ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

SYNTHESIS OF NICHUM-DOPED ZING OXIDE NANOPARTICLES BY FLAME SPRAY PYROLYSIS AND THEIR APPLICATIONS

VIRUNTACHAR KRUEFU

DOCTOR OF PHILOSOPHY IN NANOSCHENCE AND NANOTECHNOLOGY

THE GRADUATE SCHOOL CHIANG MAI UNIVERSITY APRIL 2011

ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

SYNTHESIS OF NIOBIUM-DOPED ZINC OXIDE NANOPARTICLES BY FLAME SPRAY PYROLYSIS AND THEIR APPLICATIONS

VIRUNTACHAR KRUEFU

A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN NANOSCIENCE AND NANOTECHNOLOGY

THE GRADUATE SCHOOL CHIANG MAI UNIVERSITY APRIL 2011

SYNTHESIS OF NIOBIUM-DOPED ZINC OXIDE NANOPARTICLES BY FLAME SPRAY PYROLYSIS AND THEIR APPLICATIONS

VIRUNTACHAR KRUEFU

THIS THESIS HAS BEEN APPROVED TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN NANOSCIENCE AND NANOTECHNOLOGY

EXAMINING COMMITTEE
CHAIRPERSON
Dr. Pichai Pirakitikulr
Sukon MEMBER
Assoc. Prof. Dr. Sukon Phanichphant
() an Mysll, MEMBER
Assoc. Prof. Dr. Udom Sriyotha
Prsith ginggin MEMBER
Assoc. Prof. Dr. Pisith Singjai
Dr. Paralee Waenkaew
Merilian MEMBER

THESIS ADVISORY COMMITTEE

Sukon____ ADVISOR Assoc. Prof. Dr. Sukon Phanichphant CO-ADVISOR Assoc. Prof. Dr. Udom Sriyotha

Assoc. Prof. Dr. Pisith Singjai

Dr. Chaikarn Liewhiran

1 April 2011 © Copyright by Chiang Mai University

ACKNOWLEDGEMENTS

I must acknowledge many people who have helped me greatly and altered the quality of life throughout my education.

First, I would like to express my deep appreciation to Assoc. Prof. Dr. Sukon Phanichphant for her supervisions, valuable suggestions and all supports. Especially, she provided me many great opportunities to visit places such as USA, China, Japan and Austria. I have been so fortunate to have her as my major supervisor. I also would like to thank Professor Dr. David L. Carroll for his supports, kind suggestions and instructions about the work while I was in the USA. My thanks go to Dr. Anurat Wisitsoraat for his grateful kindness, valuable guidance when I worked at the National Electronics and Computer Technology Center (NECTEC).

Special thanks would go directly to Dr. Pichai Pirakitikulr, Assoc. Prof. Dr. Udom Sriyotha, Assoc. Prof. Dr. Pisith Singjai, Dr. Paralee Waenkaew and Dr. Chaikarn Liewhiran who served as my dissertation committee.

I would also like to thank all members of the Nanoscience Research Laboratory Chemistry, Chiang Mai University, Thailand and the Center for Nanotechnology and Molecular Materials, Wake Forest University, USA for their helps and warm friendship.

I am grateful to the Royal Thai Government, Ministry of Science and Technology, Thailand and the Graduate School, Chiang Mai University for providing all financial supports. I also would like to thank the researchers in the Electron Microscopy Research and

iii

Service Center (EMRSc), Chiang Mai University, Thailand and the National Electronics and Computer Technology Center (NECTEC), Thailand.

Last but not least, I would like to express my deepest gratitude to my family. Especially, the most beloved mom, Pud, and dad, Mern, for not only give me their constant love and full support but truth and services to mankind.

Viruntachar Kruefu

hesis of Niobium-doped Zinc Oxide Nanoparticles by	
e Spray Pyrolysis and Their Applications	
Viruntachar Kruefu	
	hesis of Niobium-doped Zinc Oxide Nanoparticles by ne Spray Pyrolysis and Their Applications s Viruntachar Kruefu

V

Thesis Advisory Committee

Degree

Assoc. Prof. Dr. Sukon Phanichphant	Advisor
Assoc. Prof. Dr. Udom Sriyotha	Co-advisor
Assoc. Prof. Dr. Pisith Singjai	Co-advisor

Doctor of Philosophy (Nanoscience and Nanotechnology)

ABSTRACT

Flame spray pyrolysis (FSP) was employed to synthesize pure ZnO and niobiumdoped ZnO nanoparticles containing 0.10-3.00 mol% Nb. Precursor solutions of zinc naphthenate and niobium (V) ethoxide in toluene/methanol (70/30 vol%) were sprayed and combusted, resulting in crystalline and nanostructured particles. The crystalline phase, morphology and size of the nanoparticles were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). The specific surface area of the nanoparticles was measured by nitrogen adsorption (BET analysis). The ZnO nanoparticles were observed as particles having the clear spherical, hexagonal

E41019

and rod-like morphologies. The crystallite sizes of ZnO spherical and hexagonal particles were in the range of 5–20 nm. ZnO nanorods were found to be ranging from 5–20 nm in width and 20–40 nm in length. Average diameters of Nb particles/clusters deposited on ZnO were determined to be approximately 1.5 nm for 1.00 mol% Nb-doped ZnO nanoparticles. The optical properties of ZnO samples were evaluated in terms of UV-vis absorption spectra.

