

Songklanakarin J. Sci. Technol. 40 (1), 9-29, Jan. - Feb. 2018

Original Article

Q-fuzzy sets in UP-algebras

Kanlaya Tanamoon, Sarinya Sripaeng, and Aiyared Iampan*

Department of Mathematics, School of Science University of Phayao, Mueang, Phayao, 56000 Thailand

Received: 21 March 2016; Revised: 29 July 2016; Accepted: 27 September 2016

Abstract

In this paper, we introduce the notions of *Q*-fuzzy UP-ideals and *Q*-fuzzy UP-subalgebras of UP-algebras, and their properties are investigated. Relations between a *Q*-fuzzy UP-ideal (resp. *Q*-fuzzy UP-subalgebra) and a level subsets of a *Q*-fuzzy set are investigated, and conditions for a *Q*-fuzzy set to be a *Q*-fuzzy UP-ideal (resp. *Q*-fuzzy UP-subalgebra) are provided. Finally, prove that it is not true that if $\mu \cdot \delta$ is a *Q*-fuzzy UP-ideal (resp. *Q*-fuzzy UP-subalgebra) of $A \times B$, then either μ is a *Q*-fuzzy UP-ideal (resp. *Q*-fuzzy UP-subalgebra) of *B*.

Keywords: UP-algebra, Q-fuzzy UP-ideal, Q-fuzzy UP-subalgebra

1. Introduction and Preliminaries

The concept of a fuzzy subset of a set was first considered by Zadeh (1965). The fuzzy set theories developed by Zadeh and others have found many applications in the domain of mathematics and elsewhere.

The concept of Q fuzzy sets is introduced by many researchers and was extensively investigated in many algebraic structures such as: Jun (2001) introduced the notion of Q-fuzzy subalgebras of BCK/BCI-algebras. Roh *et al.* (2006) studied intuitionistic Q-fuzzy subalgebras of BCK/BCI-algebras. Muthuraj *et al.* (2010) introduced and investigated anti Q-fuzzy BG-ideals of BG-algebras. Mostafa *et al.* (2012) introduced the notions of Q-ideals and fuzzy Qideals in Q-algebras. Sitharselvam *et al.* (2012), Sithar Selvam *et al.* (2013) and Selvam *et al.* (2014) introduced and gave some properties anti Q-fuzzy KU-ideals, anti Q-fuzzy KU- subalgebras and anti *Q*-fuzzy R-closed KU-ideals of KUalgebras. The notion of anti *Q*-fuzzy *R*-closed PS-ideals of PSalgebras is introduced, and related properties are investigated Priya and Ramachandran (2014).

Iampan (2014) introduced a new algebraic structure, called a UP-algebra. In this paper, we introduce the notions of Q-fuzzy UP-ideals and Q-fuzzy UP-subalgebras of UP-algebras, and their properties are investigated. Relations between a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) and a level subsets of a Q-fuzzy set are investigated, and conditions for a Q-fuzzy set to be a Q-fuzzy UP-ideal (resp. Q fuzzy UP-subalgebra) are provided. Finally, prove that it is not true that if $\mu \cdot \delta$ is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of $A \times B$, then either μ is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of A or δ is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of B. Before we begin our study, we will introduce the definition of a UP-algebras.

*Corresponding author

Email address: aiyared.ia@up.ac.th

Definition 1.1. (Iampan, 2014) An algebra $A = (A; \cdot, 0)$ of type (2, 0) is called a UP-algebra if it satisfies the following axioms: for any $x, y, z \in A$,

- $(\mathbf{UP-1}) \ (y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0,$
- **(UP-2)** $0 \cdot x = x$,
- (UP-3) $x \cdot 0 = 0$, and
- (UP-4) $x \cdot y = y \cdot x = 0$ implies x = y.

In (Iampan, 2014) there is given an example of a UP-algebra.

In what follows, let A and B denote UP-algebras unless otherwise specified. The following proposition is very important for the study of a UP-algebra.

Proposition 1.2. (Iampan, 2014) In a UP-algebra A, the following properties hold: for any $x, y \in A$,

- (1) $x \cdot x = 0$,
- (2) $x \cdot y = 0$ and $y \cdot z = 0$ imply $x \cdot z = 0$,

(3)
$$x \cdot y = 0$$
 implies $(z \cdot x) \cdot (z \cdot y) = 0$,

- (4) $x \cdot y = 0$ implies $(y \cdot z) \cdot (x \cdot z) = 0$,
- (5) $x \cdot (y \cdot x) = 0$,
- (6) $(y \cdot x) \cdot x = 0$ if and only if $x = y \cdot x$, and
- (7) $x \cdot (y \cdot y) = 0.$

Definition 1.3. (Iampan, 2014) A nonempty subset B of A is called a *UP-ideal* of A if it satisfies the following properties:

- (1) the constant 0 of A is in B, and
- (2) for any $x, y, z \in A, x \cdot (y \cdot z) \in B$ and $y \in B$ imply $x \cdot z \in B$.

