 6=
0 0

0 0

 .

That is, M is not IFP.

2. There is a module M which is IFP but not semicommutative. Let Z

denote the ring of intergers, M = Z×Z, R = EndZ(Z×Z) and S = EndR(Z×Z).

Then M is an IFP but not semicommutative. Indeed, if we let f, g ∈ R be defined

by (a, b)f = (a, 0) and (a, b)g = (b, 0) where (a, b) ∈ Z × Z, then (1, 0)f = (0, 0)

but (0, 1)gf 6= (0, 0).

Proposition 3.1.3. Let X be a submodule of a right R-module M. If X is an IFP-

submodule and M is quasi-projective, then M/X is an IFP-module. Conversely,

if M/X is IFP and X is fully invariant, then X is an IFP-submodule of M.

Proof. Suppose that X is an IFP-submodule of M and ϕ̄(m̄) = 0, where ϕ̄ ∈ S̄ =

End(M/X) and m̄ ∈ M/X. By the quasi-projectivity of M , there is a ϕ ∈ S

such that νϕ = ϕ̄ν, where ν : M −→M/X is the natural epimorphism. It follows

that ϕ(m) ∈ X. Let ξ̄ be any endomorphism of M/X. Then as above, there is

ξ ∈ S such that ξ̄ν = νξ. By assumption, ϕξ(m) ∈ X. This leads to ϕ̄ξ̄(m̄) = 0,

proving that M/X is an IFP-module.

Suppose that X is fully invariant submodule of M , with M/X is IFP.

Let ϕ(m) ∈ X, where ϕ ∈ S and m ∈ M. Since X is fully invariant submodule

of M , there is ϕ̄ ∈ S̄ such that ϕ̄ν = νϕ. It follows that ϕ̄(m̄). By assumption,

we get ϕ̄ξ̄(m̄) = 0, for any ξ ∈ S, where ξ̄ν = νξ. This leads to the fact that

ϕS(m) ⊂ X, proving our proposition.

Let X be a submodule of M . Define IX = {f ∈ S | f(M) ⊂ X}. Then

we can see that IX is a right ideal of S. Moreover, if X is fully invariant in M ,

then IX is a two-sided ideal of S. The following lemma is useful.

Lemma 3.1.4. If X is an IFP submodule of M , then IX is an IFP right ideal of

S. The converse is true if M is a self-generator.

Proof. Let ϕψ ∈ IX . Then, ϕ(ψ(m)) ∈ X for any m ∈ M . By hypothesis,

ϕξ(ψ(m)) ∈ X, for any ξ ∈ S and any m ∈M. It follows that ϕSψ ⊂ IX , showing

that IX is IFP.
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Conversely, let ϕ(m) ∈ X, where ϕ ∈ S, and m ∈ M . We have

ϕ(m)R ⊂ X and it would imply that ϕ(mR) ⊂ X. Since M is a self-generator,

mR =
∑
g∈A

g(M) for some subset A of S. And hence, ϕ(mR) = ϕ(
∑
g∈A

g(M)) =∑
g∈A

ϕg(M). This implies that ϕg ⊂ IX . It follows from hypothesis, ϕSg ⊂ IX .

This implies that ϕSg(M) ⊂ X, showing that ϕS(m) ⊂ X. It means that X is

an IFP submodule.

We now study the relationship between an IFP module and its endo-

morphism ring by following Theorem.

Theorem 3.1.5. Let M be a right R-module and S its endomorphism ring. If

M is an IFP-module, then S is an IFP-ring. The converse is true if M is a

self-generator.

Proof. Let ϕψ = 0 ∈ S. Then ϕ(ψ(m)) = 0 for all m ∈ M . If M is IFP, then

for any ξ ∈ S, we have ϕξ(ψ(m)) = 0 for all m ∈ M . It follows that ϕSψ = 0,

showing that S is an IFP-ring.

Conversely, since I0 = {f ∈ S | f(M) = 0 ⊂ M} = 0, is an IFP-

ideal, it follows that 0 is an IFP-submodule of M by Lemma 3.1.4, proving our

theorem.