Bulk-heterojunction (BHJ) solar cells utilizing P3HT:PCBM composite doped with Nb-doped zinc oxide nanoparticles produced by FSP were fabricated. The devices loaded with and without Nb-doped ZnO nanoparticles were compared. It was found that Nb doping led to a slight increase in open circuit voltage and an increase in short circuit current that scaled with Nb concentration. Additional comparison was made between the device fabricated with 3.00 mol% Nb-doped ZnO and pure ZnO device. These also showed a similar open circuit voltage increased and an increasing in current when doped with Nb-doped zinc oxide nanoparticles concentration up to 30% by volume and then drops off at 33% Nb-doped ZnO nanoparticles by volume. The effect of co-solvent (1, 3, 5-trichlorobenzene; TCB) in chlorobenzene in the polymer solution was also investigated on the morphology and performance of a P3HT:PCBM and P3HT:PCBM:Nb-doped zinc oxide bulk-heterojunction solar cells. The device efficiency was improved due to a good quality of the thin film nanostructure and annealing time.

The effect of 0.25, 0.50 and 1.00 mol% Nb doping concentration on gas sensing properties of pure ZnO based on the results from gas sensing test was discussed. After the sensing tests, the morphology and the cross-section of sensing film were analyzed by

vi

E41019

SEM and EDS analyses. The sensor performance of spin coated ZnO thick film-based NO₂ sensor was enhanced by Nb-doping. ZnO nanoparticles doped with 0.50 mol% Nb exhibited an optimum NO₂ response of ~1640 and a very fast response time of 27s compared to pure ZnO sensing film at a NO₂ concentration in air of 4 ppm at 300°C. The low NO₂ detection limit of 0.50 mol% Nb-doped ZnO was found to be 0.1 ppm at 250°C. Furthermore the 0.50 mol% Nb-doped ZnO sensor films are highly sensitive to low NO₂ concentrations (4 ppm) at 350°C. The sensing films showed lower gas response to other gases: CO (1000 ppm), C₂H₅OH (1000 ppm) and acetone (1000 ppm) suggesting the specific use of 0.50 mol% Nb-doped ZnO sensing films are for selective detection of these four gases.

High surface area of pure ZnO and Nb-doped ZnO nanoparticles containing 0.25, 0.50 and 1.00 mol% Nb were also investigated for the photocatalytic activities. The photocatalytic mineralization of ethanol, methanol, sucrose and glucose were investigated using pure ZnO and Nb-doped ZnO nanoparticles as photocatalysts in aqueous solutions under UVA irradiation. It was found that the rate of 50% mineralization of ethanol by 0.50 mol% Nb-doped ZnO was higher than that of pure ZnO, indicating an enhanced photocatalytic performance of ZnO by doping with an optimum amount of Nb.

การสังเกราะห์อนุภาคนาโนซิงก์ออกไซค์ที่เจือค้วยไนโอเบียม โคยเฟลมสเปรย์ไพโรลิซิส และการประยุกต์

นางสาววิรันธชา เครือฟู

ชื่อเรื่องวิทยานิพนธ์

ผู้เขียน

ปริญญา

วิทยาศาสตรจุษฎีบัณฑิต (วิทยาศาสตร์นาโนและเทคโนโลยีนาโน)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

อาจารย์ที่ปรึกษาหลัก อาจารย์ที่ปรึกษาร่วม อาจารย์ที่ปรึกษาร่วม

รศ. คร. สุกนธ์ พานิชพันธ์ รศ. คร. อุคม ศรีโยธา รศ. คร. พิศิษฐ์ สิงห์ใจ

บทคัดย่อ

E41019

วิธีเฟลมสเปรย์ไพโรลิซีสนำมาใช้ในการสังเคราะห์อนุภาคนาโนซิงก์ออกไซค์บริสุทธิ์และ อนุภาคนาโนซิงก์ออกไซค์ที่เจือด้วยในโอเบียม ในอัตราส่วนการเจือร้อยละ 0.10 ถึง 3.00 โดยโมล สารละลายตั้งต้นของ ซิงก์แนฟทีเนต และในโอเบียมเอทอกไซค์ ในโทลูอีน/เมทานอล (70/30 เปอร์ เซ็นโดยปริมาตร) ได้รับการพ่นฝอยและเผาไหม้ เป็นผลให้เกิดอนุภาคที่มีความเป็นผลึก และมี โครงสร้างในระดับนาโน ทำการศึกษาโครงสร้างของผลึก, ลักษณะสัณฐานวิทยา และขนาดของ อนุภาคโดยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ และกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านความ

viii

โรร 41019 ละเอียดสูง การวัดค่าพื้นที่ผิวจำเพาะของอนุภาคโดยหลักการดูดซับแก๊สไนโตรเจน พบ๋ว่าอนุ๋ภาคนาโน ซิงก์ออกไซด์ มีรูปร่างแบบทรงกลม แบบทรงหกเหลี่ยม และแบบแท่ง อย่างชัดเจน ขนาดผลึกของซิงก์ ออกไซด์ที่มีรูปร่างแบบทรงกลม และแบบเฮกซะโกนอล อยู่ในช่วง 5–20 นาโนเมตร สำหรับอนุภาค นาโนมีรูปร่างแบบแท่งมีความกว้างอยู่ในช่วง 5–20 นาโนเมตร และมีความยาวอยู่ในช่วง 20–40 นา โนเมตร ขนาดของอนุภาคไนโอเบียมที่อยู่บนผิวของซิงก์ออกไซด์ที่เจือด้วยไนโอเบียมร้อยละ 1.00 โดยโมล มีขนาดประมาณ 1.5 นาโนเมตร คุณสมบัติเชิงแสงของซิงก์ออกไซด์ถูกศึกษาจากเส้น สเปกตรัมการดูดกลืนแสงในช่วงแสงอัลตราไวโอเลต

