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Abstract 
 
A modern controller was designed by using the mathematical model of a multi–zone thermal plate system. An 

important requirement for this type of controller is that it must be able to keep the temperature set-point of each thermal zone. 
The mathematical model used in the design was determined through a system identification process. The results showed that 
when the operating condition is changed, the performance of the controller may be reduced as a result of the system parameter 
uncertainties. This paper proposes a weighting technique of combining the robust model predictive controller for each operating 
condition into a single robust multi-model predictive control. Simulation and experimental results showed that the proposed 
method performed better than the conventional multi-model predictive control in rise time of transient response, when used in a 
system designed to work over a wide range of operating conditions. 
 
Keywords: robust multi-model predictive control, conventional model predictive control, weighting techniques, multi-zone 

thermal plates, bake plate system 
 

 
1. Introduction 

 
The design objective of a model predictive control 

(MPC) generally uses a linear model to compute the trajectory 
of future control inputs when optimizing the future behavior 
of the system outputs over a limited time window. However, 
when the system operating conditions are changed, model 
uncertainty could lower the controller performance. To 
minimize the impact of uncertainties in a system designed to 
operate in a wide range of operating conditions, a multi-model 
controller algorithm might offer a possible solution to the 
problem. 

Literature reviews revealed that a number of 
techniques using a multi-model controller algorithm have 
been proposed to control different systems. For example, 
Dougherty and Cooper (2003) proposed a multiple model 

 
adaptive control for a multivariable model predictive control 
by designing a model predictive algorithm for each operating 
condition and using output variables to choose the suitable 
controller for a multi-tank and distillation column system. 
Chen et al. (2009) designed a multiple model predictive 
control for an electric car fuel cell based on the variation of 
vehicle loads. Gan and Wang (2011), in their implementation 
of a multi-model predictive control in an induction motor, 
classified the system into low-speed and high-speed models 
and designed a model predictive control for each model. They 
also compared the two switching strategies otherwise known 
as the bumpless transfer switching and the hysteresis 
switching strategies. Experimental results have also shown 
that the hysteresis switching method had better closed-loop 
performance than the bumpless transfer switching method.  

The requirement for a controller of a multi-zone 
thermal plate or bake plate system, also known as multi-input 
multi-output system, is that it must be able to keep a 
temperature at a set-point in each thermal zone. Several 
techniques to control such systems have been proposed in the 
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literature. For example, Hoa et al. (2007) proposed a 
decentralized controller with feed-forward proportional-
integral in each of the multi-zone thermal plates. Experimental 
results showed that the feed-forward part did improve the 
system transient response. In their simulation study of the 
predictive ratio control, Tay et al. (2008) showed that the 
strategy was able to improve the performance of the two-zone 
thermal plate system. 

Ling et al. (2009) proposed the multiplexed model 
predictive control to reduce the computational time of a model 
predictive control in multi-zone thermal plates using speedily 
updated information of the system control input, output 
response, disturbance signal, and reference signal.  

The literature reviews also revealed that many more 
research studies have developed control algorithms to deal 
with transient performance, computational time reduction, and 
plant uncertainty handling over a wide range of operating 
conditions. This therefore shows that the multi-zone thermal 
plate system needs a controller with a multivariable 
framework to deal with the multivariable problems and model 
uncertainties that are associated with the different operating 
conditions. 

This paper presents the first time implementation of 
a robust multi-model predictive controller with weighting 
techniques for a multi-zone thermal plate system. While most 
of multi-zone thermal plate controllers are designed based on 
a single point of the plant model, the proposed controller is 
designed from an uncertain model by using the linear matrix 
inequality algorithm in predictive control framework. Due to 
the wide range of operating conditions, each of the robust 
model predictive controllers has been combined into the 
robust multi-model predictive controller by using weighting 
techniques. To guarantee stability of the closed-loop system, 

this paper studied the stability of the multi-model with an 
uncertain system using Lyapunov’s direct method. 