The following Theorem gives some characterizations of IFP modules.

Theorem 3.1.6. Let M be a right R-module and S = End(M). The following

conditions are equivalent:

(1) M is an IFP-module;

(2) For any m ∈M , lS(m) is an ideal of S;

(3) For any ϕ ∈ S,Ker(ϕ) is a fully invariant submodule of M ;

If M is quasi-projective, then the above conditions are equivalent to:

(4) For any ϕ ∈ S,Ker(ϕ) is an IFP-ideal of S;
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(5) M/Ker(I) is an IFP-module for any subset I of S;

If M is a self-generator, then the above conditions (1), (2) and (3) are equivalent

to:

(6) For any m ∈M, lS(m) is an IFP-ideal of S;

(7) S/lS(A) is an IFP-ring for any subset A ⊂M.

Proof. (1) ⇒ (2). Let ϕ ∈ lS(m) and ξ ∈ S, where m ∈ M. Then ϕ(m) = 0.

By (1), we have ϕξ(m) = 0. It follows that ϕξ ∈ lS(m), proving that lS(m) is a

two-sided ideal of S.

(2)⇒ (1). Let ϕ(m) = 0 where ϕ ∈ S and m ∈ M . Since lS(m) is an

ideal, for any ξ ∈ S, we have ϕξ ∈ lS(m). This shows that M is an IFP-module.

(1) ⇒ (3). Let ϕ ∈ S. For any m ∈ Ker(ϕ), we get ϕ(m) = 0. By

assumption, ϕξ(m) = 0 for all ξ ∈ S. This shows that ξ(Ker(ϕ)) ⊂ Ker(ϕ), i.e.,

Ker(ϕ) is a fully invariant submodule of M .

(3)⇒ (1). With ϕ(m) = 0 we have m ∈ Ker(ϕ), which is fully invari-

ant in M . Thus for any ξ ∈ S, ξ(m) ∈ Ker(ϕ), and hence ϕξ(m) = 0, proving

that M is an IFP-module.

(1) ⇒ (4). Let ϕ ∈ S,m ∈ M such that ψ(m) ∈ Ker(ϕ). Then

(ϕψ)(m) = 0. By (1), we get that ϕψξ(m) = 0 for all ξ ∈ S. This shows that

ψS(m) ⊂ Ker(ϕ), showing that Ker(ϕ) is an IFP-submodule of M .

(4)⇒ (5). We note that Ker(I) =
⋂
f∈I

Ker(f), and each Ker(f) is an

IFP-submodule of M , and hence Ker(I) is an IFP-submodule of M. Since M is

quasi-projective, by applying Proposition 3.1.3, we can see that M/Ker(I) is an

IFP-module.

(5) ⇒ (1). This part is clear by taking I = {1M}, 1M is the identity

map of M .

(1) ⇒ (6). Let m ∈ M and ϕψ ∈ lS(m), where ϕ, ψ ∈ S. Then

ϕ(ψ(m)) = 0. By assumption, ϕSψ(m) = 0. It follows that ϕSψ ⊂ lS(m), as

required.



Nguyen Dang Hoa Nghiem On Modules with Insertion Factor Property / 44

(6)⇒ (7). Since lS(A) =
⋂
a∈A

lS(a) for any subset A of M , we see that

lS(A) is an IFP ideal of S, and therefore S/lS(A) is an IFP-ring.

(7) ⇒ (1). Taking A = M , then it is clear that S is an IFP-ring.

Since M is a self-generator, by applying Theorem 3.1.5 we can see that M is an

IFP-module.

The following Corollary is a direct consequence of the above Theorem.

Corollary 3.1.7. For a ring R, the following conditions are equivalent:

(1) R is an IFP-ring;

(2) For any a ∈ R, lR(a) is an ideal of R;

(3) For any a ∈ R, rR(a) is an ideal of R;

(4) For any a ∈ R, lR(a) is an IFP-ideal of R;

(5) For any a ∈ R, rR(a) is an IFP-ideal of R;

(6) For any a ∈ R,R/rR(a) is an IFP-ring;

(7) For any a ∈ R,R/lR(a) is an IFP-ring.