เซลล์แสงอาทิตย์แบบไฮบริดที่ใช้วัสดุผสมระหว่าง พอลิ 3-เฮกซิลไทโอฟีน และฟีนิลบิวทีริก แอซิดเมททิลเอสเทอผสมด้วยอนุภาคซิงก์ออกไซด์ที่เงือด้วยในโอเบียมที่สังเคราะห์โดยวิธีเฟลมสเปรย์ ไพโรลิซีสได้รับการประดิษฐ์ขึ้น ได้ทำการเปรียบเทียบเมื่อผสมและไม่ได้ผสมด้วยอนุภาคซิงก์ ออกไซด์ที่เงือด้วยในโอเบียม พบว่าการเงือด้วยในโอบียมเป็นผลทำให้ก่าความต่างศักย์วงจรเปิด และ ก่ากระแสวงจรสั้นมีก่าเพิ่มขึ้นตามปริมาณไนโอบียมที่เพิ่มขึ้น และจากการเปรียบเทียบเซลล์ แสงอาทิตย์แบบไฮบริดที่ผสมด้วยอนุภาคซิงก์ออกไซด์ที่เงือด้วยในโอเบียมร้อยละ 3.00 โดยโมล และ อนุภาคซิงภ์ออกไซด์บริสุทธิ์ จากผลการทดลองนี้ทำให้ได้ก่าความต่างศักย์วงจรเปิด และก่ากระแส วงจรสั้นมีก่าเพิ่มขึ้นเมื่อผสมด้วยอนุภาคซิงก์ออกไซด์ที่เงือด้วยในโอเบียมร้อยละ 3.00 โดยโมล และ อนุภาคซิงภ์ออกไซด์บริสุทธิ์ จากผลการทดลองนี้ทำให้ได้ก่าความต่างศักย์วงจรเปิด และก่ากระแส วงจรสั้นมีก่าเพิ่มขึ้นเมื่อผสมด้วยอนุภาคซิงก์ออกไซด์ที่เงือด้วยในโอเบียมร้อยละ 3.00 โดยโมล และ ปริมาณร้อยละ 30 โดยปริมาตร และก่าเหล่านี้ได้ลดลงเมื่อผสมในปริมาณร้อยละ 3.3 โดยปริมาตร นอกจากนี้ยังได้ทำการศึกษาผลของตัวทำละลายร่วม (1,3,5 ไตรกลอโรเบนซีน) ที่ผสมกับกลอโรเบน ซืนในสารละลาย พอลิเมอร์ ลักษณะทางสันฐานวิทยา และการทำงานของเซลล์แสงอาทิตย์แบบ ไฮบริดระหว่างพอลิ 3-เฮกซิลไทโอฟีน และฟีนิลบิวทีริกแอซิดเมทิลเอสเทตผสมด้วยอนุมาคซิงก์

ix

ออกไซด์ที่เจือด้วยในโอเบียม และไม่ได้ผสมด้วยอนุภาคซิงก์ออกไซด์ที่เจือด้วยในโอเบียมได้รับการ วิเคราะห์ ส่วนประสิทธิภาพของเซลล์แสงอาทิตย์ได้รับการปรับปรุงให้ดีขึ้นจากโครงสร้างขนาดนาโน ของฟิล์มและเวลาในการอบอ่อน

ได้ทำการศึกษาผลของความเข้มข้นจากการเจือในโอเบียมในอัตราส่วนร้อยละ 0.25, 0.50 และ 1.00 โดยโมล ต่อคุณสมบัติของการเป็นตัวตรวจจับแก๊สของซิงก์ออกไซด์บริสุทธิ์ โดยได้ทำการ ้วิเคราะห์ลักษณะทางสัณฐานวิทยา และความหนาของฟิล์มที่ใช้หลังจากการทคสอบสภาพไวค้วยกล้อง จุลทรรศน์อิเล็กตรอนแบบส่องกราค และวิเคราะห์การกระจายตัวของรังสีเอ็กซ์ การทำงานของ เซ็นเซอร์ฟิล์มหนาซิงก์ออกไซค์ที่ได้รับการเครียมโคยการเกลือบแบบการสั่นต่อแก๊สไนโตรเจนไค ออกไซด์มีก่าเพิ่มขึ้น เมื่อซิงก์ออกไซด์ที่เจือด้วยไนโอเบียม อนึ่งอนุภาคนาโนซิงก์ออกไซด์ที่เจือด้วย ในโอเบียมร้อยละ 0.50 โคยโมลแสคงก่าการตอบสนองต่อแก๊สไนโตรเจนไคออกไซค์สูงสุด โคยมีก่า การตอบสนองเท่ากับ 1640 โดยประมาณ และให้ค่าเวลาในการตอบสนองที่รวคเร็ว ประมาณ 27 ้วินาที เมื่อเปรียบเทียบกับเซ็นเซอร์ฟิล์มหนาของซิงก์ออกไซค์บริสุทธิ์ เมื่อทคสอบที่ความเข้มข้นของ แก๊สไนโตรเจนไดออกไซด์ในอากาศที่ความเข้มข้นเท่ากับ 4 ส่วนในหนึ่งถ้านส่วน ณ อุณหภูมิ 300 องศาเซลเซียส โดยขีดจำกัดค่ำสุดของเซ็นเซอร์ฟิล์มหนาซิงก์ออกไซด์ที่สามารถตรวจวัดแก๊ส ในโตรเจนไดออกไซค์ได้คือ 0.1 ส่วนในหนึ่งถ้านส่วนที่อุณหภูมิ 250 องศาเซลเซียส นอกจากนี้ เซ็นเซอร์ฟิล์มหนาซิงก์ออกไซค์ที่เจือค้วยในโอเบียมร้อยละ 0.50 โคยโมล ให้ก่าสภาพไวที่สูงที่สุดต่อ แก๊ส ใน โครเจน ใดออก ไซค์ (4 ส่วน ในหนึ่งล้านส่วน) ที่อุณหภูมิ 350 องศาเซลเซียส และแสดงก่าการ ตอบสนองที่ต่ำต่อแก๊สอื่นๆ เช่นการ์บอนไดออกไซค์ (1000 ส่วนในหนึ่งถ้านส่วน) เอทานอถ (1000 ้ส่วนในหนึ่งถ้านส่วน) และอะซิโคน(1000 ส่วนในหนึ่งถ้านส่วน) แสคงให้เห็นว่า เช็นเซอร์ฟิล์มหนา

