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ABSTRACT
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Flame spray pyrolysis (FSP) was employed to synthesize pure ZnO and‘niobium-
doped ZnO nanoparticles containing 0.10-3.00 mol% Nb. Precursor solutions of zinc
naphthenate and niobium (V) ethoxide in toluene/methanol (70/30 vol%) were sprayed
and combusted, resulting in crystalline and nanostructured particles. The crystalline
phase, morphology and size of the nanoparticles were characterized by X-ray diffraction
(XRD) and high resolution transmission electron microscopy (HR-TEM). The specific
surface area of the nanoparticles was measured by nitrogen adsorption (BET analysis).

The ZnO nanoparticles were observed as particles having the clear spherical, hexagonal
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and rod-like morphologies. The crystallite sizes of ZnO spherical and hexagonal particles
were in the range of 5-20 nm. ZnO nanorods were found to be ranging from 5-20 nm in
width and 2040 nm in length. Average diameters of Nb particles/clusters deposited on
ZnO were determined to be approximately 1.5 nm for 1.00 mol% Nb-doped ZnO
nanoparticles. The optical properties of ZnO samples were evaluated in terms of UV-vis
absorption spectra.

Bulk-heterojunction (BHJ) solar cells utilizing P3HT:PCBM composite doped
with Nb-doped zinc oxide nanoparticles produced by FSP were fabricated. The devices
loaded with and without Nb-doped ZnO nanoparticles were compared. It was found that
Nb doping led to a slight increase in open circuit voltage and an increase in short circuit
current that scaled with Nb concentration. Additional comparison was made between the
device fabricated with 3.00 mol% Nb-doped ZnO and pure ZnO device. These also
showed a similar open circuit voltage increased and an increasing in current when doped
with Nb-doped zinc oxide nanoparticles concentration up to 30% by volume and then
drops off at 33% Nb-doped ZnO nanoparticles by volume. The effect of co-solvent (1, 3,
S-trichlorobenzene; TCB) in chlorobenzene in the polymer solution was also investigated
on the morphology and performance of a P3HT:PCBM and P3HT:PCBM:Nb-doped zinc
oxide bulk-heterojunction solar cells. The device efficiency was improved due to a good
quality of the thin film nanostructure and annealing time.

The effect of 0.25, 0.50 and 1.00 mol% Nb doping concentration on gas sensing
properties of pure ZnO based on the results from gas sensing test was discussed. After the

sensing tests, the morphology and the cross-section of sensing film were analyzed by
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SEM and EDS analyses. The sensor performance of spin coated ZnO thick film-based
NO; sensor was enhanced by Nb-doping. ZnO nanoparticles doped with 0.50 mol% Nb
exhibited an optimum NO; response of ~1640 and a very fast response time of 27s
compared to pure ZnO sensing film at a NO, concentration in air of 4 ppm at 300°C. The
low NO, detection limit of 0.50 mol% Nb-doped ZnO was found to be 0.1 ppm at 250°C.
Furthermore the 0.50 mol% Nb-doped ZnO sensor films are highly sensitive to low NO,
concentrations (4 ppm) at 350°C. The sensing films showed lower gas response to other
gases: CO (1000 ppm), C;HsOH (1000 ppm) and acetone (1000 ppm) suggesting the
specific use of 0.50 mol% Nb-doped ZnO sensing films are for selective detection of
these four gases.

High surface area of pure ZnO and Nb-doped ZnO nanoparticles containing 0.25,
0.50 and 1.00 mol% Nb were also investigated for the photocatalytic activities. The
photocatalytic mineralization of ethanol, methanol, sucrose and glucose were investigated
using pure ZnO and Nb-doped ZnO nanoparticles as photocatalysts in aqueous solutions
under UVA irradiation. It was found that the rate of 50% mineralization of ethanol by
0.50 mol% Nb-doped ZnO was higher than that of pure ZnO, indicating an enhanced

photocatalytic performance of ZnO by doping with an optimum amount of Nb.
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ZnO nanoparticles and (e, f) 3.00 mol% Nb-doped ZnO nanoparticles.
TEM bright-field image and EDS mode of 1.00 mol% Nb-doped ZnO.
EDS spectrum (line scan mode) of pure ZnO nanoparticles.

EDS spectrum (line scan mode) of pure 0.25 mol% Nb-doped ZnO
nanoparticles.

EDS spectrum (line scan mode) of pure 0.50 mol% Nb-doped ZnO
nanoparticles.

EDS spectrum (line scan mode) of pure 1.00 mol% Nb-doped ZnO

nanoparticles.
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3.4

3.5

EDS spectrum (line scan mode) of pure 3.00 mol% Nb-doped ZnO
nanoparticles.

