Pichamat Tantake 2006: Analysis of the Validity of the Dirac Delta Function in TAP

Models Via Numerical Simulation. Master of Engineering (Chemical Engineering),

Major Field: Chemical Engineering, Department of Chemical Engineering.

Thesis Advisor: Associate Professor Phungphai Phanwadee, D.Sc. 105 pages.

ISBN 974-16-1944-8

Regression analysis and moment analysis for estimation of transport and kinetic

parameters in TAP experiments are compared using different types of responses including exit

flow rate curves and normalized responses. The experimental responses were obtained from

simulation under a non-ideal inlet flow condition. The parameter estimation was performed using

the ideal model. The quantities used in the comparison are the percentage differences between

the estimated and the real parameters including the diffusivity and the irreversible first order

reaction rate constant. These quantities also indicate the validity of the ideal inlet condition. For

typical domains in TAP experiments, the diffusivity percentage difference obtained from the

regression analysis was found to be about two times larger than that from the moment analyses.

The percentage difference of the reaction rate constant can be large and depends on the

estimation methods, the types of the response, and the gas conversion.

____/____

Student's signature

Thesis Advisor's signature