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Abstract

Protein hydrolysate products prepared using different enzymes at different degrees of hydrolysis (DH) may have
different qualities when applied in a fish diet. In this study, hydrolysis enzymes, including endoproteinase from Bacillus
licheniformis (A), endoproteinase and exopeptidase from Aspergillus oryzae (F), and endoproteinase from B. amyloliquefaciens
(N) were used to prepare tuna viscera hydrolysate products (TVHPs) at low (1) and high (2) DH (40 and 60%, respectively) for
supplementation in fishmeal free diets for Asian seabass. The TVHPs were tested in a feeding trial composed of ten diets: Al-
and F1-TVHP (50g/kg), F2- and A2-TVHP (25 g/kg) of diet, and N-hydrolysed TVHP (either low or high DH) at 25, 50, and 75
g/kg of diet. A control poultry by-product based diet and a fishmeal reference diet were included. Feed intake of fish fed the
TVHP supplemented diets improved by 25.4-41.0% which significantly increased growth performance compared to the control
groups (P<0.05). Growth response was better with diets containing 60% DH-TVHP suggesting that using a TVHP with a higher
DH makes it possible to reduce the inclusion rate while still obtaining a performance benefit. In conclusion, the inclusion levels
of TVHPs at 25-75 g/kg of diet could be suitable as a feeding stimulant in fishmeal free diets for this carnivorous fish.

Keywords: tuna viscera, degree of hydrolysis, inclusion level, feeding stimulant, Asian seabass

1. Introduction

The low palatability of zero-fishmeal diets or diets
with high inclusion levels of alternative plant and animal
protein ingredients have resulted in poor feed consumption by
malabar grouper, Epinephelus malabricus (Wang et al., 2008),
poor performance in Asian seabass, Lates calcarifer
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(Glencross et al., 2011), and reduced feed intake and specific

growth rate in Japanese seabass, Lateolabrax japonicus (Hu
et al., 2013). To overcome these problems, several studies
have added feeding stimulants such as amino acids,
nucleotides, betaine, and organic acids to these types of feeds
to improve their palatability to promote increased feed intake
and enhance growth rates (Barnard, 2006; Kasumyan &
Dgving, 2003; Xue & Cui, 2001). Natural substances such as
fish protein hydrolysates containing high levels of free amino
acids and peptides have recently become candidate feeding
attractants or stimulants for aquaculture diets, while also
being alternative sources of protein. Refstie et al. (2004)
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found that fish protein hydrolysate as a fishmeal replacer at 5-
15% of the diet was also an efficient feeding stimulant that
improved feed intake, growth, nutrient retention, and nutrient
digestibility in early seawater-stage Atlantic salmon (Salmo
salar). In our earlier study in Asian seabass, palatability of
a poultry by-product based diet was improved with
supplementation of tuna viscera hydrolysate at 10, 20, 30, and
40 g/kg (Chotikachinda et al., 2013) which was probably a
result of the high percentage of small peptides in the
hydrolysates. Several studies have shown that amino acids and
low molecular weight peptides are effective in stimulating
feed intake to bring about growth improvements in different
fish species (Erteken & Nezaki, 2002; Hidaka et al., 2000;
Ostaszewska et al., 2013).

Different proteases with different site-specificity
have an effect on hydrolysate characteristics. Foh et al. (2010)
obtained tilapia hydrolysate composed of low molecular
weight peptides of <3,000 Da when hydrolysed by Alcalase
while those produced by Flavourzyme and Neutrase were
much larger (>8,000 Da). Silver carp muscle hydrolysates
produced by both Alcalase and Flavourzyme hydrolysis
contained peptides with a molecular weight <5,000 Da;
however, more than 60% of the peptides found in the
hydrolysates using Alcalase were <1,000 Da (Dong et al.,
2008). Furthermore, differences in peptide composition of
hydrolysates also depend on the degrees of hydrolysis (DH)
and the concentration of enzymes used in the production. For
example, You et al. (2009) reported that DH and protease
influenced the molecular weight of peptide and amino acid
residues of loach (Misgurnus anguillicaudatus) protein
hydrolysates.

