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WO3-doped ZnO nanoparticles containing 0, 0.25, 0.50, 0.75, 1.0, 3.0 and 5.0 mol%
of WO3 were successfully synthesized by Flame Spray Pyrolysis (FSP) from zinc
naphthenate and tungsten ethoxide precursors under 5/5 (precursor/oxygen) flame
condition. The crystalline phase, morphology and size of undoped ZnO and WO;-doped
ZnO prepared by FSP were observed by XRD, BET, TEM and SEM. The XRD patterns
showed that the nanoparticles had the hexagonal phase of ZnO with the JCPDS file No.89-
0510. The TEM image showed nanoparticles having clear spherical, hexagonal and rod-like

morphologies. The crystallite sizes of ZnO spherical and hexagonal particles were in the
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range of 5-20 nm. ZnO nanorods were found to be ranging from 5-10 nm in width and 10-
25 nm in length. The W compositions of the ZnO samples were verified by EDS mode. In
this research, these nanoparticles were applied in photocatalytic, gas sensing and
photovoltaic applications.

There are three applications of WOs-doped ZnO nanoparticles in this study as:
photocatalysts, gas sensors and solar cells. The photocatalytic activity of WOj3-doped ZnO
nanoparticles containing 0.25, 0.50, 0.75 and 1.0 mol% were investigated by UV-induced
degradation of methanol, glucose and sucrose in aqueous solution in the photocatalytic
reactor. The results showed that the appropriate amount of WO; loading could greatly
enhance the photocatalytic activity of ZnO nanoparticles for degrading methanol, glucose
and sucrose. The optimized amount of WOs loading was 0.50 mol% in methanol, glucose
and sucrose. This is consistent with WOj; particles acting to trap photoinduced electrons,
retarding the electron-hole recombination process, and thereby, promoting the
photocatalytic activity.

The gas sensors based on WO;3-doped ZnO nanoparticles containing 0, 0.25, 0.50,
and 0.75 mol% of WO; were fabricated and tested towards NO,, C,HsOH, CO and H; at
different gas concentrations and operating temperatures ranging from 300-400°C in dry air.
The results showed that the appropriate amount of WO5 loading could greatly enhance the
NO; and C;HsOH sensitivity of ZnO sensors. In addition, 0.50 mol% WOs-doped ZnO
nanoparticles exhibited maximum response to NO, and C;HsOH at all temperatures and

concentrations. The sensitivities of all ZnO films towards NO, were greatly higher than that
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towards C;HsOH, CO and H,. Nevertheless, hydrogen sensitivity was relatively less
improved by WOj3; doping while sensitivity toward CO was almost insensitive to WO;

content, therefore WO;3-doped ZnO sensor had a high selectivity towards NO,.

WO3-doped ZnO nanoparticles containing 0, 0.25, 0.50, 0.75, 1.0 and 3.0 mol% of
WO; were successfully applied in hybrid photovoltaic devices as an electron acceptor. The
current-voltage characteristic of these devices showed that WOj; could increase the number
of photons actually converted to charge carriers which affect the power conversion
efficiency. These results concluded that an appropriate amount of WO; doping could
enhance the hybrid photovoltaic efficiency. Especially, the hybrid ZnO/P3HT photovoltaic
device with 0.50 mol% WO;-doped ZnO as an electron acceptor exhibited maximum

power conversion efficiency of 0.411%.
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clusters ([WOj3]n), WO;3 (bulk) and O, adsorbed on ZnO surfaces (O4)
4.1 Space-charge modulations by adsorption in a semiconducting n-type
semiconductor oxide sensor
4.2  Schematic representation of a semiconducting oxide sensor with
bulk (gg) and surface (gs) conductivities shown
4.3  Grains of semiconductor, to show how the inter-grain

contact resistance appears.
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Figure

44  Influence of particle size and contacts on resistances
and capacitances in thin films are shown schematically
for a current flow I from left to right

4.5 Schematic models for grain-size effects

4.6 (a) ZnO thin film on Al,O3 substrates with interdigitated Au electrodes
(b) Schematic cross-sectional view of ZnO gas-sensing film

4.7 Gas sensor measurement setup

4.8 XRD pattern of gas sensing film based on flame-made
0.75 mol% WOs;-doped ZnO nanoparticles after anneal
and sensing test at 400 °C. JCPDS file No. 89-0510 and
82-1468 refer to ZnO and Al,Os, respectively

49  Cross-section SEM micrograph of gas sensing film based
on flame-made pure ZnO nanoparticles. Inset shows the
higher magnification image.

4.10 Cross-section SEM micrograph of gas sensing film based
on flame-made 0.25 mol% WOs-doped ZnO nanoparticles

4.11 Cross-section SEM micrograph of gas sensing film based

on flame-made 0.50 mol% WOs-doped ZnO nanoparticles
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Figure

4.12 Cross-section SEM micrograph of gas sensing film based
on flame made 0.75 mol% WOs3-doped ZnO nanoparticles.

Inset shows the higher magnification image.