Х

ซิงก์ออกไซด์ที่เงือด้วยในโอเบียมร้อยละ 0.50 โดยโมล มีการคัดสรรจำเพาะเมื่อทำการวัดค่า ตอบสนองที่มีแก๊สทั้ง 4 ชนิดพร้อมกัน

ได้ทำการศึกษาความสามารถในการเป็นสารเร่งปฏิกิริยาด้วยแสงของอนุภาคนาโนซิงก์ ออกไซด์บริสุทธิ์ และอนุภาคนาโนซิงก์ออกไซด์ที่เจือด้วยในโอเบียม ในอัตราส่วนการเจือร้อยละ 0.25, 0.50, และ 1.0 โดยโมล จากการศึกษาโดยการย่อยสลาย เอทานอล เมทานอล ซูโครส และ กลูโคส โดยใช้อนุภาคนาโนซิงก์ออกไซด์บริสุทธิ์ และอนุภาคนาโนซิงก์ออกไซด์ที่เจือด้วยในโอเบียม เป็นตัวเร่งปฏิกิริยาในสารละลายผสม ภายใต้แสงอัลคราไวโอเลต จากผลการทดลองพบว่า ปริมาณการ เจือในโอเบียมร้อยละ 0.50 โดยโมล สามารถย่อยสลายเอทานอล ได้ดีกว่าซิงก์ออกไซด์บริสุทธิ์ ซึ่งผล ที่ได้นี้แสดงให้เห็นว่าอนุภาคงองในโอเบียมที่เจือบนอนุภาคนาโนซิงก์ออกไซด์ทำให้ความสามารถใน การเป็นสารเร่งปฏิกิริยาด้วยแสงอัลตราไวโอเลตดีกว่าใช้อนุภาคนาโนซิงก์ออกไซด์บริสุทธิ์

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	viii
LIST OF TABLES	XX
LIST OF FIGURES	xxi
ABBREVATIONS AND SYMBOLS	xxxii

CHAPTER 1 INTRODUCTION

1.1	Zinc o	oxide	3
	1.1.1	Crystal structure	3
	1.1.2	Mechanical properties	5
	1.1.3	Electronic properties	5
	1.1.4	Optical properties	6
	1.1.5	Applications	8
	1.1.6	Doping ZnO with a metal	8
	1.1.7	ZnO nanostructure	9
1.2	Niobi	um	10
1.3	Flame	e Spray Pyrolysis (FSP)	13

xii

	1.3.1	The basic steps of particle formation	17
		and growth by gas-to-particle conversion in FSP	
		1.3.1.1 Nucleation	17
		1.3.1.2 Nucleated condensation	17
		1.3.1.3 Coagulation	18
		1.3.1.4 Coalescence	20
1.4	The th	neory of characterization techniques	22
	1.4.1	X-ray diffraction method	22
		1.4.1.1 Crystal structure	22
		1.4.1.2 Bragg's Law	24
		1.4.1.3 Crystallinity	25
		1.4.1.4 Lattice parameters	26
		1.4.1.5 Powder diffraction and identification	26
		of phases by XRD	
	1.4.2	Brunauer-Emmett-Teller (BET) analysis-Particle	28
		size (d_{BET})	
	1.4.3	Scanning Electron Microscope (SEM)	29
	1.4.4	Energy Dispersive X-ray Spectroscopy (EDS)	33
	1.4.5	Transmission Electron Microscopy and diffraction	34
	1.4.6	UV-Vis absorption spectroscopy	37
	1.4.6.1	Beer's Law	39
		1.4.6.2 Tauc's relation	39
	1.4.7	Atomic Force Microscopy (AFM)	43

xiii

	1.4.7.1 Basic principles	44
	1.4.7.2 Imaging modes	45
	1.4.7.3 AFM cantilever deflection measurement	48
REFERENCES		49

CHAPTER 2 SYNTHESIS AND CHARACTERIZATION

OF PURE ZnO AND Nb-DOPED ZnO NANOPARTICLES

2.1	Resea	rch overviews	60
	2.1.1	Synthesis of ZnO nanoparticles	60
	2.1.2	Flame spray synthesis of nanoparticles	62
	2.1.3	Flame spray pyrolysis based on pure ZnO	64
		and metal-doped ZnO	
2.2	Exper	imental	69
	2.2.1	Chemicals and equipments	69
	2.2.2	Solubility test	69
	2.2.3	Precursor preparation for FSP	71
	2.2.4	Procedures for synthesizing nanoparticles by FSP	73
	2.2.5	Particle characterization method	75
2.3	Result	ts and discussion	76
	2.3.1	Nanoparticles synthesis	76
		2.3.1.1 Flame-made pure ZnO and Nb-doped ZnO	76
		nanoparticles	
		2.3.1.2 Powder appearance	77

