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Abstract

The Stein-Chen method is usedto give new bounds, non-uniform bounds, for the distances between the distribution of a

sum of independent negative binomial random variables and a Poisson distribution with mean, ZI,—' where f; and p;=1-¢; are

parameters of each negative binomial distribution. Results of this study are superior than those presented in Teerapabolarn (2014)

and Hung and Giang (2016).
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1. Introduction

In probability theory and statistics, the negative
binomial distribution with parameters r e R* and p<(0,1) is
an important discrete distribution with a long history as same
as the binomial distribution. Whenr e N, it is called the Pascal
distribution with parameters reN and p €(0,1), and when
r=1, it is called the geometric distribution with parameter p.
Note that, the negative binomial distribution can be
considered as a mixture of a Poisson distribution with a
gamma mixing distribution (Karlis & Xekalaki, 2005). In
addition, some research topics related to Poisson approxi-

mation pointed out that the Poisson distribution with mean
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% or rq is a good approximation of the negative binomial
distribution with parameters r and p when g=1-p is small,
which can be found in Vervaat (1969), Romanowska (1977),
Gerber (1984), Roos (2003) and Teerapabolarn (2012).
However, our interest is approximating thedistribution of a
sum of n independent negative binomial random variables by
a Poisson distribution, which is the main context of this study.

n
Let s,=% X;, where Xx,,..x, are

----- n

independent
i=1

random variables following the negative binomial

distributions, each with

r'(r+x) L
Px; (X)=qux '

the probability mass function
xe NU{0} . LetZ, denote a Poisson random
variable with mean 4 (4 >0). From the conclusion mentioned
above and for each ie{l,...,n}, it follows that if gi is small,
then the negative binomial distribution with parameters ri and

pi is approximated by a Poisson distribution with mean %
i
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or rigi. Additionally, we know that the distribution of a sum of
n independent Poisson random variables, each with mean, /?,i
is the Poisson distribution with mean 4 = _Zn’,/li thus it is ap-
propriate to approximate the distribution cl)?1 Sn by a Poisson
distribution with mean 2 =E(S,) = Z”*' or A= qu, when all
gi are small. In the past few years some authors haveto give
uniform and non-uniform bounds on Poisson apprOX|mat|on to
the distribution of Sn with both Poisson means 2 = Z’“" and
A= qu, as follows.

- For the Poisson mean l:iriqi, Vellaisamy and
Upadhye (2009) used the methodl:lof exponents to give a

uniform bound

n
a(SnZ, s%pi |n{ m} @1
for Ac NU{0}, where d,(S,,Z,)=|P(S, € A)-P(Z, € A)
is the distance between the distribution of Sn and a Poisson
distribution with mean A .In the case of cumulative proba-
bility approximation, Teerapabolarn (2017b) used the Stein-
Chen method to give uniform and non-uniform bounds for
the ratio between the cumulative distribution function of
S, P(S, <
tion, P(Z, <xy), inthe form

%), and the Poisson cumulative distribution func-

n 2
NS EA P(Sa<xo)
Al a2
for x, e NU{0} and
n
i P Sp<X )
ZTS P(Z;<X0) <1, (1.3)

ef—a1

I if x,=0,
where @(Xq) = and
#(%o) 1-P(Z,<%) i % 21
P20 D =1
-1 1 .
D, (% +1) = %. For I, e N, Hung and Giang (2016)

used the Stein-Chen method to give two non-uniform bounds

in the following forms:

'12”"”{“" T <P(S1$%)-P@Z,$x)<0  (L4)
For x, e Nw{0} and
P(Z,<%9)(1-P(Z ;<xp)) Bi-ai
di,, (Sn,Zl)ngmm{a,, X0+1} (1.5)

where,dy (S,.2;)=|P(Sy <) ~P(Z; <%)| & =1-pf
and B =r(p" ~1-5gpf) .
mation, Teerapabolarn (20167a) used the Stein-Chen method

~ ;i
In the case of pointwise approxi-

to give a uniform bound in the form
1-e 7(1+i)zrq, if X0=1
' (1.6)

1-P(Z,<x0-1) P(Z,<x-1) |qI
max{ SR Z i Xg =2
i

dxo (Snizl)

for X, € N ,where d, (S,,2;)=[P(S, =%)—P(Z; = )|
n
For the Poisson mean A= Z% Teerapabolarn
.:1 1
(2014) used the Stein—Chen method and w-functions to give a
uniform bound in the form

n
da(Sy Z,) <2 Ziz

i=1

L.7)

for Ac NU{0}. Forr; € N, Hung and Giang (2016) used the
Stein-Chen method to give a uniform bound as follows:

A(802,) me{leT%, —p,} %, (L.8)

and they also gave a non-uniform bound for cumulative
probability approximation in the form

Zm'“{ R

In the case of pointwise approximation,

dK (SnZ) <+ (1.9)

for xy € NU{0}.
Teerapabolarn (2015a) used the same tools as in Teerapa-

bolarn (2014) to give a non-uniform bound in the form

dXO(Sn,Zl)Smin{lf

4>

_N|Q

(1.10)
for x,eN.

