

ชื่อโครงการ

การผลิตโปรตีนไอล์ดรอไอลเซทจากเศษเหลือของปลาเพื่อใช้เป็นอาหาร

ເລື່ອງເຫຼືອຈຸລິນທີຢູ່

ជំវិជ្ជយ

ผู้ช่วยศาสตราจารย์ ดร. ปวีนา น้อยทพ

ជំរឿយសាស្ត្រាជារិយ៍ ល.វ.ស វិកាទិ

ផ្ទុវយគាសត្រាគារី ទរ. ហើរិយុណុខុង សិង្សជានសង្គ័

ໜ້າທົດຍ່ອງ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการนำเศษเหลือจำพวกเครื่องในจากปลาทับทิมมาผลิตเป็นโปรตีนไอก็อดร่าลีเซท เพื่อใช้ทดแทนโปรตีนในอาหารเลี้ยงเชื้อจุลินทรีย์ซึ่งเป็นการเพิ่มนูลด่าเศษเหลือใช้ให้เกิดประโยชน์ ศึกษาสภาวะที่เหมาะสมในการสกัดโปรตีนไอก็อดร่าลีเซทจากเครื่องในปลาทับทิมโดยการย่อยด้วยเอนไซม์เปปซิน และปาเปน พบว่า การใช้ปาเปนที่ระดับความเข้มข้นร้อยละ 0.75 ระยะเวลา 60 นาที ค่าความเป็นกรดด่างเริ่มต้นเท่ากับ 6.3 อุณหภูมิ 25 องศาเซลเซียส เป็นสภาวะที่ให้ค่าระดับการย่อยสลายดีที่สุด คือ ร้อยละ 80.71 เมื่อผ่านการทำแห้งแบบเยือกแข็ง พบว่า โปรตีนไอก็อดร่าลีเซท pang มีองค์ประกอบคือ โปรตีน ไขมัน และเต้า ร้อยละ 94.34, 1.88 และ 3.78 ตามลำดับ มีสีเหลือง-น้ำตาลเข้ม ส่วนการวิเคราะห์ชนิดและปริมาณกรดอะมิโนของโปรตีนไอก็อดร่าลีเซทที่ผลิตได้ พบว่า มีกรดอะมิโนครบทั้ง 18 ชนิด โดย lysine, leucine และ phenylalanine มีปริมาณมากที่สุด นอกจากนี้ยังพบว่า สามารถใช้โปรตีนไอก็อดร่าลีเซทดแทนเปปตีนทางการค้าได้ เมื่อจากผลการทดสอบประสิทธิภาพการเลี้ยงเชื้อแบคทีเรีย 3 ชนิด ได้แก่ *Escherichia coli* ATCC25922, *Staphylococcus aureus* TISTR118 และ *Bacillus subtilis* TISTR008 เปรียบเทียบกับเปปตีนทางการค้า พบว่า น้ำหนักแห้งของ *S. aureus* และ *B. subtilis* ที่เลี้ยงในอาหารเลี้ยงเชื้อที่ผลิตได้ มีน้ำหนักมากกว่าน้ำหนักแห้งของแบคทีเรียที่เลี้ยงในอาหารเลี้ยงเชื้อที่ผลิตได้ และที่เลี้ยงในอาหารเลี้ยงเชื้อที่ใช้เปปตีนทางการค้า ($p \leq 0.05$) ส่วนน้ำหนักแห้งของ *E. coli* ที่เลี้ยงในอาหารเลี้ยงเชื้อที่ผลิตได้ และที่เลี้ยงในอาหารเลี้ยงเชื้อที่ใช้เปปตีนทางการค้า มีค่าไม่แตกต่างกัน ($p > 0.05$)

คำสำคัญ: โพรตีนไไซโตรไลเซท ปานเปน ปลาทับทิม เศษเหลือปลา

Title	PRODUCTION OF FISH WASTE HYDROLYSATES AS MICROBIAL GROWTH MEDIA
Author	Assistant Professor Paweena Noitup, Ph.D. Assistant Professor Orose Rugchati, Ph.D. Assistant Professor Riantong Singanusong, Ph.D.

ABSTRACT

The objective of this research was to study the utilization of fish waste such as viscera from red tilapia to produce protein hydrolysate for substitution of peptone in the culture medium. This was value added to fish waste for utilization. The appropriate conditions for protein hydrolysate extraction of red tilapia viscera by using pepsin and papain enzymes were studied. It was found that the use of papain at 0.75% concentration for 60 minutes with the initial pH of 6.3 at 25°C was the condition that provided the highest degree of hydrolysis (80.71%). After freeze-dry, the chemical composition of protein hydrolysate powder contained of 94.34% protein, 1.88 % lipid and 3.78 % ash. Its color was yellow-dark brown. The analysis of type and quantity of amino acids in the protein hydrolysate revealed that there were 18 amino acids, with lysine, leucine and phenylalanine being the predominant. Furthermore, it was also found that the protein hydrolysate could be use for substitution of commercial peptone because of the result from the effectiveness test in supporting growth of 3 bacterial types: *Escherichia coli* ATCC25922, *Staphylococcus aureus* TISTR118 and *Bacillus subtilis* TISTR008 compared to the commercial peptone. The dry weight of *S. aureus* and *B. subtilis* grown in the fish protein hydrolysate medium was greater than that grown in the commercial peptone ($p \leq 0.05$). However, the dry weight of *E. coli* grown in the fish protein hydrolysis medium was not significantly different from that grown in the commercial peptone ($p > 0.05$).

Keywords: protein hydrolysate, papain, red tilapia, fish waste