Therefore, the present study examined the effects on
the palatability of diets, growth performance, and feed
utilization of Asian seabass by supplementing fishmeal free
diets with tuna viscera hydrolysate products (TVHPs) that
were produced using different enzymes.

2. Materials and Methods

The study was carried out in three consecutive
procedures: (1) preparation of tuna viscera hydrolysate using
different enzymes at two DH levels, (2) determination of
suitable levels of TVHP as an effective feeding stimulant
in a 56-day feeding trial, and (3) a feeding preference test
for the determination of effective TVHPs as feeding
attractants/stimulants.

2.1 Preparation of tuna viscera hydrolysates
2.1.1 Tuna viscera

Viscera of skipjack tuna (Katsuwonus pelamis)
including spleen, stomach, intestine, bile sac, liver, and
pancreas were obtained from Chotiwat Manufacturing Co.,
Ltd., Songkhla, Thailand. The viscera were minced and
packed in plastic bags (0.3-0.4 kg per unit) and stored at
-20 °C until use.

2.1.2 Enzymes

The enzymes used to prepare the protein hydrolysates
were endoprotease from Bacillus licheniformis, (activity 2.4
AU/g) (A), endoprotease and exopeptidase from Aspergillus
oryzae (activity 500 LAPU/g) (F),and endoprotease from B.
amyloliquefaciens (activity 0.8 AU-N/g) (N) by Novozymes,
Bagavaerd, Denmark that were purchased from a local distributor.

2.1.3 Hydrolysis of tuna viscera

Tuna viscera were hydrolysed to obtain the low (1)
and high (2) DH levels (40 and 60%, respectively) according
to Chotikachinda et al. (2013). The frozen minced tuna
viscera samples were thawed by rinsing the storage bags with
tap water. Each hydrolysis was performed in 250 mL
Erlenmeyer flasks containing 30 g of minced tuna viscera
mixed with distilled water at a ratio of 1:2 (w/v) and
homogenized for approximately 1 min using an overhead
mixer (Braun MR 400 HC, Kronberg, Germany). The pH of
the mixtures was adjusted to 8.0 for enzyme A and 7.0 for
enzymes F and N for hydrolysis using 1 N NaOH. The
samples were pre-incubated in shaking water baths (GFL
1083, Burgwedel, Germany) at 50 °C with constant agitation
(100 rpm) for 10 min. To create hydrolysates with low and
high DH, two enzyme/substrate ratios were utilized with each
enzyme. The concentrations of the enzymes added to the
hydrolysis mixtures were as follows: enzyme A at 0.5% (w/w)
and 1.64% (w/w) to Al- and A2-TVHP, enzyme F at 0.5%
(w/w) and 1.32% (w/w) to F1 and F2-TVHP, and enzyme N at
0.5% (w/w) and 2.37 % (w/w) to N1 and N2-TVHP,
respectively. All enzyme-substrate mixtures were held at 50
°C for 1 h followed by enzyme activity termination by heating
at 90 °C for 15 min. The hydrolysed mixtures were
centrifuged (Beckman Avanti™, CA, USA) at 7400xg at 4 °C
for 20 min to remove insoluble materials. The supernatant was
concentrated overnight at 60 °C in an oven (Memmert,
Schwabach, Germany) and stored at -20 °C. All six
hydrolysates, A1-TVHP, A2-TVHP, F1-TVHP, F2-TVHP,
N1-TVHP, and N2-TVHP, were characterized for chemical
composition, peptide size, free amino acid, and total amino
acid content and later used in the diets for the feeding trial and
preference test.

