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Abstract

This study is aimed to compare the performance of AERMOD dispersion model by using actual 
and prognostic meteorological data in predicting ground level sulfur dioxide (SO2) concentrations 
and spatial dispersion in the largest petrochemical industrial complex in Thailand. Three SO2 

monitoring stations having the highest percentage of data completeness were selected among 
the air quality monitoring network in the study area to serve the evaluation purpose. Emission 
data in this study comprised of 472 combustion stacks and 11 roads. Those emissions were 
assumed as constant value for each source over the simulated period. The observed air quality 
and meteorological data in May, 2013 were then also selected due to the occurring of hourly 
extreme concentration (episode) of SO2 as well as having highest completeness of measured 
data. Hourly meteorological data during this period obtained from direct measurement and 
prognostic meteorological data were used as input independent variables in the model 
simulation. Evaluation of model performance was accomplished by statistical comparison 
between observed and modeled SO2 concentrations. Results from statistical analysis indicated 
that there were no different between predicted SO2 concentrations from using of prognostic and 
actual meteorological simulations. However, predicted SO2 concentrations by AERMOD from 
both meteorological data provide over-estimate results when compare with those monitoring 
results.
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1. Introduction

 As we all know, since the industrial  
revolution to the present is the time when  
mankind has caused most air pollution problems 
because of the consumption of energy in the 
household, transport, industry and agriculture 
(Pochanart, 2012). Air pollution is a common 
problem, especially in large cities around the 
world (Sienfeld, 1986). There are ozone (O3), 
total suspended particulates (TSP), particulate 
matter (PM), nitrogen dioxide (NO2), sulfur 
dioxide (SO2), carbon monoxide (CO), lead (Pb) 
and other toxins affect health (Seangkiatiyuth et  
al., 2011). At present, the problem of air  
pollution is one of a major environmental 
problem in Thailand. The problem is caused 
by several reasons. One of the major reasons  
is significantly increasing of industrial development 
in order to serve the rapidly growing populations  
and economics (Rakphong, 2009). Major sources 
of air pollution in Thailand are vehicles and 
industrial plants. Vehicles cause air pollution 
problems particularly in large community areas. 
However, the biomass burnings and fugitive 
emissions also played an important role of 
emission sources in some areas. Air pollution  
from industrial plants is space-specific problems, 
but it spreads to surrounding areas, both rural 
and urban, and affecting health of people in the 
community.

 According to the third national economic 
and social development plan (1972-1976), the  
Industrial Estate Authority of Thailand has  
selected potential areas for setting up industrial  
estates and export industrial zones in the  
suburbs of Bangkok, vicinity and provinces 
around the country to make an industrial estate 
a tool for local and urban development.

 Maptaphut industrial area (MA) is the 
largest industrial complex in Thailand (Chusai 
et al., 2012). It is located in Rayong province in 
the Eastern region of Thailand (about 179 km 
from Bangkok). At present, the complex consists 
of five industrial estates namely Map Ta Phut,  
East Hemaraj, Asia, Padaeng, and RIL industrial 
estates and the seaport. As in March 2016, there  
are many types of factory located in MA  
including petrochemical industry (75.0%),  
coal-fired power plant (1.5%), metal industry 
(7.4%), natural gas power plant (11.4%), gas 
separation plant (2.8%), and oil refinery (1.9%) 
(ONEP, 2016). There has been concern about 
many air pollutants over this area due to rapid  
urbanization and industrial growth. The MA 
has been designated as the pollution control 
area by the Thai’s government in 2009 (ONEP, 
2009). The cause of concern was air quality 
management for the area is known to be difficult,  
due to lack of understanding of emission  
characteristics from different sources or sectors, 
for instance, industrial, power plant, transpor-
tation, and residential (Chusai et al., 2012). 
SO2 is one of major air pollutant resulted to 
deterioration of ambient air quality (US EPA, 
2016). It mainly emits as a result of combustion 
of fossil fuel. It also releases from industrial 
processes such as petrochemical industries and 
power plants, etc. The distribution of SO2 not 
only depends on the emission of SO2, but also is 
affected by meteorological conditions (Calkins 
et al., 2016). It dissipates in the atmosphere cause 
global warming and acid rain (US EPA, 2016).  