The remaining sections of this paper include the 
Materials and Methods section, which discusses the basics of 
the model predictive control, the robust model predictive 
control, the method for dividing the range of operating 
conditions into sub-models, the bank of the controller and the 
stability analysis of a multi–model system, the weighting 
method for creating the multi-model predictive control for 
each model predictive controller under each operating 
condition, and finally the experimental set-up. This is 
followed by the Results and Discussion section, which 
presents the results of the simulation and experimental study, 
while the final section concludes the paper. 

      
2. Materials and Methods 
 
2.1 Conventional model predictive control  
 

The steps of Maciejowski (2002) for developing the 
MPC were followed in this study. For solving the predictive 
control problem, the controller must compute the predicted 
values of the state vector ( )x̂ k+i k  from the measurement of 

the current state vector ( )x k k , the latest input ( )u k 1− , and 

the future input changes, ( )Δu k+i k . The notation 

( )k+i k indicates that the parameter at time ( )k+i depends on 

the conditions at current time step k. The future of the 
predicted state vector can then be calculated sequentially 
using the set of future control parameters as in equation (1):   
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where matrix A and B are the system matrix and the control input matrix. The parameters PN and 

CN  are used to capture the 
future of the predicted state vector and control input trajectory. The control horizon 

CN  is chosen to be less than or equal to the 

prediction horizon PN . When the whole state vector is measured, ( ) ( ) ( )x̂ k k  = x k  = y k  or the output matrix C = I. The 

sequential output variable can thus be rewritten into a compact matrix form as in equation (2):  
 

                                 ( ) ( ) ( ) ( )Y k x k u k 1 U k= Ψ + ϒ − +Θ∆                                     (2) 

 
where ( ) ( ) ( ) ( ) ( ) T

C C PY k y k+1 k , , y k+N k , y k+N 1 k , , y k+N k = +    is a vector of the predicted output and 

( ) ( ) ( ) T

CU k Δu k k , ,Δu k+N 1 k ∆ = −    is a vector of the future input changes. The matrixΨ ,ϒ and Θ can be written 

as:
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The cost function, defined as ( )J k , reflects the control objective and is expressed as equation (4): 

 
                                                                               ( ) ( ) ( ) ( )2 2

Q R
J k = k Y k + ΔU kΓ −                                               (4) 

where ( ) ( ) ( ) T

Pk r k+1 k , , r k+N k Γ =   is a vector of the reference signal. The notation [ ] [ ]2 T
Q Q• = • •  and [ ] [ ]2 T

R R• = • • . 

The first term represents the objective of minimizing the prediction error. The second term reflects the consideration given to the 
size of the future input changes when the cost function is minimized. The weight matrices Q and R are positive definite matrices 
for tuning the closed–loop performance. The tracking error can be written as equation (5): 
 

                                                                          
The controller must keep the tracking error to zero, then the control input tends to a constant value or the input change 

is zero. Therefore, the reference signal can be rewritten as equation (6): 
 

                                                                               ( ) ( ) ( ) ( )Γ k E k +Ψx k u k 1= + ϒ −                                         (6) 

 
 The cost function from equation (4) became equation (7) by substituting the reference signal in equation (6) and a 
compact matrix form of the sequential output variable in equation (2) into the cost function as shown in equation (7): 
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               (7) 

Taking the first derivative of the cost function in equation (7) is shown in equation (8): 

                                                               ( )
( ) ( ) ( )T TJ k

2Θ QE k 2 Θ QΘ R ΔU k
ΔU k
∂

 = + + ∂
                              (8) 

 To check the minimum fixed points, the second derivative of the cost function in equation (7) is shown in equation (9): 
 
                                                                               ( )
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= +
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                                            (9) 

 
 The weight matrices Q and R are positive definite matrices. Therefore, TQ  > 0Θ Θ  then the second derivative is 
certainly positive definite, which is enough to guarantee minimum fixed points.   
 The minimal solution for a control signal can be determined by setting the first derivative to zero, then the minimal 
control signal can thus be written as equation (10): 
 
                                                                      ( ) ( )1T TΔU k Θ QΘ R Θ QE k

−
 = − +                                      (10) 

(5) 
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In general, only the first control input is implemented. Therefore, the controller gain can be written as equation (11): 
 

                                                                [ ]( ) 1T T
MPCK I ,0 , , 0 Θ QΘ R Θ Q

−
= − +                             (11) 

 
For implementation in a tracking system, the controller gain for tracking systems can be calculated by equation (12). 