We observe that the bound in (1.8) is worse than
that in (1.7) because it cannot be applied to the case t; >0 and
;N , even though it may be sharper than that in (1.7).
Furthermore, both bounds in (1.7) and (1.8) do not change
along Ac NU{0}, which may be inappropriate for mea-
suring the accuracy of the approximation.Notice that, the
bound in (1.9) cannot be applied in the case r; >0 andl; ¢ N.
In this paper, we aim to determine new bounds, non-uniform
bounds,with respect to the bounds in (1.7)-(1.9).
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2. Method

In 1972, Stein introduced a power full method for
the normal approximation, which is called Stein’s method.
Later, Chen (1975) developed and applied Stein’s method to
the Poisson approximation, which is called the Stein-Chen
method. Stein’s equation for Poisson distribution with mean

A >0, for given h, is of the form

h(x)-P,(h) =Af (x+1) —xf (). (2.1)

where P, (h) = et z h(k)ﬂk—k! and f and h are bounded real
k=0
valued functions defined on N U{0}.

hy :NU{0} >R be defined by

For Ac NU{0}, let

1,if xeA
0,if xg A

ha(x) ={ 2.2)

Following Barbour et al. (1992), the solution fa of (2.1) can be

expressed as

fA(X) = (X—l)!ﬂ-xei[P,i(hAncxfl)—PA(hA)PA(hCH)] if x>1,
' 0 if x=0,
(2.3)

where x e N and C, ; ={0,...,x=1}. Similarly, for A:CXO and
X e NU{G}, f. isof the form
X0

(x—1)![xe1[Pﬂ(hCX_l)Pl(l—hcxo N if x<x,

e ) (2.4)
fCXO (x)=1(x-D!17% [PA(hcm)Pz(l—hcx,l)] if x> Xg,
0 if x=0.

Let Afp(X) = To(X+1) - Fo(X) and

Afoo x)= fCXO x+D - fCXO (xX) , for giving the desired

results, we also need the following lemma.

Lemma21l Let XeN, x,=min{x|xeA} and

X =max{x|C, < A}, then we have the following:

1). For Af, and Ac NU{0},

. (1=t
|AfA(X)| f mln{%,i},
XA
given by

(2.9)

where is taken to be 1 when x, =0 and for x, >0, itis

% if 0e A,
A%
ol Lo if 0eA
Xa—1
and
|AfA(x)| <L (2.6)
2). For AfCXO and X, € N,
‘Af (x)‘<min{£ 1 et } @.7)
Cxo = A X% (%+D)A
and
‘Afcx0 (x)‘ <1 (2.8)

Proof. 1)
rapabolarn (2015b) and inequality (2.6) follows from Barbour
etal. (1992).

2). For A=C, , we have X3 = max{x|C, < A}= X

The inequality (2.5) follows directly from Tee-

and-L =1 , thus (2.5) becomes
Xa X

. -
‘Af% (x)‘ < min {1*% , %} - (2.9)
Teerapabolarn (2007) showed that
et
‘AfCXO (x)‘ < o7 (2.10)

Combining the bounds in (2.9) and (2.10), the bound in (2.7)
is obtained, and finally, the bound in (2.8) can be obtained
from the bound in (2.6).

3. Main Results

The main point of this study is to determine new

da(Sn.Z;)
and dKXO (Sn.Z;) . The following theorem gives one desired

bounds, non-uniform bounds, for two distances

result.

n
Let Ac NU{0} and /I:Zr"g—q}, then we
i

Theorem 3.1

have the following inequality.

3.1)

n —. 0 . .
dA(Sn,Zl)sémin{min{l‘jl i}%‘l— p{'}%‘i.