 The AMS/EPA Regulatory Model (AER-
MOD) was developed in the United States in 
1991 by the American Meteorology Society  
(AMS) and United States Environmental  
Protection Agency (US EPA). It has been 
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applied to evaluate the dispersion of particle 
and gaseous emissions (Carbonell et al., 2010; 
Chusai et al., 2012; Ma et al., 2013, Calkins et 
al., 2016; Tartakovsky et al., 2016). The major 
part of the AERMOD modeling developed 
and differentiated from other models is the 
application of the Planetary Boundary Layer 
(PBL) principle and advanced methods for 
complex terrains. The AERMOD modeling is 
a steady-state plume model. It is assumed that 
the Stable boundary layer (SBL) has a Gaussian 
concentration distribution. The convective  
boundary layer is a Gaussian spread horizontally. 
The convective boundary layer (CBL) in the 
horizontal will be Gaussian distribution, but 
in the vertical will be Bi-Gaussian distribution. 
However, the limitation in using the Gaussian 
equation accurately to simulate gas dispersion 
is due to a low wind speed or calm wind less 
than 0.5 m/s (Schnelle and Dey, 2000), which 
is not significant to mathematical evaluation. 
AERMOD is a mathematical model used to 
estimate air pollution distribution, distances not 
exceeding 50 km from a variety of sources. The 
model uses meteorological data prepared from 
AERMET pre-processor. AERMET is a process 
for predicting changes in altitude meteorological 
variables by means of similarity or scaling length 
based on surface meteorological data include 
wind speed, wind direction, turbulence and  
temperature. AERMAP is a terrain preprocessor  
that characterizes the terrain and generates  
receptor grids, discrete receptors, and elevation 
for AERMOD. AERMET uses meteorological 
data (surface and upper air meteorological data)  
and surface characteristics to calculate boundary 
layer parameters needed by AERMOD (US 
EPA, 2004). At present, meteorological data  
used to prepare AERMET to serve the regulatory  
air model simulations in Thailand i.e. for  

Environmental Impact Assessment (EIA) were 
obtained from direct measurement from the 
Thai Meteorological Department (for upper and 
surface data) and some were from the Pollution  
Control Department (for surface data). However, 
the upper-air data are only measured by one 
station (Bangkok) for using nationwide. As for 
surface data, even though they are measured on 
the provincial scale, the representativeness of the  
station and large amount of missing data are 
major constraint for these measured meteoro-
logical data. This problem is the major constraint 
of using air dispersion modeling in Thailand and 
many developing countries. A problem emerges 
when trying to estimate the convective mixing 
height because upper air meteorological data 
are required. In Thailand, upper air soundings 
with the required frequency (twice daily) are 
only available at Bangkok (about 120 km from 
the study area). Under these conditions, an 
upper air estimator (UAE) that can estimate the 
convective mixing heights is required. Generally, 
the results of 3D meteorological meso–scale 
models such as MM5 (PSU/NCAR, 2005) or 
WRF–ARW (Advanced Research WRF) (PSU/
NCAR, 2010) are used to fill in to complete the 
upper air characteristics.

 To overcome this problem, a prognostic 
meteorological data are used to support the 
model simulation. However, it should be noted 
that the processed meteorological data may not 
represent the actual conditions experienced at  
the area accurately (Chen et al., 2011). Therefore,  
it is important to determine whether the 
prognostic meteorological data can be used to 
substitute the measured data as well as giving  
the similar predicted concentrations when 
applying as input data for the air dispersion 
model simulations.
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 This study is aimed to evaluate and  
compare the performance of AERMOD  
dispersion model in predicting ground level 
concentrations of air pollutant using an actual 
and prognostic meteorological data. To serve  
this major objective, simulations of SO2  
concentrations in MA were conducted. Emission 
data consisted of 472 combustion stacks and 11 
roads located in the study area. Predicted results 
from both actual and prognostic meteorological 
input were compared with measured ambient 
SO2 concentrations obtained from an intensive  
ambient air monitoring station network.  
Performances of model simulations were  
evaluated through statistical analysis. The  
anticipated benefits of this study will be much  
useful in identifying the appropriateness of  
using actual and prognostic meteorological data 
and examine the ability to use interchangeable  

for inputting hourly meteorological data to  
reduce the cost of data acquisition for AERMOD  
to being utilized for further air pollution  
management and control.