3.2 Generalizing Anderson’s Theorem

The goal of this section is to prove a generalization of Anderson’s

Theorem to fully IFP modules.

Definition 3.2.1. A module M is called fully IFP if M/U is IFP for every proper

fully invariant submodule U of M . A ring is called fully IFP if R/I is IFP for

every proper ideal I of R.

Clearly, every fully IFP-module is an IFP-module.

Due to [50], fully IFP rings is called homomorphically IFP rings. Next,

we study the relationship between a fully IFP module and its endomorphism ring.
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Theorem 3.2.2. Let M be a right R-module. If M is a fully IFP, then S is a

fully IFP ring. Conversely, if S is a fully IFP and M is a self-generator, then M

is a fully IFP module.

Proof. Suppose that M is a fully IFP module and J is a proper ideal of S. This

shows that J(M) is a fully invariant submodule of M . By assumption, M/J(M)

is IFP. By Proposition 3.1.3, we can see that IJ(M) is an IFP right ideal of S.

Hence S/J is IFP, proving that S is a fully IFP ring.

Conversely, suppose that S is a fully IFP ring. Let U be a proper fully

invariant submodule of M, then IU is a proper ideal of S. By assumption, S/IU

is IFP. Since M is a self-generator, M/U is IFP. Thus M is a fully IFP module.

The proof of our theorem is now complete.

Recall from [55] that a module N is called M-generated if there is an

epimorphism M (I) → N for some index set I. If I is finite, then N is called finitely

M-generated. From this, we can see that if M is quasi-projective and X is finitely

M -generated, then IX = {f ∈ S | f(M) ⊂ X} is a finitely generated right ideal

of S.

Proposition 3.2.3 ( [85], Proposition 1.1). Let M be a quasi-projective, finitely

generated right R-module which is a self-generator. Then we have the following:

(1) If X is a minimal prime submodule of M , then IX is a minimal

prime ideal of S.

(2) If P is a minimal prime ideal of S, then X := P (M) is a minimal

prime submodule of M and IX = P .

For following Theorem, we refer to Huh et al. [50].

Theorem 3.2.4 ( [50], Theorem 3). Let R be a homomorphically IFP ring and

I be a proper ideal of R. If every prime ideal minimal over I is finitely generated

then there are only finitely many prime ideals minimal over I.

Applying this result we can prove the following theorem as a general-

ization of Anderson’s theorem for modules.
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Theorem 3.2.5. Let M be a quasi-projective, finitely generated, fully IFP which

is a self-generator. Assume that U is a proper fully invariant of M. If every prime

submodule minimal over U is finitely generated, then there are only finitely many

prime submodules minimal over U.

Proof. Since M is a fully IFP module, then S is a fully IFP ring. By assumption,

IU is a proper ideal of S. By Theorem 3.2.5, it is easy to see that there are only

finitely many prime ideals minimal over IU . Applying Proposition 3.2.4, we can

see that there are only finitely many prime submodules minimal over U . This

completes the proof.

The following Corollary is a direct consequence of the above Theorem.

Corollary 3.2.6. Let M be a quasi-projective, finitely generated, fully IFP which

is a self-generator. If every minimal prime submodule of M is finitely generated,

then there are only finitely many minimal prime submodules of M .
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CHAPTER IV

ON NEARLY PRIME SUBMODULES

In this chapter, we introduce the notion of nearly prime submodules

as a generalization of prime submodules.

4.1 On nearly prime submodules

In the following definition, instead of requiring the submodule X to be

fully invariant, we reduce this by a weaker condition that X is invariant under

ϕS.

Definition 4.1.1. A proper submodule X of a right R-module M is called a

nearly prime submodule if for any ϕ ∈ S and for any m ∈ M , if ϕS(m) ⊂ X and

ϕS(X) ⊂ X, then either m ∈ X or ϕ(M) ⊂ X. Especially, a proper right ideal P

of R is a nearly prime right ideal if for a, b ∈ R such that aRb ⊂ P and aRP ⊂ P,

then either a ∈ P or b ∈ P.