Proof. Substituting x and h by Sy and ha respectively, and we
take expectation to (2.1), yields



K. Teerapabolarn / Songklanakarin J. Sci. Technol. 40 (2), 402-408, 2018 405

da(Sn.Z;) =[E[2F (S, +D) =S, (S))]

E{i%‘f(sn+l)—gxif(sn)}

i=1

(3.2)

Zn]E[% Sy +D= X1 (Sy) ]
where f = f:lis defined in (2.3). For i =1,...,n,let S ; = S —X;, then we obtain
E[ 9 £(5,+) - X; ()]

- E[% F(Spi+ X +1) = X; F(Sp; + xi)}

E{E[(% F(Spi+ Xi +1) = X, F(Sn; + xi))|xi}}

35 180+ X, +D- X, (5, + X)X = x]p, 0
x=0
B[ (S, +1) | py, O+ E[ S 1(S,;42) = 1 (Sy: +D |y, @
E[ B 1(Sy;+3)~21 (S +2) | px, (D +E| B (S, +4) =31 (S, +3) | Py, (3) +-
=0 pf E[ f (S +D) [+ 1207 pi TE[ £(Sni +2) |- KA pE[ f(Sp; +D) ]
214 1yg3ph L .
+ OB (S +3) |- R (6 +Da? T E[ (Sy; +2)]
fi-1 () +2) g pil
+ri2(ﬁ+1)(ﬁ?:r!2)Qi‘1pi E[f(sn,i+4):|_rl(rl l)(r.2 2)a’p; E[f(sn,i+3):|+"'
=607 piE[ £(Sp; +D) |+ 620’ E[ £(Sy; +2) |- RaZpTE[ Sy +2)]
2 )gépfit )
+ O E[ (S, +3) |- R(6 +DaPpiE[ £ (S, +9)]
2( . 5.1 (1 . 400
4 (rl+1)(rl?j;2)ql Pi El:f(sn,i +4):|_ ﬁ(ﬁ*l)(ﬁ2+2)q| Pi El:f(sn,i +4):|+,__

=507 pi E[ £(Sy; +D) |+ 620’ pf E[ £(S,; +2) |-rafpi E[ (S, +2)]

. 200 4.1 o
07 i E[ F(Sy +2) |+ T £(S, +3) |- (5 +Dalpf E[ £ (S, +3)]

2 (1 1)(r +2)g5 pli 1 - (r21)(r+2) g4 pfi L
T (r +1)Qi4 iri—lE[f(Sn‘i +3)]+r. (r.+1)(r.;2)q. Pi E[f(sn,i +4)]_r.(r.+1)(r.;2)q. Pi

- (1. . 5hi-1
XE[ £(Sy;+4) [+ AGH_EMf(S 4a) |4+ by —1+G=—p;)

=Ko pi E[ £(S,; +1) |- ra?pi E[ (S, +2)]

+ (6 +0 i E[ f(Spi +2) -1 (5 +Da’pi E[ £(Sp; +3) ]

N ri(ri+1)(ﬁ;2)qi“pi'"l E[ (S, +3)]- ri(ri+l)(ri;2)qf‘pi"’1 E[f(Sy; +4)]

+ ri(ri+1)(ri+2£(!ri+3)q?pi“’1 E[(Sy+4)]- ri(ri+1)(ri+2)3(!ri+3)qf’pi“’l E[f(Sy;+5) ]+
=Ra7 i E[ £ (Spi +D)— f(Sy; +2) [+ 5 (5 + Do’ pf E[ £(Sy; +2) - £(Sy; +3) ]

(1. s 4501 - (1: . - 551
pAERAGP B[ £ (S +3)— (S, +4) |+ DD EMf (S 14)— £(S,;+5) ]+

=%‘i{rr([;i§i’ G PFE[F(Sp+D~ (S, +2) |+ 2T gZplE[ £(S, +2)~ (5, +3)]
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r(5+3 i r(+4 i
B A PTE F (S +3)— f (S +4) |+ 4753 ' pf

xE[ £(Sy; +4) - (S, +5)}+---}.

=2 xpy, (E[ f(Spi +X) = F(Sp; +x+1) ] (3.3)
x=1

Putting the result in (3.3) to (3.2), we have that

da(S02,)

i‘;‘, iXPx (VE[ f(Spj+X)— f(Sy; +x+1) ]

i=! x=1

=iiixpx 03 [AF (j+ XP(S = 1)

1 j=0
(34
Because, by (2.5),

2 XPx, () 2 AF (J+X)P(Syi = 1)

x=1 j=0

<3 X0y ()3 min {12
x=1 j=0

HHE(X)

et 1 |h% 35
A ’XA} pi (35)

5P = )

—min !t
—mln{ 7

= min{l‘
and, by (2.6),
2 XPx, () [AF (J+X)P(Sy; = 1)
x=1 j=0
< X0y (0 Y7 P(Syi = )
x=1 j=0
<D Xy (0D 1P (Shi = 1)
x=1 j=0

=3 by ()
x=1
=1-pft, (3.6)

thus from (3.5) and (3.6), we obtain

3 X0y (0 JAF (§+ 0P (S, = )
x=1 j=0

Smin{min{l‘f{ ,XA} B 1 pfi } (3.7)

Substituting the bound in (3.7) to (3.4), it follows that

da(SnZ;) < imin{min{lfi" i}%-l, Pl }%.I

i-1
This gives the Theorem 3.1.