2. Methodology

2.1 Model configuration

 AERMOD dispersion model version 9.4 
is used in this analysis. The modeling domain 
covers an area of 16 × 16 km2 with a horizontal 
and vertical grid spacing of 100 m. Study domain 
is centered at 12.71066 °N (latitude), 101.13273 
°E (longitude). Topographical characteristics of 
the study domain are derived from the Shuttle 
Radar Topography Mission (SRTM3) with a  
resolution of 90 m. These data are used as  
input data for AERMAP analysis. SO2 emissions 

Figure 1. Study domain in a radius of 8 km from center of the MA
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from point and line sources located within the 
study domain are used as emission input for the 
simulation of AERMOD.

 Emissions of SO2 from industrial sources 
are derived from the database of the year 2016  
of the Office of Natural Resources and  
Environmental Policy and Planning (ONEP).  
These data consisted of geographical coordinates, 
stack height (m), stack diameter (m), exhausted 
temperature (K), stack exit velocity (m/s) and 
SO2 emission rate (g/s) of each stack. As for line 
sources, these data were obtained from previous 
study by Thepanondh (2009) and Thawonkaew 
(2016). Totally, there were 472 stacks and 11 
roads with a total SO2 emission of 1732.70 g/s are 
used as emission input in this analysis. Spatial 
distribution of emission sources is illustrated 
in Figure 1.

2.2 Meteorological data

 The hourly surface and upper air  
meteorological of the year 2013 were selected 
in this analysis. Those meteological data were 
prepared in each file format that is suitable to 
be used with the MM5 to produce a MM5 met.

SFC and MM5 met.PFL files (Brode, 2008). The 
prognostic (predicted) meteorological data were 
generated and defragmented by the Mesoscale 
Meteorological Model (MM5) in SAMSON (for 
surface meteorological data) and TD-6201 (for 
upper meteorological data) formats suitable to 
be used with AERMET processor. The observed 
data such as surface characteristics and standard 
meteorological observations (e.g. wind field) 
can also be used as input directly into MM5. 
AERMET then calculates the PBL parameters  
(Monin-Obukhov length; L, convective  
velocity scale; w*, surface friction velocity; u*, 
temperature scale; 2*, mixing height; Zi. These 
parameters are then passed to the INTERFACE 
where similarity expressions (in conjunction  
with measurements) are used to calculate  
vertical profiles of wind speed, lateral and  
vertical turbulent fluctuations, potential  
temperature gradient, and potential temperature.  
For calculation of similarity theory scaling  
parameters (L, u*, and w*) and other parameters 
can be found in user guide of AERMOD and 
AERMET (US EPA, 2004). As for measured 
meteorological data, the data at surface level 
(10 m height from the ground) were obtained 

Figure 2. Wind rose in May 2013 of (a) measured meteorological data and (b) prognostic  
meteorological data.

(a) (b)
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from direct measurement at the HMTP ambient 
air monitoring station located within the study 
domain. However, since there were no available 
of measured upper meteorological data within 
the study area, these data were derived from 
the measurement in Bangkok (about 120 km  
in the northwestern direction of MA).  
Monitoring of meteorological data at 10 m 
height were compared with the results obtained  
from MM5 simulation at the same level.  
Comparison of predicted and measured  
meteorological data by using the wind speed 
and wind direction data were illustrated as wind 
rose as show in Figure 2. There were differences 
in wind direction in which mostly of prevailing 
wind obtained from measured data were these 
blown from south-southeast while the prevailing 
winds from south-southwest were predicted 
from the MM5 model. MM5 also predicted 
higher values of wind speed as compared with 
those obtained from direct measurement. The 
difference between prognostic and measured 
meteorological characteristics may be caused 
by the influenced from nearby building located 
in the vicinity of the meteorological monitoring 
site. These prognostic and measured meteoro-
logical data were used as input data to evaluate 
for their sensitiveness in predicting ground level 
concentrations of SO2 in the study domain in 
the next step.

2.3 Ambient SO2 measured concentra- 
 tion data

 Ambient air quality data were acquired  
from top three monitoring stations namely  

Health Promotion Hospital Maptaphut 
(HMTP), Wat Nong Fap School (WNFS), and 
Muang Mai Maptaphut (MMTP) taking into 
consideration the highest number of available 
data. SO2 ambient monitoring data during the 
period from 1-31 May 2013 were selected for 
model evaluation purpose due to the occurrence 
of hourly extreme concentration (episode) of 
SO2 as well as availability (completeness) of 
measured data from every monitoring station 
as summarized in Table 1.