The implementation needs the information of all state variables, the reference signal, and the latest control input. 
 

                                                                                    
  

The general settings of the time limit steps are CN n≥  and 
PN 2n≥  , where n is the number of states in the plants. 

The reason for making PN 2n≥ is to have a sufficiently long costing interval. This ensures that the output remains at zero for at 
least n steps and the error signals do not start entering the cost function until the set-point has been achieved exactly. 
 In the case of disturbance problems, equation (1) can be rewritten as equation (13): 
 

                                                            
( ) ( ) ( )

( ) ( ) ( )
i

j=0

ˆy k+i k  = Cx k+i k Du k+i k

ˆCx k+i k D u k-1 u k+j k

+

 
= + + ∆ 

 
∑

                        (13) 

where D is the disturbance matrix. The set of future outputs from time step k+1 to time step Pk+N  can be written as: 

                                                                
2.2 Robust model predictive control  
 

The development of robust model predictive control in this study is based on the work of Kothare et al. (1996). The 
advantage of robust model predictive control (RMPC) is its ability to deal with plant model uncertainties. Such a model may be 
represented by a state-space with polytopic uncertainty as expressed in equation (15): 

 

                                                                     
( ) ( ) ( )
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x k+1  = A x k +B u k

A ,B

Co A ,B , A ,B , , A ,B

Ω∈

Ω =   

                             (15) 

where Ω   is the polytope, Co denotes the convex hull, and [ ]ni niA ,B  are the vertices of the convex hull. The nominal 

performance objective is defined as: 
 

                                                                              

where                                                                               is an error signal from the reference and measured output signal. The 

selection of the PN  and 
CN  values sometimes leads to poor nominal stability properties. Therefore, it is preferable to adopt 

(12) 

(14) 

(16) 
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the infinite horizon approach to guarantee at least nominal stability. The proof of nominal stability followed Maciejowski (2002), 

based on measurement of all state variables when the plant is stable, the model is perfect, the model has no disturbances and all 

of the weight matrices are positive definite. 

Proof.  From the cost function (16), we want to drive the error to zero: 
 

                                                        
 
 The first 

CN  control moves are non-zero: ( )Δu k+i 1 k =0−  for 
Ci > N and we assume the weight matrix S > 0, Q > 0  

and R > 0 . Then the closed-loop stability is obtained for any
C N 0> , providing that the global optimum is found at each step. Let 

( )0J k be the optimal value of the cost function at time k , 0u   denote the computed optimal input level and ỹ denote values of the 

error obtained as a result of applying 0u . Since, ( ) ( )0 0
Cu k+i u k+N 1= −  for 

Ci  N≥ , and since the steady-state value of 0u  

needs to keep ỹ at zero, the optimizer will certainly put ( )0u k+i 0=  for 
Ci  N≥ , since an infinite cost would otherwise result. 

Thus we have 

                                                          
 
 The value of J , evaluated at time k+1 , but maintaining the same control sequence ( )0u k+i k  as computed at time k , 

would be     

                                                            
 
However, at time k+1 the optimization problem becomes: 
 

                                                        
 To infer stability we must now show that ( ) ( )0 0J k+1 J k≤  implies that ||ỹ|| is decreasing. By minimization of the 

robust performance objective, the following is illustrated: 
 

                                                                                                           
 
 We address the nominal performance objective by first deriving an upper bound of the worst case performance cost.  

We assume that at each sampling time k, a control law                                        is used to minimize the value of ( )J k∞
. At 

sampling time k, we define a quadratic function                                                   . For any [ ]ni niA ,B ∈Ω , we suppose  

satisfies the following robust stability constraint:     
 

                            

  
Summing equation (22) from i=0  to ∞  and requiring                     or,                           we get 
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(19) 

(20) 

(21) 

(22) 

(23) 
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The condition                          can be expressed equivalently as the linear matrix inequality (LMI) (24): 

                                                                                                                

where ( ) 1ψ = P k − . The robust stability constraint (22) can be expressed equivalently as the LMI: 

                                                       

The parameters ψ  and Y are obtained from the LMI solution by using the LMI control toolbox (Gahinet et al., 1995). 