For cumulative probability approximation, it is
noted that in the case X, =0, we can cgmpute the exact pro-
bability of S, =0, thatis, P(S, =0) =TT pil

a new non-uniform bound for dKXO (SniZ;),when Xy €N,

. So, in this case,

is as follows.

n
Theorem 3.2 Letx;, € Nand 1= Z“pit
i1

hen the following

inequality holds:

1 - - o4 A_ idi
dKXO (Sn,zi)§2mln{m|n{lj ’%’(x&;ﬂ%ﬁ}rq _p'} pi’

i=1
(3.8)

Proof. Using the same arguments detailed as in the proof of
Theorem 3.1 together with Lemma 2.1(2), the result in (3.8) is
obtained.

Remark 1) By comparing the bounds in (1.7), (1.8) and (3.1),

it is seen that

n
-1 -
_}w 1- pl}%g e 314 and

me{mln{

émin{min{lfj XA} ”T' - p,"}qii ngin{%%,l— p{‘}%‘i
and the bound in (3.1) can be applied for all cases of I;,
which is wider than the bound in (1.8). Therefore, the result in
(3.1) is better than those presented in (1.7) and (1.8).
Similarly, the result in (3.8) is also better than that presented
in (1.9).

2) If we combine the results in (3.1) and (1.10), then
a new non-uniform bound for d, (S,,Z;), when x, € N, is

of the form

0y (SniZ:)< S A pi L (ag)

Zn:min {min {1‘3

i=1

It is a slightly improvement of (1.10).

For approximating the distribution of a negative

binomial random variable X with parameters r e R* and by
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p € (0,1) a Poisson distribution with mean /} = % , We can
apply the results Theorems 3.1 and 3.2 and (3.9) to give new

results as follows.

Corollary 3.1 For A =
1) For Ac Nu{0},

, then we have the following.

dA(X,Zl)smin{i,l—p'}% (3.10)
2)For x5 €N,
. A
i, (X.Z;)<min{& £h1-p 4 @)
and
d, (X,Z;)<min{£ 1-p" (3.12)
o \ 1&g %'~ P

Proof. Because all results in (3.10)-(3.12) can be obtained by
using similar method it suffices to show the result in (3.10).
Applying (3.1), we have

da(X,Z;) < min{min{lfjd ,t}%,l— pr}%

:min{l—e”l,ﬁ,l— pr}ﬂp- (8.13)

Because, by Taylor’s expansion,
1—p
1+1pp+[(1 p)/pl* o

_1 ., [a= p)/ pI
2! =t

+o>L, we
p

e g _n
have p>e P =e P and p">e P, which implies that
_nq

1-p"<1l-e P =1—e*. Therefore, the inequality (3.13)

reduce to
dA(X,Zl)smin{é,l— pf}%

From which, the result in (3.10) is proved.

If p=r,=--=r,=1 then 1= Zq' and the re-
sults in Theorems 3.1 and 3.2 and (3.9) become to be the
results in the Poisson approximation for a sum of independent
geometric random variables, which present in the following

corollary.

n
Corollary 3.2 If p=ry=--=r, =1 and 1 =Zl:%ii.then we
1=
have the following.

1) For Ac Nu{0},
n

i [ [1e2 of
dA(Sn,Z/1)§E‘mln{mm{l < i}pl.l}ﬁ

(3.14)

2) For X5 € N,
2
1- -1 (1 i
di, (SniZ,) Zmln{mln{ i o (XZ+1)/1} 1}Ti
(3.15)
and
n
inlmindie® 112 1l 3.16
sémln{mln{ g ’m}pi’l}p.' (3.16)
4, Conclusions
The new bounds, non-uniform bounds, in this

study were obtained by using the Stein-Chen method. Each
bound can be used to approximate the error of the distance
between the distribution of a sum of independent negative
binomial distribution and a Poisson distribution with mean
n
A=E(S,) :Z% as well when all g are small.
i=1

Furthermore, by comparing the results in this study
and the results in Teerapabolarn (2014) and Hung and Giang
(2016),
studyaresuperiorthan those presented in Teerapabolarn (2014)
and Hung and Giang (2016).

it can be concluded that the results in this
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