SEM image and EDS dot-mapping modes of the flame-made (5/5)
pure ZnO nanoparticles.

SEM image and EDS dot-mapping modes of the flame-made (5/5)
0.25 mol% Nb-doped ZnO.

SEM image and EDS dot-mapping modes of the flame-made (5/5)
0.50 mol% Nb-doped ZnO.

SEM image and EDS dot-mapping modes of the flame-made (5/5)
1.00 mol% Nb-doped ZnO.

SEM image and EDS dot-mapping modes of the flame-made (5/5)
3.00 mol% Nb-doped ZnO.

UV-vis absorption spectra of pure ZnO and Nb-doped ZnO
Chemical structures and abbreviations of some conjugated organic
molecules.

Schematic layout of an organic solar cell.

Schematic drawing of the donor and acceptor energy levels.
Typical J-V characteristics of an organic PV cell.

The interface between two different semiconducting polymers

(D = donor, A = acceptor) can facilitate either charge transfer

by splitting the exciton or energy transfer, where the whole exciton

is transferred from the donor to the acceptor.
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Device configuration of the polymer solar cells.

The bulk heterojunction photovoltaic devices (a) before and (b)

after depositing with LiF and Al electrode.

The solar simulation system.

The EQE simulation system.

Device structure and energy level diagram of the components.

J-V curves under 120 mW/cm® white light illumination of Nb-doped
ZnO loading with different Nb concentrations on device performance.
EQE spectra of Nb-doped ZnO loading with different Nb concentrations
on device performance.

The J-V curves of P3HT:PCBM:Nb-doped ZnO photovoltaic cells
measured in the ambient atmosphere with 120 mW/cm? white-light
irradiation.

EQE spectra of the device fabricated using BHJ films with 3.00 mol%
Nb-doped ZnO concentrations of 24, 27, 30, and 33 vol%.

Absorption spectra of P3HT:PCBM:Nb-doped ZnO films at various
concentrations of Nb-doped ZnO solution blended into the P3HT:PCBM
active layer.

The J-V curves of P3HT:PCBM:1-butanol photovoltaic cells measured
in the ambient atmosphere with 120 mW/cm?” white-light irradiation.
J-V characteristics of P3HT:PCBM and P3HT:PCBM:3.00 mol%
Nb-doped ZnO bulk-hetero junction solar cells blends (both with and

without added TCB) annealed for 5 and 7 min.
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EQE spectra of P3HT:PCBM and P3HT:PCBM:3.00 mol%Nb-doped
Zn0O bulk-hetero junction solar cells blends (both with and without
added TCB) annealed for 7 min.

AFM images of P3HT:PCBM:3.00 mol% Nb-doped ZnO spin-coated
from (a) CB and (b) CB+TCB annealed for 7 min.

Schemetic drawings of sensor devices (a) sintered block type, (b) thick-
or thin-film type.

Typical characteristics of semiconductor gas sensor: (a) response
transient; (b) temperature dependence of gas response; (c) dependence
of Rg on gas concentration.

The adsorbed molecule can significantly modify the dielectric property
at the surface of the semiconductor gas sensor.

Schematic diagrams of the as-pasted ZnO nanoparticles.

The response and recovery time of n-type semiconductor for reducing gas.

Mechanism of sensitization by metal additive.

(a) Photograph of sensor substrate including interdigitated comb-like
Pt electrodes and a resistive heater. (b) Zn thin-film sputtered sensor
substrate. (¢) A schematic illustration for the sonochemical growth of
vertically aligned ZnO nanorod arrays on a sensor substrate.

(a) Photograph of sensor substrate including interdigitated comb-like

Au electrodes. (b) ZnO thick-film spin coat sensor substrate.

Gas sensor measurement setup.
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XRD patterns of the flame-made (5/5) pure ZnO and Nb-doped ZnO
nanoparticles with different Nb concentrations, and samples of
sensing films were spin-coated on Au/Al,O; substrate after
annealing and sensing test at 350°C.

SEM micrographs of flame-made ZnO thick films as a sensor.

The EDS line scan mode of sensor based on flame-made pure

Zn0 nanoarticles.

The EDS line scan mode of sensor based on flame-made

0.25 mol% Nb-doped ZnO nanoarticles.

The EDS line scan mode of sensor based on flame-made

0.50 mol% Nb-doped ZnO nanoarticles.

The EDS line scan mode of sensor based on flame-made

1.00 mol% Nb-doped ZnO nanoarticles.

Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%
Nb-doped ZnO gas sensor towards 0.1-4 ppm NO; gas square pulses
at 250°C.

Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%
Nb-doped ZnO gas sensor towards 0.1-4 ppm NO; gas square pulses
at 300°C.

Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%
Nb-doped ZnO gas sensor towards 0.1-4 ppm NO; gas square pulses

at 350°C.
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The response of Nb-doped ZnO gas sensor towards 4 ppm of NO,
versus the operating temperature. The composition of 0.50 mol%
Nb in ZnO thin film shows a maximum response of 1640 at 300°C.
Variation of response (left) of NO2 concentrations (0.1-4 ppm)

and variation of response times (right) with change in resistance

at 300°C.

Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%
Nb-doped ZnO gas sensor towards 50—1000 ppm C,HsOH gas square
pulses at 350°C.

Variation of response of C;HsOH concentrations (50—1000 ppm)
with change in resistance at 350°C.

Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%
Nb-doped ZnO gas sensor towards 50-1000 ppm acetone gas
square pulses at 350°C.

Variation of response of acetone concentrations (50-1000 ppm)
with change in resistance at 350°C.

Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%
Nb-doped ZnO gas sensor element from 50—-1000 ppm CO

gas square pulses at 350°C

Variation of response of CO concentrations (50—1000 ppm)

with change in resistance at 350°C.
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5.7
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39

Variation of response with concentration of NO, (4 ppm), CO,
C>H50H and acetone (1000 ppm) at 350°C for sensor of pure ZnO
as compared to 0.25, 0.50 and 1.00 mol% Nb—doped ZnO.

Bandgap energies for some common semiconductor materials at 0 K.

The eletromagnetic spectrum.

Schematic representation of the mechanism of photocatalytic activity.

On absorption of photon of energy v, electrons are excited from valence
band (VB) to conduction band (CB). There is a transfer of electron to
oxygen molecule to form superoxide ion radical ("O™) and a transfer of
electron from water molecule to VB hole to form hydroxyl radical ("OH).

Incorporation of silver nanoparticles facilitate longer charge separation
by trapping photogenerated electrons.

Schematic diagram of spiral photoreactor.

Photocatalytic degradation rate of methanol on pure ZnO and
Nb-doped ZnO nanoparticles with different Nb loading.

Photocatalytic degradation rate of ethanol on pure ZnO and

Nb-doped ZnO nanoparticles with different Nb loading.

Photocatalytic degradation rate of sucrose on pure ZnO and

Nb-doped ZnO nanoparticles with different Nb loading.

Photocatalytic degradation rate of glucose on pure ZnO and

Nb-doped ZnO nanoparticles with different Nb loading.
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ABBREVIATIONS AND SYMBOLS

Angstrom

Gold

Alumina

atomic %

Amount of carbon
Centimeter

Cubic centimeter per minute
Cathode-Ray Tube
Chemical Vapor Deposition
Degrees Celsius

Interplanar distance between (hkl) planes

the lattice planar spacing or thickness
different primary particle sizes
Conduction Band

Chlorobenzene

BET-particle diameter

Electron

Electron Volt

binding energy

Energy of ground state

Binding energy

Fermi level

Optical band gap of the semiconductor
Conduction band energy

Valence band energy
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) - Energy of vacuum level

FF Fill factor

EPMA Electron probe micro-analysis by X-ray
g/L grams/liter

h Hour

H Plank’s constant (6.63x107* Js), hour
HMDSO Hexamethyldisiloxane

HOMO Highest occupied molecular orbital

hv Photon energy

h* Hole

4 Intensity of the incident beam

1 Intensity of the transmittance

Jsc Short circuit current

ITO Indium-tin oxide

[UPAC International Union of Pure and Applied Chemistry
JCPDS Joint Committee Powder Diffraction Standards
K Kelvin

keV Kilo electron volt

kV Kilo-volt

LUMO Lowest unoccupied molecular orbital
L/min Liter per minute

M Mol per liter

mg Milligram

min Minute

mL Milliliter

m’ Square meter

mS Millisiemen

n Order of diffraction

Na Avogadro’s number (6.02 x 10%)

0, Oxygen gas
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Superoxide radical

Hydroxyl radical

Revolution per minute

Resistance in air

Resistance when the gas is present
Transmittance

Recovery time

Response time

Valence band

Open circuit voltage

The maximum deliverable power
The volume of gas adsorbed at STP per unit mass of
adsorbent, when the surface is covered by a
unimolecule layer of adsorbate
Atomic number

Wavelength

Microgram (10 g)

Microgram of carbon

Micron (10 meter)

Electron mobility at the surface
MicroSiemens /square centimeter
Absorptivity

The permittivity of the vacuum
The Bragg angle for the reflection
Frequency

Power conversion efficiency