2.2 Feeding trial

2.2.1 Diet preparation

The fishmeal-free diets used for the feeding trial and
the feeding preference test were formulated with poultry by-
product meal (PBM) and soybean meal (SBM) as the primary
protein sources to contain 450-470 g/kg protein and 110-130
g/kg lipid. Twelve diets were prepared consisting of the
control diet, fishmeal reference diet, and ten experimental
diets of A1-TVHP (50 g/kg), A2-TVHP (25 g/kg), F1-TVHP
(50 g/kg), F2-TVHP (25 g/kg), N1-TVHP (25, 50, and 75
0/kg), and N2-TVHP (25, 50, and 75 g/kg) (Table 1). The
diets were prepared using a laboratory Hobart mixer and
pelleter (Hobart, Ohio, USA). The proximate and total amino
acid compositions of the diets were analyzed as described in
2.24and 2.2.5.
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2.2.2 Fish

Juvenile seabass were obtained from the National
Institute of Coastal Aquaculture, Department of Fisheries,
Thailand and reared at the Department of Aquatic Science,
Faculty of Natural Resources, Prince of Songkla University,
Thailand until reaching the required sizes of 2.60 g and 4.43 g
for the feeding trial and the preference test, respectively.

2.2.3 Feeding and response measurement

Thirty-six 100-liter aquaria were used and stocked
with 12 fish/aquarium. The fish were fed twice daily at 10%
of body weight from Day 1 to Day 7 and then to apparent
satiation from Day 8 until the end of the trial. Feed intake was
determined daily and corrected for uneaten diet which was
removed, dried, and reweighed. Fish weight was recorded
individually at the beginning and termination of the feeding
trial. At the end of the 56-day feeding, the survival rate,
weight gain (WG), thermal unit growth coefficient, specific
growth rate (SGR), feed conversion ratio (FCR), and protein
efficiency ratio (PER) were determined.

2.3 Preference test

The test was conducted in three replicated 66-liter
aquaria, each of which was divided into two unequal
compartments using a plastic divider. Two feeding trays were
placed in the smaller front part. Nine fish per tank were
initially placed in the back compartment for one day for
adjustment prior to the test. A paired preference test was
conducted by introducing the control diet and one of the test
diets (at 5% body weight) into trays 1 and 2, respectively. The
divider was then slowly raised up from the bottom. Each
group of fish was allowed to consume either of the two feeds
for 5 minutes. Uneaten feed was removed and dried to a
constant weight at 105 °C and reweighed to calculate the
actual consumed amount of each diet. The relative diet
preference value (%) was measured by quantitative
comparisons of eaten amounts and calculated as follows:

[(Test diet consumed (g) — Control diet consumed (g)) x
100]/Control diet consumed (g)

2.4 Analysis of hydrolysate products and experimental
diets

2.4.1DH

The DH levels of the TVHPs were determined using
the trinitrobenzenesulfonic acid method (Alder-Nissen, 1979).

2.4.2 Molecular weight distribution of peptides

Molecular weights of the peptide fractions were
separated on a fast protein liquid chromatography (FPLC)
column (Superdex™ peptide 10/300 GL, Amersham
Biosciences, Uppsala, Sweden) and compared with
distributions of the standard compounds: cytochrome c
(M,=12,384), Aprotinin (M,=6512) and Vitamin B12
(M,=1355) (Sigma Chemical, MO, USA). The areas of each

fraction were given in percentage relative to the total area
(Slizyte et al., 2005).

2.4.3 Free amino acid and total amino acid content

Freeze-dried hydrolysates were precipitated for
protein and the supernatant was collected for analysis of free
amino acid content. The total amino acid compositions of the
hydrolysates were determined after digesting the samples in
6M hydrochloric acid at 105 °C for 22 h. Both free and total
amino acid content of the hydrolysates and diets were
determined using reversed phase high-performance liquid
chromatography (HPLC) by pre-column fluorescence
derivatization with o-phthaldialdehyde (SIL-9A Auto Injector,
LC-9A Liquid Chromatograph, RF-530 Fluorescence HPLC
Monitor [Shimadzu Corporation, Kyoto, Japan]) and Nova-
Pak C18 cartridge (Waters Corporation, Milford, MA, USA)
following the method of Flynn (1988).