xiv

	2.3.2	Characterization of flame-made nanoparticles	77
		2.3.2.1 X-ray diffraction analysis	77
		2.3.2.2 BET analysis	79
		2.3.2.3 Transmission electron microscopy (TEM)	80
		and Energy dispersive x-ray spectroscopy (ED	S)
		2.3.2.4 Scanning Electron Microscopy (SEM)	85
		and Energy Dispersive X-ray Spectrometry	
		(EDS): dot-mapping modes	
		2.3.2.5 UV-vis absorption spectroscopy	88
2.4	Concl	usions	90
REFERENC	CES		91

CHAPTER 3 APPLICATION OF PURE ZnO AND Nb-DOPED

ZnO FOR USE AS PHOTOVOLTAIC DEVICES	ZnO	FOR	USE AS	PHOT (OVOLTA	IC	DEVICES
-------------------------------------	-----	-----	--------	---------------	--------	----	---------

3.1	Introd	uction	98	
		3.1.1	Inorganic solar cells	98
		3.1.2	Organic solar cells	99
		3.1.3	Advantages of organic solar cells	103
		3.1.4	Characterization of organic bulk heterojunction	103
			solar cells	
		3.1.5	Principles of bulk heterojunction solar cell	103
		3.1.6	Literature review	109
	3.2	Chemi	icals and equipments	116

	3.2.1	Solar cell preparation	116
	3.2.2	Solar cell characterization	117
3.3	Exper	imental	118
	3.3.1	Device fabrication	118
		3.3.1.1 The effect of Nb loading on the	
		solar efficiency of the P3HT:PCBM:Nb-doped	l
		ZnO blend films and the amount of Nb-doped	
		ZnO loading on the solar efficiency of the	
		P3HT:PCBM:Nb-doped ZnO blend films	118
		3.3.1.2 The effect of niobium doping on composite	119
		solar cells using the 3 mol% Nb-doped ZnO	
		NPs and the use of 1,3,5-trichlorobenzene	
		(TCB) as co-solvent for enhancing	
		nanostructured P3HT:PCBM:Nb/ZnO layer	
	3.3.2	Measurements and characterization	120
3.4	Result	ts and Discussion	122
	3.4.1	The effect of Nb loading on the solar efficiency	122
		of the P3HT:PCBM:Nb-doped ZnO blend films and th	e
		amount of Nb-doped ZnO loading on the solar efficien	су
		of the P3HT:PCBM:Nb-doped ZnO blend films	

	3.4.2 The effect of niobium doping on composite solar		130
		cells using the 3.00 mol% Nb-doped ZnO	
		nanoparticles and the use of 1, 3, 5- trichlorobenzene	
		(TCB) as co-solvent for enhancing nanostructured	
		P3HT:PCBM: Nb-doped ZnO layer	
3.5	Concl	usions	135

REFERENCES

136

CHAPTER 4 APPLICATION OF PURE ZnO AND Nb-DOPED

ZnO FOR USE AS GAS SENSORS

4.1	Introduction		145
	4.1.1	Gas sensing mechanism	149
	4.1.2	Temperature Limitations	153
	4.1.3	Response and recovery time	154
	4.1.4	Selectivity	155
	4.1.5	Metal additives affect	155
	4.1.6	Literature review	157
4.2	Chemi	icals and equipments	165
4.3	Experi	imental	165
	4.3.1	Sensing film fabrication	165
	4.3.2	Sensing film Characterization	166
	4.3.3	Gas sensing characterization	166
4.4	Result	ts and discussion	168

	4.4.1	Sensing film properties	168
		4.4.1.1 X-ray diffraction analysis	168
		4.4.1.2 SEM-film thickness sensing layer	169
		4.4.1.3 Energy Dispersive X-ray Spectrometry	170
		(EDS): line scan mode	
	4.4.2	Gas sensing properties	175
4.5	Concl	usions	185
REFERENC	CES		186

CHAPTER 5 APPLICATION OF PURE ZnO AND Nb-DOPED ZnO

FOR USE AS PHOTOCATALYSTS

5.1	Introduction		192
	5.1.1	Function and principles of photocatalysts	195
	5.1.2	Photocatalytic oxidation	197
	5.1.3	Photocatalytic reduction	198
	5.1.4	Effect of surfuce area on photocatalytic activity	198
	5.1.5	Effect of electron-hole recombination on photo	199
		catalytic activity	
	5.1.6	Design of photocatalysts of high activity	200
	5.1.7	Increasing efficiency by incorporation of metal	200
		nanoparticles	
	5.1.6	Literature review	202
5.2	Chemicals and equipments		206