2.4 Performance evaluation

 Evaluation of model performance was 
accomplished by statistical comparison between 
observed and modeled SO2 concentrations 
covering the period from 1 – 31 May 2013. 
Statistical tools used to serve this purpose were 
Observed Mean  (Omean), Predicted/modeled 
Mean (Pmean), Observed Standard Deviation/
sigma (Ostd), Predicted/modeled Standard  
Deviation/sigma (Pstd), Pearson correlation 
coefficient (r), Root Mean Square Error (RMSE), 
Index Of Agreement (IOA), Fractional Bias 
(Fb), Fraction Variance (Fs) and the Robust 
Highest Concentration (RHC). Predicted results 
under the simulations with the observed and 
prognostic meteorological data over the mod-
eling period on an hourly basis were compared 
with measured SO2 concentrations. Statistical 
indicators used in this evlation were followed 
the previous studies by Cox and Tikvart (1990) 
and Tunlathorntham and Thepanondh (2017) 
as shown in Equations (1) - (10). 

W. Malakan / EnvironmentAsia 11(2) (2018) 38-52
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 (Eq. 5)

 

 RMSE = 1
N  ∑

N

i=1
 (Pi - Oi)2  (Eq. 6)

 

Table 1. Completeness of measured SO2 concentration data (%) from monitoring stations

Months
HMTP FCRzC WNFS

JAN 48.25 90.32 99.87
FEB 65.18 94.49 100.00

MAR 42.20 90.99 100.00
APR 93.47 94.86 99.58

MAY* 98.92 95.03 99.87
JUN 85.00 95.28 100.00
JUL 66.26 91.67 97.98

AUG 77.96 94.49 98.79
SEP 87.64 93.47 98.89
OCT 86.16 93.68 4.70
NOV 95.69 94.03 0.00
DEC 96.24 81.32 68.15

* Reference month have the highest percentage of data completeness

Monitoring stations / Receptors

W. Malakan / EnvironmentAsia 11(2) (2018) 38-52
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 IOA = 1 - 
∑
N

i=1
(|Pi

  - Omean | + | Oi - Omean |)2

∑
N

i=1
(Oi

 - Pi)2

 (Eq. 7)

 

  Fb = 2 
(Omean

 - Pmean)
(Omean

 + Pmean)
 (Eq. 8)

 

  Fs = 2 
(Ostd

 - Pstd)
(Ostd

 + Pstd)
 (Eq. 9)

 

 RHC  = C(R) + ( C  - C(R) In ((3R - 1)
2 )) (Eq. 10)

         Where

 Oi = Observed data

 Pi = Predicted modeled data

 C(R) = the Rth highest concentration

 C  = the mean of the top R-1 concentrations

3. Results and Discussion

3.1 Sulfur Dioxide (SO2) concentrations

 Predicted ground level concentrations 
of SO2 at three receptors were simulated from 
AERMOD model using both observed and 
prognostic meteorological data. Predicted data 
were on an hourly basis were compared with 
those measured data during the same period 
(1-31 May 2013). It was found that AERMOD  
over-estimated SO2 concentrations at two  
receptor points namely HMTP and MMTP for 
both simulations under actual and prognostic  
meteorological input. However, predicted  
concentrations at WNFS were slightly lower 
than their measured data. Overall performances 
of the model were evaluated using fractional bias 
(Fb) and fractional variance (Fs). The values 
can be varied between -2 and 2, with a negative  

value indicating over-prediction and good  
performance is indicated by a value closed to 
zero (Jittra and Thepanondh, 2015). Highest 
values of Fb were found at HMTP while the 
lowest values were observed at WNFS. There 
were no differences between Fb calculated from  
the model simulations under actual and  
meteorological scenarios. Root Mean Square 
Error (RMSE) is an estimator of the overall 
deviations between the observed and predicted 
values (Jittra and Thepanondh, 2015). 