2.4.4 Composition of experimental diets and hydrolysates

The proximate compositions of the hydrolysates and
diets were determined in triplicate following the standard
method of Association of Official Analytical Chemists
(AOAC, 1990).

2.5 Statistical analysis

The data were subjected to analysis of variance
followed by Tukey’s HSD test. The paired t-test was
employed for the feeding preference results between the test
diets against the control diet. Differences were regarded as
significant when P<0.05.

3. Results

3.1 Characterization of tuna viscera hydrolysates and
experimental diets

On a dry matter basis, the hydrolysates contained
826.4-878.3 g/kg protein, 33.4-44.3 g/kg lipid, and 85.2-107.1
g/kg ash (Table 1). The nitrogen solubility of the TVHP was
high (93.85-97.52%) but not significantly different among the
samples (P>0.05). The peptide compositions of the different
hydrolysates had predomimantly small peptides of <500 Da
(Table 1); however, A2-TVHP, F1-TVHP, and F2-TVHP also
contained a high amount (81-95%) of free amino acids
(MW<200 Da).

Most of the free amino acid content of the TVHPs
was not significantly different between the samples, but some
differences were noted for arginine/glycine, lysine,
methionine, tryptophan, aspartic acid, glutamic acid, and
glutamine (Table 2). A2- and F2-TVHP had higher arginine,
methionine, and glutamic acid content than the Al- and F1-
TVHP. All hydrolysates with high DH (A2-, F2-, and N2-
TVHP) had higher lysine, tryptophan, and aspartic acid
content than the lower DH hydrolysates (Al-, F1-, and N1-
TVHP). The total amino acid composition of the TVHPs was
not significantly different among the samples except for
tryptophan, alanine, and glutamine (P<0.05) (Table 2).
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Aspartic acid, glutamic acid, arginine/glycine, leucine, and
lysine were high in all hydrolysate samples.

The proximate compositions and amino acid
compositions of the TVHP supplemented diets are shown in
Tables 3 and 4, respectively. The levels of essential amino

acids in the diets were in a close range but there were
distinctive differences in the levels of glutamic acid and
glycine. Glutamic acid was high in diets 4 through 9 and
glycine in diets 5 through 9.

Table 2. Proximate composition (dry matter basis), degree of hydrolysis, ammonia nitrogen, nitrogen solubility index, protein recovery and
molecular weight distribution of tuna viscera hydrolysate products (TVHPs).

Composition * Al1-TVHP? A2-TVHP 3 F1-TVHP* F2-TVHP® N1-TVHP ¢ N2-TVHP’
Protein (g/ kg) 857.2426.4% 878.3+16.8° 826.4+15.3% 837.1+11.7% 842.4417.1%  854.1+20.9%®
Lipid (g/kg) 44,3118 44,0£1.2° 39.9+1.0° 33.4£0.8° 42.4%0.6 41,518
Ash (g/kg) 103.5+4.5 107.1+3.3° 85.2+7.6° 99.6+1.9% 91.5+9.2% 92.8+4.5%
Degree of hydrolysis (%) 41.7+¢1.2° 62.6+2.3° 43.7+1.4° 64.5+2.3° 43.0+1.8° 63.8+2.7°
Nitrogen solubility index (%) 93.9+2.4 97.5+1.9 94.0£1.6 96.2+3.7 93.9+£3.0 94.8+0.8
Molecular weight ®
>2500 Da 0.2+0.0 0.3%0.2 2.3#3.1 0.6+0.1 0.9+0.1 0.740.9
500 to 2500 Da 9.8+2.4 0.0£0.0 0.240.2 15221 7.9+1.5 3.846.5
200 to 500 Da 38.0+£12.6" 13.3+0.5® 16.1+2.4* 3.1+4.3° 26.7+0.9% 22.0£10.3*
<200 Da 52.0£10.2° 85.4£0.3™ 81.4£0.4™ 94.9+6.5° 64.6£0.7% 70.9£10.5%°

YValues are presented as meansstandard deviation (n=3). Means with different superscripts are significantly different (P<0.05).