The robust controller gain (KRMPC) in the control input                                                                  that minimizes the upper bound     

  of   the robust performance objective function, is given by 

                                                                                 -1
RMPCK =Yψ                                                       (26) 

 The robust controller gain can be synthesized by substituting the vector of the operating conditions into the inequality 
(24) and then solving for the LMI problems (24) and (25) from the LMI toolbox. 
 
2.3 Multi-zone thermal plate system  
 
 The multi-zone thermal plate system is used for heating or cooling a wafer plate over a period in a semiconductor 
process. In general, the shape of the multi-zone thermal plates is circular and the thermal zone is divided into cylindrical 
coordinates. The center of a plate is referred to as the first thermal zone and the next thermal zones are separated by annular 
spaces in the plate. This work set-up at the demo system of a multi-zone thermal plate in the Cartesian coordinates is shown in 
Figure 1. Each zone of the multi-zone thermal plate contains one thermoelectric module (size 4 cm2). The set-up in the Cartesian 
coordinates uses the same power source in each thermoelectric module while in the cylindrical coordinate set-up, a high power 
source level was used in the first thermal zone which is then reduced as annular spaces increase in the plate. A large heat sink and 
two fans were used to remove heat stored on the other side of the four thermoelectric modules. This system has four-input 
voltages applied to each thermoelectric module and four-output temperatures in each zone. Each zone is fitted with a 
thermocouple type K to measure the temperature signal. 

 
Figure 1. Multi-zone thermal plate system. 

 
2.4 Map of the system behavior  
 

Tan et al. (2004) proposed the idea of operating point selection in a multi-model controller using a steady-state map. A 
steady-state map is drawn from the data of the steady-state inputs and steady-state outputs of a system. In this study, the average 
value of the four input and four output signals was used to draw the steady-state map (Figure 2). The entire system was separated 
into three subsystem regions: the first subsystem covered an average temperature range of 23 °C to 70 °C of the multi-zone 
thermal plates system; the second covered a temperature range of 71 °C  to 121 °C, and the last region had temperatures ranging 
from 121 °C  to 124 °C. Each operating region had a system matrix and control input matrix following the step response model 
process of Maciejowski (2002). All parameters of the system matrix and control input matrix are presented in Table 1. 

(24) 

(25) 
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Figure 2. Steady-state map of a multi-zone thermal plate system. 
 

Table 1.     Parameters of the system matrix and control input matrix in each region. 

 
 
From Table 1, we define the upper bound of system matrix  A  and control input matrix B  through equation (27): 
 

                               
0.9009 0.0660 0.0040 0.1633 0.0229 0.0021 0.0010 0.001
0.2354 0.6559 0.0133 0.2014 0.0029 0.0469 0.0002 0.001

A , B
0.0857 0.0402 0.7274 0.2752 0.0009 0.0005 0.0441 0.004
0.1425 0.1465 0.0944 0.7894 0.0019 0.0016

− − − 
  − = =
  −
 
  0.0035 0.009

 
 
 
 
 − 

     (27) 

 
where all of the elements in matrices A and B  are the maximum values in every element of the matrix in Table 1. We defined the 
lower bound of the system matrix A  and control input matrix B  as equation (28). The minimum values of every element in all 
matrices in Table 1 are contained in a lower bound matrix. 
 

