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Abstract 
 
The Stein-Chen method is usedto give new bounds, non-uniform bounds, for the distances between the distribution of a 

sum of independent negative binomial random variables and a Poisson distribution with mean,   where      and               are 

parameters of each negative binomial distribution. Results of this study are superior than those presented in Teerapabolarn (2014) 

and Hung and Giang (2016). 
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1. Introduction 
 

In probability theory and statistics, the negative 

binomial distribution with parameters         and           is        

an important discrete distribution with a long history as same 

as the binomial distribution. When         , it is called the Pascal 

distribution  with   parameters              and               , and when    

         , it is called the geometric distribution with parameter p. 

Note that, the negative binomial distribution can be 

considered as a mixture of a Poisson distribution with a 

gamma mixing distribution (Karlis & Xekalaki, 2005). In 

addition, some research topics related to Poisson approxi-

mation pointed out that the Poisson distribution with mean

 

      or rq is a good approximation of the negative binomial 

distribution with parameters r and p when       is small, 

which can be found in Vervaat (1969), Romanowska (1977), 

Gerber (1984), Roos (2003) and Teerapabolarn (2012). 

However, our interest is approximating thedistribution of a 

sum of n independent negative binomial random variables by 

a Poisson distribution, which is the main context of this study. 

Let            where         are    independent  

random variables following the negative binomial 

distributions,    each    with    the   probability   mass   function  

                . Let      denote a Poisson random  

variable with mean                From the conclusion mentioned 

above and for each   , it follows that if qi is small, 

then the negative binomial distribution with parameters ri  and  

pi  is  approximated  by a Poisson distribution with mean  
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or riqi. Additionally, we know that the distribution of a sum of 

n  independent Poisson random variables, each with mean , 

is the Poisson distribution with mean              ,thus it is ap-

propriate to approximate the distribution of   Sn  by a Poisson 

distribution with mean                  or            when all       

qi are small. In the past few years, some authors haveto give 

uniform and non-uniform bounds on Poisson approximation to 

the distribution of   Sn  with both Poisson means                 and 

as follows.  

For the Poisson mean        Vellaisamy and 

Upadhye (2009) used the method of exponents to give a 

uniform bound  

   

                            (1.1)  

 

 

for                     , where 

is the distance between the distribution of   Sn  and a Poisson 

distribution with mean    .In the case of cumulative proba-

bility approximation, Teerapabolarn (2017b) used the Stein-

Chen method to give uniform and non-uniform bounds for    

the   ratio   between  the   cumulative   distribution  function of  

                         and the Poisson cumulative distribution func-

tion,                      in the form 

  

            (1.2) 

 

for           and  

 

 

,              (1.3) 

 

 

 

where         and 

 

 

 

      .  For Nir  , Hung and Giang (2016)  

used the Stein-Chen method to give two non-uniform bounds 

in the following forms: 

 

            (1.4) 

 

For              and  

 

 

,           (1.5) 

 

where, 

and               . In the case of pointwise approxi-

mation, Teerapabolarn (20167a) used the Stein-Chen method 

to give a uniform bound in the form   

 

           (1.6) 

 

 

for            ,where 

  

  For   the   Poisson   mean               Teerapabolarn 

(2014) used the SteinChen method and w-functions to give a 

uniform bound in the form   

 

                  (1.7) 

 

for             . For           , Hung and Giang (2016) used the 

Stein-Chen method to give a uniform bound as follows: 

 

                  (1.8) 

 

and they also gave a non-uniform bound for cumulative 

probability approximation in the form 

 

               (1.9) 

 

for         . In the case of pointwise approximation, 

Teerapabolarn (2015a) used the same tools as in Teerapa-

bolarn (2014) to give a non-uniform bound in the form

 

 

 

 

            (1.10) 
 

for            . 
 

 We observe that the bound in (1.8) is worse than 

that in (1.7) because it cannot be applied to the case           and 

           , even though it may be sharper than that in (1.7). 

Furthermore, both bounds in (1.7) and (1.8) do not change 

along  , which may be inappropriate for mea-

suring the accuracy of the approximation.Notice that, the 

bound in (1.9) cannot be applied in the case            and           .  

In this paper, we aim to determine new bounds, non-uniform 

bounds,with respect to the bounds in (1.7)-(1.9). 
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2. Method 
 

  In 1972, Stein introduced a power full method for 

the normal approximation, which is called Stein’s method. 

Later, Chen (1975) developed and applied Stein’s method to 

the Poisson approximation, which is called the Stein-Chen 

method. Stein’s equation for Poisson distribution with mean 

0  , for given h, is of the form  

 

( ) ( ) ( 1) ( )h x P h f x xf x     ,              (2.1) 

 

where                                             and f and h are bounded real  

 

valued functions defined on            .     For                , let 

             be defined by 
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 Let                                                                         and 

            , for giving the desired 

results, we also need the following lemma. 

 

Lemma 2.1     Let                  and 

                                           then we have the following: 
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Proof. 1)    The inequality (2.5) follows directly from Tee-

rapabolarn (2015b) and inequality (2.6) follows from Barbour 

et al. (1992). 

 2).    For           , we have 

and
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1 1 ,
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  thus (2.5) becomes   
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Teerapabolarn (2007) showed that 
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Combining the bounds in (2.9) and (2.10), the bound in (2.7) 

is obtained, and finally, the bound in (2.8) can be obtained 

from the bound in (2.6).       

 

3. Main Results 
 

The main point of this study is to determine new 

bounds, non-uniform bounds, for two distances                 

and                . The following theorem gives one desired 

result.   
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   a Poisson distribution with mean             , we can 

apply the results Theorems 3.1 and 3.2 and (3.9) to give new 

results as follows. 

 

Corollary 3.1 For                then we have the following. 

1) For 
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4. Conclusions 
 

The new bounds, non-uniform bounds, in this    

study were obtained by using the Stein-Chen method. Each 

bound can be used to approximate the error of the distance 

between the distribution of a sum of independent negative 

binomial  distribution and  a   Poisson   distribution with mean 

as well when all 
iq  are small. 

 

Furthermore, by comparing the results in this study 

and the results in Teerapabolarn (2014) and Hung and Giang 

(2016), it can be concluded that the results in this 

studyaresuperiorthan those presented in Teerapabolarn (2014) 

and Hung and Giang (2016). 
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