2TVHP hydrolyzed using endoprotease from Bacillus licheniformis at low degree of hydrolysis

® TVHP hydrolyzed using endoprotease from Bacillus licheniformis at high degree of hydrolysis

* TVHP hydrolyzed using endoprotease and exopeptidase from Aspergillus oryzae at low degree of hydrolysis

® TVHP hydrolyzed using endoprotease and exopeptidase from Aspergillus oryzae at high degree of hydrolysis

® TVHP hydrolyzed using endoprotease from B. amyloliquefaciens at low degree of hydrolysis

" TVHP hydrolyzed using endoprotease from B. amyloliquefaciens at high degree of hydrolysis

8 Values are the meanz standard deviation of the percentage of peak area (n=2). Means with different superscripts are significantly different (P<0.05).

3.2 Feeding trial

Fish showed a better feed acceptance during the first
7 days when receiving diets formulated with hydrolysates
(Figure 1). The total feed intake at the end of the trial was
significantly higher than those of the PBM control diet
(P<0.05) (Table 5). When compared with the fishmeal
reference diet, which had a feed intake higher than the control
diet by 25.47%, none of the hydrolysate treatments were
significantly different from the reference group (P>0.05). Feed
intake improved by 25.40%, 36.76%, 41.00%, and 33.01%, in
fish fed diet 2 (A1-50), diet 3 (A2-25), diet 4 (F1-50), and diet
5 (F2-25), respectively. Fish fed diets containing N1-TVHP
showed increased feed intake by 21.82%-36.84% compared
with the control, while the fish with the N2-TVHP treatments
improved by 29.12%-32.05%. However, there were no
significant differences among enzyme treatments at all
inclusion levels.

Significant differences in fish growth were observed
between the groups fed the control diet and most treatments
fed the TVHP supplemented diets (P<0.05), except treatments
2 (A1-50) and 6 (N1-25). Similarly, the percentage weight
gain and SGR of all TVHP supplemented groups, except diet 6
(N1-25), were significantly higher than the control group
(Table 5).

The final weights, WG, and SGR of fish fed diets
with 25 g/kg of the higher DH-TVHP (F2- and N2-TVHP)
were similar to those fed diets containing 50 g/kg of the lower
DH-TVHP (F1- and N1-TVHP). The FCR ranged from 1.1 to
1.3 which was better in the groups fed diet 5 (F2-25) and the
reference diet, and inferior in those fed the control diet and

diet 6 (N1-25) (Table 5). The PER was not significantly
different among the dietary treatments (P>0.05). The survival
rate was 100% for all treatments.

3.3 Preference test

The preference test results showed that all test diets
were preferred over the control diet (P<0.05) (Table 6). Diets
7 (N1-25), 10 (N2-50), 11 (N2-75), and 12 (Reference) were
the preferred diets having relative preference values above
65% as compared with only 18.4% for the control diet.
However, only diet 11 with the preference value of 71.8% was
better than the reference diet.
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Figure 1. Cumulative feed intake (g fish™) of fish feds of different
experimental diets (g fish™) during the first 7 days.
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4. Discussion