                                 
0.8666 0.0780 0.0896 0.0809 0.0124 0.001 0.004 0.007
0.0978 0.6097 0.0357 0.1415 0.0012 0.0177 0.014 0.008

A ,B
0.0589 0.0050 0.5237 0.1484 0.0007 0.0001 0.0073 0.012
0.0759 0.0317 0.0139 0.7202 0.0006 0.001

− − − − − 
 − − − = =
 − −
 
  4 0.002 0.096

 
 
 
 
 − − 

    (28) 

 
The bound of uncertainties of the system matrix and control input matrix in every subsystem can thus be calculated by 

equation (29):    
                           ( ) 1

Ai ni nom dev = A   A A −Ξ − × , ( ) 1
Bi ni nom devΞ  = B   B B −− ×                     (29)  
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where ( )nom
1A = A + A
2

 and ( )dev
1A = A  A
2

− . The uncertainty matrices of the system matrix and control input matrix are 

presented in equations (30) and (31), respectively: 
 

                               
A1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 − −
 − − − Ξ =
 −
 
− − 

, 
A2

1 0.1 0.7 0.2
0.3 0.7 1 0.2
1 1 1 1

0.7 0.2 0.1 0.4

− − 
 − − Ξ =
 − − −
 − 

, 
A3

0.2 1 1 1
1 1 0.7 1

1 0.4 0.6 0.8
1 1 1 1

− − 
 − Ξ =
 −
 − − 

    (30) 

                               
B1

1 1 0.3 1
1 1 1 0.7
1 1 1 0.8
1 1 1 0.7

− − 
 − Ξ =
 −
 − 

, 
B2

1 1 1 1
0.7 0.9 1 1
0 1 0.7 1

0.2 0 0.1 1

− − − 
 − − Ξ =
 − − −
 − 

, 
B3

1 1 1 0.3
1 1 0.6 1
1 0 1 1
1 1 1 1

 − −
 − − − Ξ =
 −
 

− − 

    (31) 

 
2.5 Controller bank  
 

For a demonstration of the performance of the proposed control system, diagrams of the proposed controller and multi-
zone thermal plate are shown in Figure 3.     

 

 
 

Figure 3. Diagram of the proposed control system. 
 
The control effort in each thermal zone can be written as 
 

                                                                         ( ) ( )
3 3

1,2,3,4 i i i
i=1 i=1

u  = w k MPC w k 
 
 
∑ ∑                                   (32) 

 
where i = 1, 2  and 3 are the numbers of the local controllers from regions one, two, and three, respectively. The weight 
parameters w1, w2 and w3 are used to share the effects of each local model predictive controller according to an average 
temperature. The state equation of a multi-model with uncertainties can thus be written as: 
 

                                  
 

where the nomenclature ⊗  refers to the product of the matrix in the element-by-element method, and parameter L is the total 
number of all subsystems. The closed-loop system of equation (33) can thus be determined by substituting the control law 
( ) ( )iu k = K x k−  into equation (33), so the closed-loop system becomes equation (34). 

                              

(33) 

(34) 
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 The first part of a closed-loop equation refers to the nominal part, whereas the second part represents the uncertain part. 
The state feedback gain iK  is used to handle the nominal and uncertain parts. If we define the parameter of the closed-loop 
system as:                                                                                            , the equation can thus be simplified as equation (35):   

                                            

                                                                                              
 

2.6 Robust stability analysis 
 

The steps for deriving the stability of the multi-model with uncertainty system were obtained using   Lyapunov’s   

direct method. 

 
Theorem 1. Based on the proposal of Tanaka and Sugeno (1992),  a discrete system described by ( ) ( )( )x k+1  = f x k , where 

( ) nx k R∈ , ( )( )f x k  is a function vector with the defined property: ( )f 0 0= for all k. Supposing there exists a scalar function 

( )( )V x k  continuous in ( )x k such that ( )V 0 0= , ( )( )V x k 0>  for ( )x k 0≠ , when ( )( )V x k  approaches infinity as 

( )x k →∞  and ( )( )V x k  < 0 ∆ for ( )x k 0≠ , then the equilibrium state ( )x k 0=  for all k would be asymptotically stable 

with ( )( )V x k  as the Lyapunov function. Considering the scalar function ( )( ) ( ) ( )TV x k x k Px k= , where P is a positive definite 

matrix, the decrease of the Lyapunov function can then be derived as: 
 

 
where ( )iw k 0≥  for ( )i 1,2,…,L∈  and ( )

L

i
i,j=1

w k 0>∑ .  

 
Lemma 1. If P is a positive definite matrix such that                           and,                                                                 , then  

 
 
Proof.   