4.13 The EDS line scan mode-SEM analysis of sensor based on
flame-made pure ZnO nanoarticles. The histograms showed
the elemental compositions of samples. The lines scans correspond
to O, Zn, Al, Au and W elements.

4.14 The EDS line scan mode-SEM analysis of sensor based on
flame-made 0.25 mol% WOs-doped ZnO nanoarticles. The histograms
showed the elemental compositions of samples. The lines scans
correspond to O, Zn, Al, Au and W elements.

4.15 The EDS line scan mode-SEM analysis of sensor based on
flame-made 0.50 mol% WOs-doped ZnO nanoarticles. The histograms
showed the elemental compositions of samples. The lines scans
correspond to O, Zn, Al, Au and W elements.

4.16 The EDS line scan mode-SEM analysis of sensor based on
flame-made 0.75 mol% WOs-doped ZnO nanoarticles. The histograms
showed the elemental compositions of samples. The lines scans

correspond to O, Zn, Al, Au and W elements.
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Figure Page

4.17 NO; response of WO3-doped ZnO with different WO; concentrations 149
vs. time towards 1, 5, 10, 20, 30 and 50 ppm square pulses at 400°C

4.18 NO; sensitivity of WO;-doped ZnO with different WO; concentrations 150
vs. operating temperature at 50 ppm concentration

4.19 C,HsOH response of WOs-doped ZnO with different WO; concentrations 151
vs. time towards 100, 200, 300, 500 and 1,000 ppm square pulses at 400°C

420 C,HsOH sensitivity of WOs-doped ZnO with different WO; concentrations 152
vs. operating temperature at 1,000 ppm concentration

421 CO response of WOs3-doped ZnO with different WO; concentrations 153
vs. time towards 50, 100, 300, 500 and 1,000 ppm square pulses at 400°C

422 CO sensitivity of WO;3-doped ZnO with different WO; concentrations vs. 154

operating temperature at 1,000 ppm concentration

4.23 H; response of WO;-doped ZnO with different WO; concentrations vs. 155
time towards 500, 1,000, 2,000, 5,000 and 1,000 ppm square
pulses at 400°C

424 H, sensitivity of WO3-doped ZnO with different WO; concentrations vs. 156

operating temperature at 2,000 ppm concentration



Figure

4.25

Sal

)

5:3

54

5.5

56

The comparison of sensitivity of WO;-doped ZnO with different WO3

concentrations towards 50 ppm of NO,, 1,000 ppm of C,HsOH, 1,000
ppm of CO and 1,000 ppm of H; at 400°C
(a) Current (voltage) characteristics of a typical organic diode

(b) Metal-insulator-metal picture of organic diode device function.

(b-a) Closed circuit condition: under illumination photogenerated charges
drift toward the contacts. (b-b) Open circuit condition: the current becomes
zero. (b-c) Reversed bias: photogenerated charges drift in strong electric

fields, the diode operates as a photodetector. (b-d) Forward bias larger than

Voc: the injection increases and the diode open up

Chemical structures of (a) P3HT and (b) PEDOT: PSS

Exciton dissociation of P3HT/ZnO hybrid bulk-heterojunction

The AM 1.5 solar spectrum with total irradiation power 100 mW/cm?.
Inset shows the solar simulation system

The photovoltaic device structure

The hybrid bulk heterojunction photovoltaic devices before

depositing with LiF and Al back electrode
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Figure

5.7  The current-voltage (I-V) characteristic of hyBrid pure ZnO/P3HT
photovoltaic measured under AM 1.5 illumination

5.8  The current-voltage (I-V) characteristic of hybrid 0.25 mol% WO;-doped
ZnO/P3HT photovoltaic measured under AM 1.5 illumination

5.9  The current-voltage (I-V) characteristic of hybrid 0.50 mol% WOj3-doped
ZnO/P3HT photovoltaic measured under AM 1.5 illumination

5.10 The current-voltage (I-V) characteristic of hybrid 0.75 mol% WOs-doped
ZnO/P3HT photovoltaic measured under AM 1.5 illumination

5.11 The current-voltage (I-V) characteristic of hybrid 1.0 mol% WOj3=doped
ZnO/P3HT photovoltaic measured under AM 1.5 illumination

5.12  The current-voltage (I-V) characteristic of hybrid 3.0 mol% WOj;-doped
ZnO/P3HT photovoltaic measured under AM 1.5 illumination

5.13 The comparison of current-voltage (I-V) characteristic of hybrid
WOs-doped ZnO/P3HT photovoltaic with difference amount

of WO3 concentration
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ABBREVIATIONS AND SYMBOLS