	5.3	Experimental		207
		5.3.1	Calibration curve measurement	207
		5.3.2	Preparation of photocatalyst suspension and operation	207
	5.4	Result	s and discussion	209
	5.5	Conclu	usions	212
	REFERENC	ES		214
CURR	ICULUM VI	ТАЕ		222

xix

LIST OF TABLES

Table		Page
1.1	The basic materials parameters of wurtzite ZnO.	7
1.2	The electron configuration of vanadium, niobium and tantalum.	10
1.3	Physical properties of Nb.	13
2.1	Ag-ZnO catalysts prepared via FSP (3/8, 5/5, 8/3) and wet-phase	68
	synthesis together with measured SSA and reaction performance in	
	photodegradation of MB.	
2.2	Precursor preparation for FSP.	72
3.1	Nonexhaustive survey of reports focusing on photovoltaic devices	110
	based on P3HT:PCBM and P3HT:PCBM:Metal or Metal Oxide blends.	
3.2	Solar cell parameters.	125
3.3	Solar cell parameters.	128
3.4	Solar cells characteristics of P3HT: PCBM and P3HT:PCBM:3.00 mol%	132
	Nb-doped ZnO bulk-hetero junction solar cells blends (both with and	
	without added TCB) annealed for 5 and 7 min.	
4.1	A summary on the gas sensing properties of pure/doped metal oxide	157
	semiconductors for NO ₂ , CO, C ₂ H ₅ OH and acetone gas.	
5.1	The common chemical oxidants, placed in the order of their oxidizing	197
	Strength.	

XX

5.2 The comparison of time for completing the degradation process of 212 methanol, ethanol, glucose and sucrose of different types of photocatalyst.

LIST OF FIGURES

Figure		
1.1	crystal structure of zinc oxide. (a) Wurtzite phase ZnO, (b) Zincblende	4
	phase ZnO.	
1.2	The periodic table.	11
1.3	Sketch of the basic steps of particle formation.	16
1.4	Steps leading to grain growth by coalescence of small and large grains	20
	with a curved grain boundary.	
1.5	Image of a lab-scale reactor (right). The critical sub-processes in the FSP	21
	process and their approximate spatial location are indicated on the left.	
	Nanoparticle samples extracted from the flame at the indicated heights	
	are shown.	
1.6	A unit cell from a three dimensional lattice.	23
1.7	Deriving Bragg's law using the reflection geometry and applying	24
	Trigonometry.	
1.8	XRD pattern of FeOOH sample.	27
1.9	X-ray diffraction system used in this research.	2
1.10	Schematic diagram of a typical SEM.	31
1.11	Electrons produced in SEM.	32
1.12	SEM system used in this research.	32

xxii

xxiii

1.13	Schematic diagram of a TEM.	36
1.14	TEM system used in this research.	36
1.15	Attenuation of a beam of radiation by an absorbing solution. The larger	38
	arrow on the incident beam signifies a higher radiant power than is	
	transmitted by the solution. The path length of the solution is b , and the	
	concentration is c.	
1.16	Schematic diagram of the absorption process.	40
1.17	UV-vis spectrum of nanostructured zinc oxide.	42
1.18	Varian Cary 50 UV-vis absorption spectrophotometer.	42
1.19	Drawing of basic principle of AFM. A cantilever, with a very small	43
	tip (probe), moves along the surface and experiences atomic forces.	
	Laser and Photodiode are used to measure those forces.	
2.1	The solubility tests of the precursors were performed using zinc	70
	napthenate as a Zn precursor dissolved in several organic solvents	
	prior to the precursor preparation.	
2.2	The solubility tests of the precursors were performed using niobium	70
	(V) ethoxide as a Nb precursor dissolved in several organic solvents prior	
	to the precursor preparation.	
2.3	The solubility tests of the precursors were performed using zinc	71
	napthenate and niobium (V) ethoxide as Zn and Nb precursors dissolved	
	well in toluene:methanol mixture with ratio of 70:30 vol% prior to the	
	precursor preparation.	

.

2.4 The experimental setup for flame-made pure ZnO and Nb-doped 73 ZnO nanoparticles. 2.5 Spray flame (0.5 M zinc naphthenate and niobium (V) ethoxide in 76 toluene/methanol: 70/30 vol%). 2.6 The flame-made (5/5) pure ZnO and 0.10-3.00 mol% Nb-doped ZnO 77 nanoparticles ordered from the left to right with increasing Nb concentrations. 2.7 XRD patterns of the flame-made (5/5) pure ZnO and Nb-doped ZnO 78 nanoparticles with different Nb concentrations. 2.8 The specific surface area (SSA_{BET}) and BET-particle diameter (d_{BET}) 80 of the flame-made (5/5) pure ZnO and Nb-doped ZnO nanoparticles with different Nb concentrations. 2.9 TEM bright-field image of (a, b) pure ZnO, (c, d) 1.00 mol% Nb-doped 81 ZnO nanoparticles and (e, f) 3.00 mol% Nb-doped ZnO nanoparticles. 2.10 TEM bright-field image and EDS mode of 1.00 mol% Nb-doped ZnO. 82 2.11 EDS spectrum (line scan mode) of pure ZnO nanoparticles. 83 2.12 EDS spectrum (line scan mode) of pure 0.25 mol% Nb-doped ZnO 83 nanoparticles. 84 2.13 EDS spectrum (line scan mode) of pure 0.50 mol% Nb-doped ZnO nanoparticles. EDS spectrum (line scan mode) of pure 1.00 mol% Nb-doped ZnO 2.14 84 nanoparticles.