 

 Since P is a positive definite matrix, the term                                                  , then the conclusion of the lemma follows. 
 

Theorem 2. Based on the proposal of Tanaka and Sugeno (1992), the equilibrium of a multi-model with uncertainties system is 
globally asymptotically stable if there exists a common positive definite matrix P for all the subsystems such that:                       

                                          (36)

(35) 
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2.7 Weighting techniques  

To obtain a global controller, the membership functions were developed from the map of a steady-state system (Figure 
4). The weighting condition was derived from the membership functions. The values of weights in each region and intersection 
were calculated based on the average temperature of the multi-zone thermal plate system. The values of weights in each region 
and intersection are presented in Table 2. 

 

Figure 4.    Membership function of a multi-zone thermal plate system. 
 

Table 2. Values of weights in each region and intersection. 

Average temperature ( )aveT  
Weight condition 

1w  2w  3w  
°

aveT 50 C<  1 0 0 

° °
ave50 C T 100 C≤ <  aveT -100

50-100
 1 - 1w  0 

° °
ave100 C T 120 C≤ <  0 1 0 

° °
ave120 C T 130 C≤ <  0 aveT -130

120-130
 1 - 2w  

°
aveT 130 C>  0 0 1 

 
 We checked the robust stability of the closed-loop multi-model system using the procedure of Gahinet et al. (1995) to 
find a common P from the LMI toolbox. The parameters PN and

CN for the closed-loop matrix                          in the conventional 
case were selected to 10 steps and 5 steps and used the subscript C to represent the conventional case. The closed-loop matrices 
are presented as equation (37):      

                                                   
 From theorem 2, the common positive definite matrix 

CP  was found as: 

                                                                          
C

25.94 0.04 6.47 4.12
0.04 8.20 2.53 1.40

P =
6.47 2.53 10.20 2.93

4.123 1.40 2.93 11.62

− − 
 − − − 
 − − −
 − − 

                                    (38)

(37) 
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 In the case of the robust model predictive controller, the vectors for the three operating temperature conditions 
of 60 °C, 65 °C  and 75 °C  were substituted into the linear matrix inequality to determine their robust controller. The 
closed-loop matrix                              in this case was drawn from equation (39). The subscript R represents a robust case. 
 

                                                     
  
 From theorem 2, we found the common positive definite matrix 

RP  as: 
 

                                                                            
R

2.00 0.22 0.38 0.09
0.22 1.169 0.29 0.12

P =
0.39 0.29 1.26 0.16

0.089 012 0.15 1.57

− − 
 − − − 
 − − −
 − − 

                                             (40) 

  
 Then if the condition                         is satisfied for ( )i 1,2,3∈  in the case of the conventional controller and the 
robust controller, the multi-model with uncertainties system is globally asymptotically stable. 
 
 
2.8 Experimental set-up 
 
 Four thermocouples measured the temperature 
from each thermal zone. An IC AD595 was used to 
amplify weak temperature signals and a low-pass filter 
circuit was used to reduce the amplitude of the noise effect. 
An amplified temperature signal was used as feedback data 
to calculate error signals at the controller section. Two 
power devices were used to distribute 12 volt DC from the 
power supply to the thermoelectric plate in each zone when 
a control signal from the data acquisition card (Arduino 
MEGA 2560) was applied to the power device for a finite 
time. The computer and data acquisition card were 
connected via a USB cable. Then, a real-time hardware-in-
the-loop experiment was performed using the MATLAB 
and Simulink programs. Experimentally, the conventional 
and the robust state feedback gain in the framework of the 
multi-model predictive control were compared. The 
average zone temperature in the multi-zone thermal plate 
system was used as the value for selecting the suitable 
controller gain based on the weighting condition to control 
a multi-zone thermal plate system intended for use over a 
wide range of operating conditions.      
 