All prepared tuna viscera hydrolysates had a high
protein content which was consistent with the selection of
animal tissues as raw materials. The high solubility of all
finished hydrolysates, particularly of those at high DH, could
be explained by the release of soluble low molecular weight
peptides and free amino acids and the removal of undigested
substances by centrifugation and partial removal of lipids after
hydrolysis (Benjakul & Morrissey, 1997). The high DH-
TVHPs had greater peptide content below 200 Da, which was
similar to other studies in that peptide size decreased with
increasing DH (Benjakul & Morrissey, 1997; Kristinsson &
Rasco, 2000). Moreover, the use of different enzymes with
different substrate specificities yielded hydrolysates with
different peptide and amino acid compositions. The F1-TVHP
and F2-TVHP showed a high portion of <200 Da peptides
which was probably due to a mixture of endoprotease and
exopeptidase in the enzyme F that could hydrolyze protein
into smaller fragments than the enzyme A and N which
consisted of only endoproteases. Choi et al. (2009) found that
the peptide distribution of croaker hydrolysates varied
between 100 and 4000 Da and the hydrolysate that was
produced using Flavourzyme (endoprotease and exopeptidase)
had more peptides with smaller molecular size compared to
the Protamex (endoprotease) treated hydrolysate.

The contents of free amino acids Ala, Asp, Glu,
Gly/Arg, Leu, and Lys were high in all hydrolysate samples.
The results were similar to those reported for fermented
viscera from skipjack tuna (Katsuwonus pelamis) (Lee et al.,
2004), Persian sturgeon (Acipenser persicus) viscera
hydrolysate (Ovissipour et al., 2009), and Indian carp (Catla
catla) viscera hydrolysates (Bhaskar et al., 2008). In the
present study, the high level of these free amino acids
appeared to enhance the effectiveness of the hydrolysates as
good attractants and stimulants in diets with total fishmeal
replacement, particularly for treatments A2 and F2, which had
higher levels of Arg/Gly, Asp, and Glu than the treatments of
Al and F1. It is known that alanine, glycine, proline, valine,
tryptophan, tyrosine, phenylalanine, lysine, and histidine are
major components of effective feeding stimulants for many
fish species (Leal et al., 2010). In addition, neutral amino
acids containing few or two carbon atoms and having
unbranched and uncharged side chains are highly stimulatory
for the gustatory system of fish (Caprio, 1978). However, taste
preferences of fish are highly species-specific and the
effectiveness of substances acting as gustatory stimuli
depends on the species of the fish (Kasumyan & Dgving,
2003).

The overall results indicated that dietary
supplementation with TVHPs promoted palatability of diets
which are commonly associated with increased feed intake
and growth performance of fish if the diet is nutritionally
complete. Kolkovski et al. (2000) also found that krill
(Euphausia superba) hydrolysate improved diet acceptance
and feed intake, and growth performance in larvae and
juveniles of vyellow perch (P. flavescens), walleye
(Stizostedion vitreum), and lake whitefish (Coregonus
clupeaformis). The influence of feed intake on the specific
growth rate was observed for the TVHP-supplemented diets
while the PER was not significantly different among dietary

treatments. The higher final weights and weight gains
observed in all of the supplemented groups, except diets 2
(A1-50) and 6 (N1-25) compared with fish fed the control
diet, were due to better feed consumption and possibly a better
essential amino acid balance of the former TVHP groups. The
responses also differed among dietary treatments as a result of
both DH and inclusion levels of TVHPs produced by the three
different enzymes. It was observed that the diets containing
60% DH-TVHPs were more effective than the 40% DH-
TVHPs. This implied that the lower DH-TVHP at the 25 g/kg
inclusion rate was not enough to improve the palatability of
the diet. It may be because higher DH-TVHPs contained
higher concentrations of effective free amino acids and small
peptides that induced the active feeding activity, promoted
increased feed intake, and subsequently the good growth in
Asian seabass. The results showed that the method used in
preparation of enzyme hydrolyzed protein hydrolysates in the
present study was effective in liberating a high level of free
amino acids and small peptide products in the range of 200-
500 Da. Zheng et al. (2012) showed that fish fed diets
containing an ultra-filtered fraction (<1000 Da) of fish
hydrolysate resulted in growth improvement and feed
utilization efficiency when fed to Japanese flounder
(Paralichthys olivaceus) in comparison to those with non-
ultra-filtered hydrolysate. In addition, Velez et al. (2007)
found that the majority of potent substances in evoking
olfactory activity from homogenate of ragworm macerate
were small molecular weight compounds of <500 Da with
glycine, praline, and aspartic acid as the most abundant amino
acids. In the present study, TVHP-supplemented diets
contained free amino acids between 10-102 M that might
very well play an important role in the gustatory response,
which was also observed by Kohbara et al. (2000). They
studied gustatory and olfactory sensitivity to extracts of jack
mackerel muscle in young yellowtail (S. quinqueradiata) by
recording electrical responses from the palatal taste nerve and
the olfactory bulb and reported that the ultra-filtrate
(molecular weight cut-off at 10,000 Da) of the extract
stimulated both chemosensory systems. Their thresholds in the
olfactory bulb response were around 10° and 10® M of the
original concentration and those in the gustatory nerve
response were 10 and 102 M.