2.15	EDS spectrum (line scan mode) of pure 3.00 mol% Nb-doped ZnO	85
	nanoparticles.	
2.16	SEM image and EDS dot-mapping modes of the flame-made (5/5)	86
	pure ZnO nanoparticles.	
2.17	SEM image and EDS dot-mapping modes of the flame-made (5/5)	86
	0.25 mol% Nb-doped ZnO.	
2.18	SEM image and EDS dot-mapping modes of the flame-made (5/5)	87
	0.50 mol% Nb-doped ZnO.	
2.19	SEM image and EDS dot-mapping modes of the flame-made (5/5)	87
	1.00 mol% Nb-doped ZnO.	
2.20	SEM image and EDS dot-mapping modes of the flame-made (5/5)	88
	3.00 mol% Nb-doped ZnO.	
2.21	UV-vis absorption spectra of pure ZnO and Nb-doped ZnO	
3.1	Chemical structures and abbreviations of some conjugated organic	101
	molecules.	
3.2	Schematic layout of an organic solar cell.	102
3.3	Schematic drawing of the donor and acceptor energy levels.	103
3.4	Typical J-V characteristics of an organic PV cell.	104
3.5	The interface between two different semiconducting polymers	107
	(D = donor, A = acceptor) can facilitate either charge transfer	
	by splitting the exciton or energy transfer, where the whole exciton	
	is transferred from the donor to the acceptor.	

3.6 Device configuration of the polymer solar cells. 118 3.7 The bulk heterojunction photovoltaic devices (a) before and (b) 120 after depositing with LiF and Al electrode. 3.8 The solar simulation system. 121 3.9 The EQE simulation system. 122 3.10 Device structure and energy level diagram of the components. 123 J-V curves under 120 mW/cm² white light illumination of Nb-doped 3.11 124 ZnO loading with different Nb concentrations on device performance. 3.12 EQE spectra of Nb-doped ZnO loading with different Nb concentrations 124 on device performance. 3.13 The J-V curves of P3HT:PCBM:Nb-doped ZnO photovoltaic cells 126 measured in the ambient atmosphere with 120 mW/cm² white-light irradiation. 3.14 EQE spectra of the device fabricated using BHJ films with 3.00 mol% 127 Nb-doped ZnO concentrations of 24, 27, 30, and 33 vol%. 3.15 Absorption spectra of P3HT:PCBM:Nb-doped ZnO films at various 128 concentrations of Nb-doped ZnO solution blended into the P3HT:PCBM active layer. 3.16 The J-V curves of P3HT:PCBM:1-butanol photovoltaic cells measured 130 in the ambient atmosphere with 120 mW/cm² white-light irradiation. J-V characteristics of P3HT:PCBM and P3HT:PCBM:3.00 mol% 3.17 131 Nb-doped ZnO bulk-hetero junction solar cells blends (both with and without added TCB) annealed for 5 and 7 min.

xxvi

EQE spectra of P3HT:PCBM and P3HT:PCBM:3.00 mol%Nb-doped 3.18 133 ZnO bulk-hetero junction solar cells blends (both with and without added TCB) annealed for 7 min. 3.19 AFM images of P3HT:PCBM:3.00 mol% Nb-doped ZnO spin-coated 134 from (a) CB and (b) CB+TCB annealed for 7 min. 4.1 Schemetic drawings of sensor devices (a) sintered block type, (b) thick-146 or thin-film type. 4.2 Typical characteristics of semiconductor gas sensor: (a) response 147 transient; (b) temperature dependence of gas response; (c) dependence of Rg on gas concentration. 4.3 The adsorbed molecule can significantly modify the dielectric property 150 at the surface of the semiconductor gas sensor. 4.4 Schematic diagrams of the as-pasted ZnO nanoparticles. 153 4.5 The response and recovery time of n-type semiconductor for reducing gas. 154 Mechanism of sensitization by metal additive. 4.6 156 4.7 (a) Photograph of sensor substrate including interdigitated comb-like 160 Pt electrodes and a resistive heater. (b) Zn thin-film sputtered sensor substrate. (c) A schematic illustration for the sonochemical growth of vertically aligned ZnO nanorod arrays on a sensor substrate. 4.8 (a) Photograph of sensor substrate including interdigitated comb-like 166 Au electrodes. (b) ZnO thick-film spin coat sensor substrate. 4.9 Gas sensor measurement setup. 167

xxvii

xxviii

4.10	XRD patterns of the flame-made (5/5) pure ZnO and Nb-doped ZnO	169
	nanoparticles with different Nb concentrations, and samples of	
	sensing films were spin-coated on Au/Al ₂ O ₃ substrate after	
	annealing and sensing test at 350°C.	
4.11	SEM micrographs of flame-made ZnO thick films as a sensor.	170
4.12	The EDS line scan mode of sensor based on flame-made pure	171
	ZnO nanoarticles.	
4.13	The EDS line scan mode of sensor based on flame-made	172
	0.25 mol% Nb-doped ZnO nanoarticles.	
4.14	The EDS line scan mode of sensor based on flame-made	173
	0.50 mol% Nb-doped ZnO nanoarticles.	
4.15	The EDS line scan mode of sensor based on flame-made	174
	1.00 mol% Nb-doped ZnO nanoarticles.	
4.16	Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%	175
	Nb-doped ZnO gas sensor towards 0.1-4 ppm NO ₂ gas square pulses	
	at 250°C.	
4.17	Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%	176
	Nb-doped ZnO gas sensor towards 0.1-4 ppm NO ₂ gas square pulses	
	at 300°C.	
4.18	Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%	176
	Nb-doped ZnO gas sensor towards 0.1–4 ppm NO ₂ gas square pulses	
	at 350°C.	

.