 Smaller of the value indicates a better  
performance of the model. By using this  
statistical tool, it was confirmed that predicted 
SO2 concentrations at WNFS were well agreed 
with those measured data. The values of RMSE 
from both actual and prognostic meteorological 
conditions were even lower than their standard 
deviation (S.D.) indicated that predicted results 

W. Malakan / EnvironmentAsia 11(2) (2018) 38-52
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Table 2. Performance evaluation statistics for SO2 concentrations

Monitoring  
stations

No. of 
samples

Mean S.D. r RMSE IOA Fb Fs RHC

1. HMTP
    Observed 744 6.39 9.23 - - - - - 92.78
    Prognostic Met 744 42.44 24.86 0.83 40.29 0.38 -1.48 -0.92 137.92
    Actual Met 744 42.68 24.94 0.83 40.54 0.38 -1.48 -0.92 138.80
2. WNFS
    Observed 744 3.70 3.30 - - - - - 21.01
    Prognostic Met 744 2.67 9.75 0.42 8.93 0.42 0.32 -0.99 145.97
    Actual Met 744 2.68 9.75 0.42 8.92 0.42 0.32 -0.99 146.13
3. MMTP
    Observed 744 13.21 13.15 - - - - - 88.0
    Prognostic Met 744 35.13 36.60 0.96 32.64 0.64 -0.91 -0.94 151.66
    Actual Met 744 35.36 36.86 0.96 32.99 0.63 -0.91 -0.95 151.70
All stations
    Observed 2232 7.77 10.28 - - - - - 91.23
    Prognostic Met 2232 26.75 31.34 0.93 29.11 0.59 -1.10 -1.01 182.95
    Actual Met 2232 26.91 31.53 0.93 29.36 0.59 -1.10 -1.02 182.29

Note: S.D.; Standard deviation, r; Correlation coefficient, RMSE; Root mean square error, IOA; 
Index of agreement, Fb; Fractional bias, Fs; Fractional variance, RHC; Robust highest concentration

were no biased toward over- or under-predicted 
concentrations. Results of statistical analysis to 
evaluate performance of the model are presented 
in Table 2.

 The quantile–quantile (Q–Q) plots can 
examine the model bias over the concentration 
distribution of their data. Figure 3 (a) presents 
the Q–Q plots between observed and modeled 
values (actual and prognostic meteorological 
data) of SO2 concentrations at every station 
(receptors). This Q–Q diagram indicated that 
AERMOD performed over-prediction for all 
monitoring stations. Figure 3 (b) presents the  
Q–Q plots between actual and prognostic  
meteorological data for predicted SO2  
concentrations. The over- predicted results were  

probably originated as results of over-estimation 
of SO2 emission inventory. The ability of the 
model to predict extreme end concentrations 
(episode) of SO2 were evaluated by comparing 
high end percentiles (90th, 95th, 99th, 99.5th,  
99.9th), maximum and the robust highest  
concentration (RHC) of measured and predicted 
SO2 data as illustrated in Figure 4. It was found 
that predicted results from both simulations 
under actual and prognostic meteorological  
scenarios were about 2 times higher than  
measured data. 

 Therefore, it can be concluded that  
AERMOD did not perform well in predicting 
SO2 concentrations in this study. Beside the 
problem with emission input, this problem 

W. Malakan / EnvironmentAsia 11(2) (2018) 38-52
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could also be contributed by low concentrations 
of measured SO2 data, particularly the present of  
“zero” concentration and a more serious problem 
where atmospheric reactions or deposition 
mechanisms may not be included in the model 
(Chen et al., 2011; Seangkiatiyuth et al., 2011), 
which made it difficult to compare measured 
and predicted results and performed statistical 

analysis. Comparison of SO2 concentrations for 
three different times using both hourly MM5 
model-generated meteorological output and 
observed meteorological data were illustrated in 
Table 3 and Figure 5. The results revealed that 
there were no differences between predicted. 
SO2 concentrations under actual and prognostic 
meteorological simulations. 

(a) (b)

Figure 3. Q–Q plots of SO2 concentrations between (a) observed and modeled results (actual and 
prognostic meteorological simulations) and (b) actual and prognostic meteorological simulations

Figure 4. Mean, percentiles, maximum, and RHC for predicted and observed SO2 concentrations 
for all stations

W. Malakan / EnvironmentAsia 11(2) (2018) 38-52
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Table 3. Comparison of SO2 concentrations for the entire year 2013 

Type of meteorological
data for modeling Max. (1-hr) 95th percentile (1-

hr)
Annual

Prognostic data 32,698 714 171
Observed data 32,616 712 171

Concentration (µg/m3)