Clearly, A and $\{0\}$ are UP-ideals of A.

Theorem 1.4. (Iampan, 2014) Let A be a UP-algebra and $\{B_i\}_{i\in I}$ a family of UP-ideals of A. Then $\bigcap_{i\in I} B_i$ is a UP-ideal of A.

Definition 1.5. (Iampan, 2014) A subset S of A is called a UP-subalgebra of A if the constant 0 of A is in S, and $(S; \cdot, 0)$ itself forms a UP-algebra. Clearly, A and $\{0\}$ are UP-subalgebras of A.

Proposition 1.6. (Iampan, 2014) A nonempty subset S of a UP-algebra $A = (A; \cdot, 0)$ is a UP-subalgebra of A if and only if S is closed under the \cdot multiplication on A.

Theorem 1.7. (Iampan, 2014) Let A be a UP-algebra and $\{B_i\}_{i\in I}$ a family of UP-subalgebras of A. Then $\bigcap_{i\in I} B_i$ is a UP-subalgebra of A.

Lemma 1.8. (Somjanta et al., 2015) Let f be a fuzzy set in A. Then the following statements hold: for any $x, y \in A$,

(1)
$$1 - \max\{f(x), f(y)\} = \min\{1 - f(x), 1 - f(y)\}, and$$

(2) $1 - \min\{f(x), f(y)\} = \max\{1 - f(x), 1 - f(y)\}.$

Definition 1.9. (Kim, 2006) A *Q*-fuzzy set in a nonempty set X (or a *Q*-fuzzy subset of X) is an arbitrary function $f: X \times Q \to [0, 1]$ where Q is a nonempty set and [0, 1] is the unit segment of the real line.

Definition 1.10. A *Q*-fuzzy set f in A is called a *q*-fuzzy *UP*-ideal of A if it satisfies the following properties: for any $x, y, z \in A$,

- (1) $f(0,q) \ge f(x,q)$, and
- (2) $f(x \cdot z, q) \ge \min\{f(x \cdot (y \cdot z), q), f(y, q)\}.$

A Q-fuzzy set f in A is called a Q-fuzzy UP-ideal of A if it is a q-fuzzy UP-ideal of A for all $q \in Q$.

Example 1.11. Let $A = \{0, 1\}$ be a set with a binary operation \cdot defined by the following Cayley table:

$$\begin{array}{c|cc} \cdot & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}$$

Then $(A; \cdot, 0)$ is a UP-algebra. Let $Q = \{a, b\}$. We define a Q-fuzzy set f in A as follows:

$$\begin{array}{c|ccc} f & a & b \\ \hline 0 & 0.3 & 0.2 \\ 1 & 0.1 & 0.1 \\ \end{array}$$

Using this data, we can show that f is a Q-fuzzy UP-ideal of A.

Example 1.12. Let $A = \{0, 1\}$ be a set with a binary operation \cdot defined by the following Cayley table:

$$\begin{array}{c|ccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 0 & 0 \\ \end{array}$$

Then $(A; \cdot, 0)$ is a UP-algebra. Let $Q = \{a, b\}$. We define a Q-fuzzy set f in A as follows:

$$\begin{array}{c|ccc} f & a & b \\ \hline 0 & 0.3 & 0.1 \\ 1 & 0.1 & 0.2 \end{array}$$

By Example 1.11, we have f is an *a*-fuzzy UP-ideal of A. Since f(0, b) = 0.1 < 0.2 = f(1, b), we have Definition 1.10 (1) is false. Therefore, f is not a *b*-fuzzy UP-ideal of A. Hence, f is not a *Q*-fuzzy UP-ideal of A.

Definition 1.13. A *Q*-fuzzy set f in A is called a *q*-fuzzy *UP*-subalgebra of A if for any $x, y \in A$,

$$f(x \cdot y, q) \ge \min\{f(x, q), f(y, q)\}.$$

1

A Q-fuzzy set f in A is called a Q-fuzzy UP-subalgebra of A if it is a q-fuzzy UP-subalgebra of A for all $q \in Q$.