 
3. Results 
 
3.1 Simulation of a multi-zone thermal plate system 
  
 Simulation of the tracking performance of the 
multi-zone thermal plate system under multi-model 
predictive control (MMPC) and robust multi-model 
predictive control (RMMPC) is presented in Figure 5. A 
three-step change was used as the temperature reference 
signal for thermal zones 1 and 4, while two-level 
temperature reference signals were used for thermal zones 
2 and 3. The results showed that using an RMMPC 
controller produced a better rise time in transient response 
of temperature in all thermal zones than MMPC. However, 
no difference in the closed-loop responses under a steady-
state condition was found between the two controllers. 
During the first 50-second period, it was noted that average 
temperature changes in the case of RMMPC were 
smoother than for the MMPC (Figure 6A). The weight 
value of the first region local controller decreased, while 
that of the second region, based on the weight condition, 
increased as the average temperature exceeded 50 °C. 
Figure 6B shows fluctuations in the weight values in the 
MMPC during the first 50 seconds of the simulation. The 
values of weights 1 and 2 under the RMMPC case are 
shared as a smoother signal. 

 
 

(39) 
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Figure 5.   Tracking performance comparison between a multi-model predictive control   (MMPC) and a robust multi-model predictive control 

(RMMPC) in a multi-zone thermal plates system: (A) Thermal zone 1; (B) Thermal zone 2; (C) Thermal zone 3, and (D) Thermal 
zone 4. 

 
 

 
 

Figure 6.    Simulation results: (A) Average temperature responses and (B) weight values. 
 

 
3.2 Experimental results  
 
 Experimental tracking performance of the 
controllers in a multi-zone thermal plate system is presented 
in Figure 7. Solid and dashed lines represent the tracking 
performance of the RMMPC and MMPC, respectively. The 
transient responses of all temperature zones are better when 
using the RMMPC than the MMPC. When the system is 
working under steady-state conditions, the performance of 

both controllers is the same in thermal zones 1, 2, and 3. The 
temperature responses in thermal zone 4 could not track the 
set-point during the last 50 seconds using the MMPC as a 
controller. The average temperature in the case of the MMPC 
was greater than in the RMMPC case during the first 50 
seconds of the experiment (Figure 8A). Therefore, the weights 
1 and 2 values decreased and increased faster than the weight 
values in the RMMPC case (Figure 8B). 
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Figure 7. Experimental results of tracking the performance between multi-model predictive control (MMPC) and robust multi-model predictive 

control (RMMPC) in a multi-zone thermal plate system: (A) Thermal zone 1; (B) Thermal zone 2; (C) Thermal zone 3, and (D) 
Thermal zone 4. 

 
 
 After 50 seconds of the first period, the values of weights 1 and 2 were similar in the cases of both the MMPC and 
the RMMPC. In the last 50 seconds, weights 1 and 2 settled to 0.54 and 0.46, respectively. 
 

 
 

Figure 8.    Experiment results: (A) Average temperature responses, and (B) weight values. 
 
 

4. Discussion 
 
 The robust model predictive controller in each of 
the operating conditions provided a better rise time in 
transient response than the conventional method in both the 
simulation and the experimental results. The weighting 
method of both cases made a smooth output signal for sharing 
the effects in each local controller. 

 The proposed controller is suitable for dealing 
with a wide range of operating conditions and system 
uncertainties. Therefore, a wide range of operating condition 
systems or variable load systems such as a refrigeration 
system, motor drive system, distillation column system, 
vehicle dynamic system, water tank system, and external 
forces system may use this proposed controller in cases of 
both single-input single-output and multi-input multi-output 
problems. 
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5. Conclusion 
 
 This paper has combined all local MPC and 
RMPC into a global controller using a weighting method. The 
design of the RMPC was based on parameter uncertainty in a 
multi-zone thermal plate system and the case of MPC was 
based on the conventional method. The design of the 
weighting method was based on the steady-state map of a 
multi-zone thermal plate system. The weight condition was 
suitable for sharing the effects of each local controller 
according to the average temperature value. We derived 
stability in both cases of MPC and RMPC to ensure the 
stability property. 
 As a comparison study, the proposed controller 
and conventional method were substantiated by simulation 
and experiment on a multi-zone thermal plate system. 
Simulation and experimental results showed that the proposed 
controller demonstrated improvement on the transient 
performance of the closed-loop system. Future work will 
focus on constrained problems in this control system.    
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