From our definitions, any prime submodule of a right R-module M is

nearly prime.

In the following Theorem and its corollary, we can see that a proper

right ideal P of R is nearly prime if for any right ideals A,B ⊂ R such that

AP ⊂ P and AB ⊂ P, then either A ⊂ P or B ⊂ P. Note that Koh gave this

definition and used the terminology prime right ideals.

Theorem 4.1.2. Let X be a proper submodule of M. Then the following condi-

tions are equivalent:

(1) X is a nearly prime submodule of M ;
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(2) For any right ideal I of S, any submodule U of M, if I(U) ⊂ X

and I(X) ⊂ X, then either I(M) ⊂ X or U ⊂ X;

(3) For any ϕ ∈ S and fully invariant submodule U of M, if ϕ(U) ⊂ X

and ϕS(X) ⊂ X, then either ϕ(M) ⊂ X or U ⊂ X.

Proof.

(1) ⇒ (2). Let I ⊂ S, U ⊂ M such that I(U) ⊂ X and I(X) ⊂ X.

Suppose that I(M) 6⊂ X, then we can find ϕ ∈ I such that ϕ(M) 6⊂ X. Since

I(U) = IS(U) ⊂ X, then for any u ∈ U, we have ϕS(u) ⊂ X. By assumption,

u ∈ X, proving that U ⊂ X.

(2)⇒ (3). Let ϕ ∈ S, U, a fully invariant with ϕ(U) ⊂ X and ϕS(X) ⊂

X. We can see that ϕS(U) ⊂ X and ϕS(X) ⊂ X and by (2), we have (ϕS)(M) ⊂

X or U ⊂ X. This shows that ϕ(M) ⊂ X or U ⊂ X.

(3) ⇒ (1). Let ϕ ∈ S, m ∈ M with ϕS(m) ⊂ X and ϕS(X) ⊂ X.

From ϕS(m) ⊂ X, we have ϕS(mR) ⊂ X. Hence mR ⊂ X or ϕ(M) ⊂ X, by

assumption. This shows that either m ∈ X or ϕ(M) ⊂ X.

Corollary 4.1.3. Let I be a proper right ideal of a ring R. Then the following

conditions are equivalent:

(1) I is a nearly prime right ideal of R;

(2) For any right ideal A,B of R, if AB ⊂ I and AI ⊂ I, then either

A ⊂ I or B ⊂ I;

(3) For any a ∈ R and any ideal B of R, if aB ⊂ I and aRI ⊂ I, then

either a ∈ I or B ⊂ I.

The following example is due to Reyes [81].

Example 4.1.1. Let D be a division ring and let R be the following subring of

M3(k) :

R :=


D D D

0 D 0

0 0 D

 .
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Let P ⊂ R be the right ideal consisting of matrices in R whose first row

is zero, i.e., P :=


0 0 0

0 D 0

0 0 D

 . Now we assume that aRb ⊂ P and aRP ⊂ P for

arbitrary a, b ∈ R. Since aRP ⊂ P , we get a11 + a12 = 0 and a11 + a13 = 0. And

hence

aRb =


a11b11D a11b12D a11b13D

0 a22b22D 0

0 0 a33b33D

 ⊂ P.

This would imply that either a ∈ P or b ∈ P, so P is a nearly prime right ideal of

R.

Proposition 4.1.4. Any maximal submodule of a right R-module M is nearly

prime.

Proof. Let ϕ(U) ⊂ X where U is a submodule of M and ϕ ∈ S with ϕS(X) ⊂ X.

Suppose that U 6⊂ X. Then there is an u ∈ U such that X + uR = M. It follows

that ϕ(M) = ϕ(X) + ϕ(uR) = ϕ(X) + ϕ(u)R ⊂ X since ϕ(U) ⊂ X. This shows

that X is nearly prime.

Note that, in general, a maximal submodule of a right R-module M

needs not to be fully invariant. Therefore the class of nearly prime submodules

of a given right R-module M is larger than that of prime submodules. As a

consequence, every maximal right ideal is a nearly prime right ideal.