 ∆ (a), (b) 1st highest 1-hr

 ∆ (c), (d) 95th percentile of 1-hr

 ∆ (e), (f) Annual average concentrations

Figure 5. Comparison of plot file of SO2 concentrations (µg/m3) between measured (a,c,e) and 
prognostic meteorological simulations (b,d,f)

W. Malakan / EnvironmentAsia 11(2) (2018) 38-52
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 This finding indicated that the prognostic 
(modeled) meteorological data can be used 
to substitute or replace meteorological data 
obtained from direct measurements in this 
study area. Small difference in predicted SO2 

concentrations simulated using actual and  
prognostic meteorological data could be resulted 
by the influences of similar upper air which 
play more important role in AERMOD than 
surface air data. Figure 5 (a & b) illustrate the 
spatial distribution of the highest 1-hour average 
concentration for each Cartesian grid. High 
concentrations were occurred in the northwest 
direction of the emission sources due to the 
influence of the wind blew from SE direction. 
In order to evaluate whether these high concen-
trations were probably occurred only for couple 
hours, we also evaluate for the 95th percentile of 
the predicted data as shown in Figure 5 (c & d).  
The results clearly indicated that the affected areas 
were those located in the northern direction 
from the emission sources can be considered as 
the affected zone from the industrial complex. 
These areas are located downwind from the 
major prevailing wind (southern wind) of the 
study area. These data were relevant with the 
wind rose diagram over the whole year of the 
study area. Furthermore, little difference in SO2 

levels may be due to other parameters are not 
considered (surface characteristics, cloud cover, 
precipitation, etc.), which may also significantly 
affect model results (Touma et al., 2007; Chen 
et al., 2011). 

4. Conclusions

 AERMOD air dispersion model was  
evaluated for its performance to predict ground 
level SO2 concentrations using actual and  

prognostic meteorological data. Study area was 
Maptaphut industrial area, Thailand. SO2 emission 
data comprised of 472 stacks and 11 roads located  
in the study domain. These emissions were  
assumed as constant value for each source over 
the simulated period. Predicted results were 
compared with those observed data from top 
three receptors, having the highest percentage 
of data completeness in the year 2013 selected 
among the Maptaphut ambient air monitoring  
stations. Wind rose analysis showed that the  
prevailing wind directions were from the southern 
direction. The difference between prognostic 
and measured meteorological characteristics 
may be caused by the influenced from nearby 
building located in the vicinity of the meteo-
rological monitoring site. The maximum and  
minimum values of both wind speed and  
temperature are not significantly different. 
Comparisons of modeled and observed results  
indicated that were the differences results  
indicated that were the differences between 
the modeled and observed values. Predicted 
SO2 concentrations from using both actual and 
prognostic meteorological data were higher 
than measured SO2 ground level concentrations 
for AERMOD air dispersion model. Therefore,  
AERMOD models did not perform well in  
predicting SO2 concentrations (over-prediction) 
for this study. This problem could have been 
caused by low concentrations of measured SO2 

data, which made it difficult to compare the 
results from the predicted and observed. Only 
WNFS station was considered best performing 
due to the highest completeness of measured 
SO2 concentration data. Major finding from 
this study can be concluded that predicted 
SO2 concentration obtained from prognostic 
meteorological simulation were not difference 

W. Malakan / EnvironmentAsia 11(2) (2018) 38-52
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with simulation using actual meteorological  
data. Therefore, these data can be used  
interchangeably for preparation of meteorological 
input for AERMOD model in this study. This 
study will be much useful in identifying the 
appropriateness of using actual and prognostic 
meteorological data and examine the ability to  
use interchangeable for inputting hourly  
meteorological data to reduce the cost of data  
acquisition for AERMOD. It should be noted 
that one of the difference between the predicted 
SO2 concentrations with those measured data  
may be attributed by the choice of metrological 
model used in the analysis. Further model  
comparison study using new generation of  
meteorological model such as WRF model could  
be interested for better explanation of the  
meteorological characteristics in this study 
area. The Advanced Research WRF system 
(WRF-ARW 3.1) can be used as an alternative 
meteorological driver for MM5 in the air quality  
modelling. The WRF-ARW system is a non- 
hydrostatic model (with a hydrostatic option) 
using terrain-following vertical coordinate 
based on hydrostatic pressure (Gsella et al., 
2014). It is considered by NCAR as the successor 
of MM5, since further development of MM5 has 
come to an end in favor of WRF.
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