Feeding stimulants are useful when introducing fish
to new feeds or switching between different feed
formulations, particularly for fishmeal-free feeds. Xue et al.
(2004) showed that feeding stimulants significantly affected
feed intake of juvenile and adult gibel carp (Carassius gibelio)
after a 3-day adaptation. In our study, there was no adaptation
period because a clear response could be better evaluated
when the TVHPs were introduced. The results indicated that
the TVHPs successfully enhanced palatability of the fishmeal-
free diets as confirmed by fish accepting the supplemented
diets from the first day of feeding without a transitional
period. Similarly, summer flounder larvae accepted squid
hydrolysate-based larval diets during the first 3 days which
led to an improvement in SGR and survival rate (Lian et al.,
2008). In addition, we observed in the preference test that the
frequency of visits and feed intake were higher for the
supplemented test diets than those of the control diet. This
study demonstrated that fish could discriminate and choose
between different diet compositions using both olfactory and
gustatory cues to identify chemicals, locate food, and respond
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to nutrients with respect to feeding behavior and consumption,
as also reported by Volkoff and Peter (2006) and Derby and
Sorensen (2008). However, swimming behavior is not easy to
observe for the fast swimming Asian seabass. It is best to
assess the feeding responses of seabass in the consummatory
phase, which allows the fish to take food into the mouth,
followed by separation of palatable from unpalatable particles
by the fish, and culminating in the ingestion of food items or
the expulsion of those that are unpalatable (Lamb, 2001). The
preferred diets in the preference test were in line with the
feeding trial results. Overall responses indicated that Asian
seabass were able to discriminate and choose the diets of
different compositions using both olfactory and gustatory
chemosensory cues, responding to preferred components and
nutrients in their feed, which led to the initiation of feeding
(Derby & Sorensen, 2008; Volkoff & Peter, 2006). Therefore,
the preference test may be an appropriate preliminary method
to select feeding attractants, which is not time consuming and
can be practically applied for potential single and multiple
taste and flavor-enhancing ingredients formulated into diets.

5. Conclusions

This study demonstrated that hydrolysates produced
from tuna viscera by-products of the canning industry, by
using suitable enzymes and adjusting the degree of hydrolysis,
contained a large amount of small peptides and free amino
acids which were effective feeding stimulants for carnivorous
Asian seabass. Therefore, not only are these hydrolysates
value added by-products of the seafood processing industry,
but also a promising solution for palatability improvement and
enhancement of fishmeal free diets which are important for
culturing carnivorous fish species. Based on the growth
performance and potential cost effectiveness in producing
various hydrolysates in this study, the TVHPs produced using
endoproteinase and exopeptidase (F) would be the most
beneficial TVHPs as feeding stimulants in Asian seabass
feeds. However, the main consideration, when considering the
cost effectiveness of hydrolysis is the quantity of enzymes
used to produce the TVHP at the desired DH.
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