Let X be a submodule of M . Then the set IX = {f ∈ S | f(M) ⊂ X}

is a right ideal of S. In the following Proposition, we consider the relation between

X and IX .

Proposition 4.1.5. Let M be a right R-module which is a self-generator and X,

a submodule of M. If X is a nearly prime submodule, then IX = {f ∈ S | f(M) ⊂

X} is a nearly prime right ideal of S. Conversely, if IX is a nearly prime right

ideal of S, then X is a nearly prime submodule.

Proof. Since ϕSIX ⊂ IX , we have ϕSIX(M) ⊂ IX(M), and since M is a self-

generator, we have IX(M) = X and hence ϕS(X) ⊂ X. Take any ψ ∈ S. If
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ϕSψ ⊂ IX , then ϕSψ(M) ⊂ X. It follows that ϕSψ(m) ⊂ X, for all m ∈ M .

Hence ϕ(M) ⊂ X or ψ(m) ∈ X, showing that ϕ ∈ IX or ψ ∈ IX .

Conversely, suppose that IX is nearly prime. Let ϕS(m) ⊂ X and

ϕS(X) ⊂ X. We have ϕS(m)R ⊂ X and it would imply that ϕS(mR) ⊂ X. Since

mR =
∑
g∈A

g(M) for some subsetA of S, ϕS(mR) = ϕS(
∑
g∈A

g(M)) =
∑
g∈A

ϕSg(M) ⊂ X.

This would imply that ϕSg ⊂ IX . It follows from the hypothesis that ϕ ∈ IX or

g ∈ IX . This shows that ϕ(M) ⊂ X or g(M) ⊂ X for all g ∈ A. Hence ϕ(M) ⊂ X

or m ∈ X, proving our proposition.

Following [7], a proper submodule X of a right R-module M is called

a nearly strongly prime submodule if for any ϕ ∈ S and m ∈M , if ϕ(m) ∈ X and

ϕ(X) ⊂ X, then either m ∈ X or ϕ(M) ⊂ X.

The following Proposition give the relationship between a nearly prime

submodule and nearly strongly prime submodule.

Proposition 4.1.6. Let M be an R-module. If a submodule X of M is nearly

prime and IFP, then it is a nearly strongly prime submodule.

Proof. The proof is immediate.

4.2 A characterization of Noetherian modules

The following Theorem shows how nearly prime submodules control

the structure of a finitely generated module.

Theorem 4.2.1. Let M be a finitely generated right R-module. Then M is a

Noetherian module if and only if every nearly prime submodule of M is finitely

generated.

Proof. We use a mild modification of the argument as that given in [59] and

we present it here for the sake of completeness. Clearly, if M is Noetherian,

then every nearly prime submodule is finitely generated. We now assume that

every nearly prime submodule is finitely generated and suppose on the contrary
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that there is a submodule A of M which is not finitely generated. Consider

the set F = {X ⊂ M | A ⊂ X and X is not finitely generated} and any chain

X1 ⊂ X2 ⊂ . . . in F . Then
⋃
i∈N

Xi is not finitely generated and hence it is a proper

submodule of M, since M is finitely generated. By Zorn’s Lemma, the set F has

a maximal element, A0 says. We now prove that A0 is nearly prime. Suppose that

there are ϕ ∈ S,m ∈ M such that ϕSm ⊂ A0 with ϕSA0 ⊂ A0 but ϕ(M) 6⊂ A0

and m 6∈ A0. Then A0 + ϕ(M) contains properly A0, and hence it is finitely

generated, that is A0+ϕ(M) = x1R+x2R+· · ·+xnR for some x1, x2, . . . , xn ∈M.