A Angstrom

AM Air Mass

Au Gold

Am The cross-sectional area of absorbed gas

ALO; Alumina

A" Electron acceptor

at.% atomic %

bfp Back focal plane

B The peak width measured at half height measured in
radius

BET Brunauer-Emmett-Teller

C Amount of carbon

C ' A constant, related to the free energy of adsorption

c Speed of light

cm Centimeter

cm’/min Cubic centimeter per minute

CO Carbon monoxide

CO, Carbon dioxide

CRT Cathode-Ray Tube

CVD Chemical Vapor Deposition

CMU Chiang Mai University

Ca The concentration of element A

Cs The concentration of element B

C,HsOH Ethanol

. Degrees Celsius

dys Interplanar distance between (hkl) planes



DTA
CB

dper

€ cB
eV

E
EDS, EDX
EM
Ey

E,

E,

Ep

Er

Eg
Ecs
Evs
Ex
Eyac
FF

FT
FT-IR
FSP

Xxxiii

the lattice planar spacing or thickness
Differential Thermal Analysis
Conduction Band

an electron donor

BET-particle diameter

Electron

Electron in the conduction band
Electron Volt

binding energy

Energy Dispersive X-ray Spectroscopy
Electron Microscope

Energy of ground state

Energy of first excited state
Apparent activation energy

Binding energy

Fermi level

Optical band gap of the semiconductor
Conduction band energy

Valence band energy

Kinetic energy

Energy of vacuum level

Fill factor

Fourier Transform

Fourier transform spectroscopy
Flame Spray Pyrolysis

Conductance

grams/liter

Hour



HCP
HOMO
hv

H;

=

h've

Iy

Iy

Isc
ITO

IUPAC

JCPDS

LUMO
LPG

XXXiv

Plank’s constant (6.63x107* Js), hour
Hexagonal close-packing

Highest occupied molecular orbital

Photon energy

Hydrogen

Hole

Hole in the valence band

Intensity of the incident beam

Intensity of the transmittance

Background subtracted peak intensities for A
Background subtracted peak intensities for B
Short circuit current

Indium-tin oxide

International Union of Pure and Applied Chemistry
Intensity of the reflected radiation

Joint Committee Powder Diffraction Standards
Kelvin

Absorption coefficient

Conductivity value

Kilo electron volt

Kilo-volt

Wave vector

Wave vector of the lowest energy state in the
conduction band

Wave vector of the highest energy state in the valence
band

Lowest unoccupied molecular orbital

Liquid petroleum gas
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L/min Liter per minute

M Mol per liter

MIM Metal-Insulator-Metal

mg Milligram

min Minute

mL Milliliter

m? - Square meter

mS Millisiemen

n Order of diffraction

ng Electron density in bulk

ng Electron density in the space-charge region
nm Nanometer (1 07 m)

NO3 Nitrogen dioxide

Na Avogadro’s number (6.02 x 10%)

) . Oxygen

0)) Oxygen gas

0" Superoxide radical

Oa O, adsorbed on surfaces

OH’ Hydroxyl radical

p Pressure at the constant temperature
Po Saturation pressure at the measurement temperature
PL Photoluminescence

Rs Absolute remittance

rpm Revolution per minute

ry Kelvin radius

Ry Resistance in air

Rg Resistance when the gas is present

p Actual pore radius



XXXV1

S Twice the scattering coefficient of sample or gas-

sensing sensitivity

Sc Semiconductor

SEM Scanning Electron Microscopy

SSA Specific Surface Area

SSAper BET specific surface area

T Transmittance

e Recovery time

Tics Response time

TEM Transmission Electron Microscopy

TGA Thermal Gravimetric Analysis

t Thickness (?) of adsorbed N layers

fhkt Particle size measured from X-rays diffracted from the
_ (hkl) planes

UV-Vis Ultraviolet-Visible

14 The volume, reduced to standard conditions (STP) of

gas adsorbed per unit mass of adsorbent at a given

pressure
VB Valence band
Voc Open circuit voltage
Vmln The maximum deliverable power
Vo The volume of gas adsorbed at STP per unit mass of

adsorbent, when the surface is covered by a
unimolecule layer of adsorbate
Vol The molar volume of absorbate gas at STP(22.4 mol™)
WO; Tungsten trioxide
XPS X-ray photo-electron spectroscopy



Zn0O

Hg
pg C
pm

Hs
puS/cm

@g m

<

Vs
Os
Ags
AR

XXXVii

X-ray diffraction

Atomic number

Zinc Oxide

Wavelength

Microgram (10 g)

Microgram of carbon

Micron (107 meter)

Electron mobility at the surface
MicroSiemens /square centimeter
Work function

Absorptivity

The permittivity of the vacuum
The Bragg angle for the reflection
Frequency

Frequency asymmetric

Frequency symmetric

Surface conductivity

The surface potential barrier height

Resistance change

Power conversion efficiency