4.19 The response of Nb-doped ZnO gas sensor towards 4 ppm of NO₂ 178 versus the operating temperature. The composition of 0.50 mol% Nb in ZnO thin film shows a maximum response of 1640 at 300°C. 4.20 Variation of response (left) of NO2 concentrations (0.1–4 ppm) 179 and variation of response times (right) with change in resistance at 300°C. 4.21 Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol% 180 Nb-doped ZnO gas sensor towards 50-1000 ppm C₂H₅OH gas square pulses at 350°C. 4.22 Variation of response of C_2H_5OH concentrations (50–1000 ppm) 181 with change in resistance at 350°C. 4.23 Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol% 182 Nb-doped ZnO gas sensor towards 50-1000 ppm acetone gas square pulses at 350°C. 4.24 Variation of response of acetone concentrations (50–1000 ppm) 182 with change in resistance at 350°C. 4.25 Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol% 183 Nb-doped ZnO gas sensor element from 50-1000 ppm CO gas square pulses at 350°C 4.26 Variation of response of CO concentrations (50–1000 ppm) 184 with change in resistance at 350°C.

4.27	Variation of response with concentration of NO ₂ (4 ppm), CO,	184
	C_2H_5OH and acetone (1000 ppm) at 350°C for sensor of pure ZnO	
	as compared to 0.25, 0.50 and 1.00 mol% Nb-doped ZnO.	
5.1	Bandgap energies for some common semiconductor materials at 0 K.	193
5.2	The eletromagnetic spectrum.	193
5.3	Schematic representation of the mechanism of photocatalytic activity.	196
	On absorption of photon of energy hv , electrons are excited from valence	
	band (VB) to conduction band (CB). There is a transfer of electron to	
	oxygen molecule to form superoxide ion radical ($^{\circ}O^{-2}$) and a transfer of	
	electron from water molecule to VB hole to form hydroxyl radical (*OH).	
5.4	Incorporation of silver nanoparticles facilitate longer charge separation	201
	by trapping photogenerated electrons.	
5.5	Schematic diagram of spiral photoreactor.	208
5.6	Photocatalytic degradation rate of methanol on pure ZnO and	209
	Nb-doped ZnO nanoparticles with different Nb loading.	
5.7	Photocatalytic degradation rate of ethanol on pure ZnO and	210
	Nb-doped ZnO nanoparticles with different Nb loading.	
5.8	Photocatalytic degradation rate of sucrose on pure ZnO and	210
	Nb-doped ZnO nanoparticles with different Nb loading.	
5.9	Photocatalytic degradation rate of glucose on pure ZnO and	211
	Nb-doped ZnO nanoparticles with different Nb loading.	

ABBREVIATIONS AND SYMBOLS

Å	Angstrom
Au	Gold
Al ₂ O ₃	Alumina
at%	atomic %
C	Amount of carbon
cm	Centimeter
cm ³ /min	Cubic centimeter per minute
CRT	Cathode-Ray Tube
CVD	Chemical Vapor Deposition
°C	Degrees Celsius
d _{hkl}	Interplanar distance between (hkl) planes
d	the lattice planar spacing or thickness
$d_{ m EM}$	different primary particle sizes
CB	Conduction Band
CB	Chlorobenzene
d_{BET}	BET-particle diameter
e	Electron
eV	Electron Volt
Ε	binding energy
E_0	Energy of ground state
E _b	Binding energy
E _F	Fermi level
Eg	Optical band gap of the semiconductor
E _{CB}	Conduction band energy
E _{VB}	Valence band energy

xxxi

E_{vac}	Energy of vacuum level
FF	Fill factor
EPMA	Electron probe micro-analysis by X-ray
g/L	grams/liter
h	Hour
Н	Plank's constant (6.63×10 ⁻³⁴ Js), hour
HMDSO	Hexamethyldisiloxane
НОМО	Highest occupied molecular orbital
hv	Photon energy
\mathbf{h}^+	Hole
I_0	Intensity of the incident beam
Ι	Intensity of the transmittance
J_{SC}	Short circuit current
ΙΤΟ	Indium-tin oxide
IUPAC	International Union of Pure and Applied Chemistry
JCPDS	Joint Committee Powder Diffraction Standards
K	Kelvin
keV	Kilo electron volt
kV	Kilo-volt
LUMO	Lowest unoccupied molecular orbital
L/min	Liter per minute
Μ	Mol per liter
mg	Milligram
min	Minute
mL	Milliliter
m ²	Square meter
mS	Millisiemen
n	Order of diffraction
N _a	Avogadro's number (6.02×10^{23})
O ₂	Oxygen gas

xxxiii

•O ₂	Superoxide radical
•ОН	Hydroxyl radical
rpm	Revolution per minute
R ₀	Resistance in air
Rg	Resistance when the gas is present
Т	Transmittance
$T_{\rm rec}$	Recovery time
$T_{\rm res}$	Response time
VB	Valence band
V _{OC}	Open circuit voltage
$V_m I_m$	The maximum deliverable power
	The volume of gas adsorbed at STP per unit mass of
	adsorbent, when the surface is covered by a
V _m	unimolecule layer of adsorbate
Z	Atomic number
λ	Wavelength
μg	Microgram (10 ⁻⁶ g)
μg C	Microgram of carbon
μm	Micron (10^{-6} meter)
μ_{s}	Electron mobility at the surface
μS/cm	MicroSiemens /square centimeter
3	Absorptivity
ε ₀	The permittivity of the vacuum
θ	The Bragg angle for the reflection
ν	Frequency
η	Power conversion efficiency

•