Let K = {a ∈ M | ϕ(a) ∈ A0}. By assumption A0 ⊂ K and m ∈ K. Since

m 6∈ A0, K contains properly A0 + mR, and hence it is finitely generated. Since

each xi ∈ A0 +ϕ(M) we can write xi = bi +ϕ(m) where bi ∈ A0 and mi ∈M. By

definition, ϕ(K) ∈ A0. It follows that b1R + b2R + · · · + bnR + ϕ(K) ⊂ A0. We

now prove that A0 ⊂ b1R + · · · + bnR + ϕ(K). For this, take any w ∈ A0. Then

w ∈ A0 + ϕ(M) and we can write:

w =
n∑
i=1

xiri =
n∑
i=1

(bi + ϕ(mi))ri

=
n∑
i=1

biri +
n∑
i=1

ϕ(miri) =
n∑
i=1

biri + ϕ(
n∑
i=1

miri)

From this we can see that
n∑
i=1

miri ∈ K, and hence w ∈ b1R + · · · + bnR + ϕ(K).

This proves that A0 = b1R + · · · + bnR + ϕ(K). Since K is finitely generated, it

would imply that ϕ(K) is finitely generated and hence A0 is finitely generated,

which is a contradiction. Thus every submodule of M is finitely generated and

we now can conclude that M is Noetherian.

The following Theorem was in [59, Theorem 1] and can be considered

as a Corollary of our Theorem.

Corollary 4.2.2 ( [59]). Let R be an associative ring with identity. Then R is a

right Noetherian ring if and only if every nearly prime right ideal of R is finitely

generated.

Recall that a right R-module M is called a duo module if every sub-

module of M is fully invariant and note that every prime submodule is nearly
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prime. Therefore we can get the following Corollary.

Corollary 4.2.3. Let M be a finitely generated duo right R-module. Then M is

Noetherian if and only if every prime submodule is finitely generated.

For M = RR, the next Corollary follows consequently.

Corollary 4.2.4 ( [19]). If R is a right duo ring and suppose that every prime

ideal in R is finitely generated, then R is right Noetherian.

The following Corollary is a famous Theorem in Commutative Algebra

due to I. S. Cohen, in [23, Theorem 2].

Corollary 4.2.5 (Cohen Theorem). A commutative ring R with identity is Noethe-

rian if and only if every prime ideal of R is finitely generated.
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CHAPTER V

CONCLUSION

In 2008, Sanh et al. [82] introduced the new notion of prime and

semiprime submodules. Following that, a prime submodule X of a right R-module

M is a proper fully invariant submodule of M with the property that for any ideal

I of S = EndR(M) and any fully invariant submodule U of M , I(U) ⊂ X implies

I(M) ⊂ X or U ⊂ X. We can say that this new approach is nontrivial, creative

and well-posed. We already got many results using those new notions that are

unparalleled. As an extension of our work, we want to generalize the notion of a

prime submodule. To do that, there are several ways but we put our attention

to replace a weaker condition that X is invariant under ϕS instead of requiring

the submodule X to be fully invariant, and we called it nearly prime submodule.

Using this new definition, we proved many beautiful properties of nearly prime

submodules which are similar to that of prime submodules and also prime ideals.

The important point to note here is a characterization of Noetherian

modules by the class of nearly prime submodules. Theorem 4.2.1 in Chapter IV

provided a natural and intrinsic generalization of the Cohen Theorem, which is a

famous Theorem in Commutative Algebra. All the results presented in Chapter

IV have proven that we are on the right track.

Also in this study, we introduced the concept of IFP modules which is

a generalization of IFP rings. Then we investigated the basic properties of IFP

modules, and further examined the relationship between IFP modules and their

endomorphism rings. After that we also gave the concept of fully IFP. In order to

effectively apply the fully IFP modules, we provided and proved Theorem 3.2.6

as a generalization of Anderson’s Theorem for modules.
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The study has its limitation, the Conjectures that we propose as follows

have not solved yet. Their solutions require more investigations and further results

must be deeper and wider than the fundamental theorem that we got.

Conjecture 1 Let M be finitely generated a right R-module. Then M is a cyclic

module if and only if every nearly prime submodule of M is cyclic.

Conjecture 2 Let M be a right R-module. If every submodule of M is prime

then M is semiprimitive (i.e. Rad(M) = 0).

With a little bitterness, we recognize that a pure mathematical research

requires much more subtle consideration and spiritual cultivation, even algebra

always renders far more than one can require. We hope that this work will be a

firm foundation for a strongly significant theory.
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