Example 1.14. Let $A = \{0, 1, 2\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2
0	0	1	2
1	0	0	1
2	0	0	0

Then $(A; \cdot, 0)$ is a UP-algebra. Let $Q = \{a, b\}$. We defined a Q-fuzzy set f in A as follows:

$$\begin{array}{c|cccc} f & a & b \\ \hline 0 & 0.4 & 0.7 \\ 1 & 0.2 & 0.1 \\ 2 & 0.3 & 0.5 \end{array}$$

Using this data, we can show that f is a Q-fuzzy UP-subalgebra of A.

Example 1.15. Let $A = \{0, 1, 2\}$ be a set with a binary operation \cdot defined by the following Cayley table:

Then $(A;\cdot,0)$ is a UP-algebra. Let $Q=\{a,b\}.$ We defined a Q-fuzzy set f in A as follows:

f	\boldsymbol{a}	b
0	0.4	0.1
1	0.2	0.5
2	0.3	0.7

By Example 1.14, we have f is an *a*-fuzzy UP-subalgebra of A. Since $f(1 \cdot 1, b) = 0.1 < 0.5 = \min\{f(1, b), f(1, b)\}$, we have Definition 1.13 is false. Therefore, f is not a *b*-fuzzy UP-subalgebra of A. Hence, f is not a *Q*-fuzzy UP-subalgebra of A.

Definition 1.16. (Kim, 2006) Let f be a Q-fuzzy set in A. The Q-fuzzy set \overline{f} defined by $\overline{f}(x,q) = 1 - f(x,q)$ for all $x \in A$ and $q \in Q$ is called the *complement* of f in A.

Remark 1.17. For all Q-fuzzy set f in A, we have $f = \overline{\overline{f}}$.

Definition 1.18. Let f be a Q-fuzzy set in A. For any $t \in [0, 1]$, the sets

$$U(f;t) = \{x \in A \mid f(x,q) \ge t \text{ for all } q \in Q\}$$

and

$$U^+(f;t) = \{x \in A \mid f(x,q) > t \text{ for all } q \in Q\}$$

are called an $upper\,t\text{-}level\,subset$ and an $upper\,t\text{-}strong\,level\,subset$ of f, respectively. The sets

$$L(f;t) = \{x \in A \mid f(x,q) \le t \text{ for all } q \in Q\}$$

and

$$L^{-}(f;t) = \{x \in A \mid f(x,q) < t \text{ for all } q \in Q\}$$

are called a *lower t-level subset* and a *lower t-strong level subset* of f, respectively. For any $q \in Q$, the sets

$$U(f;t,q) = \{x \in A \mid f(x,q) \ge t\}$$

and

$$U^+(f;t,q) = \{x \in A \mid f(x,q) > t\}$$

are called a q-upper t-level subset and a q-upper t-strong level subset of f, respectively. The sets

$$L(f;t,q) = \{x \in A \mid f(x,q) \le t\}$$

 and

$$L^{-}(f;t,q) = \{x \in A \mid f(x,q) < t\}$$

are called a q-lower t-level subset and a q-lower t-strong level subset of f, respectively.

We can easily prove the following two remarks.

Remark 1.19. Let f be a Q-fuzzy set in A and for any $t_1, t_2 \in [0, 1]$ with $t_1 \leq t_2$. Then the following properties hold:

- (1) $L(f;t_1) \subseteq L(f;t_2),$
- (2) $U(f;t_2) \subseteq U(f;t_1),$
- (3) $L^{-}(f;t_1) \subseteq L^{-}(f;t_2)$, and
- (4) $U^+(f;t_2) \subseteq U^+(f;t_1).$

Remark 1.20. Let f be a Q-fuzzy set in A and for any $t_1, t_2 \in [0, 1]$ with $t_1 \leq t_2$ and $q \in Q$. Then the following properties hold:

- (1) $L(f;t_1,q) \subseteq L(f;t_2,q),$
- (2) $U(f;t_2,q) \subseteq U(f;t_1,q),$
- (3) $L^{-}(f;t_1,q) \subseteq L^{-}(f;t_2,q)$, and
- (4) $U^+(f;t_2,q) \subseteq U^+(f;t_1,q).$

Definition 1.21. (Iampan, 2014) Let $(A; \cdot, 0)$ and $(A'; \cdot', 0')$ be UP-algebras. A mapping f from A to A' is called a *UP-homomorphism* if

$$f(x \cdot y) = f(x) \cdot f(y)$$
 for all $x, y \in A$.

A UP-homomorphism $f: A \to A'$ is called a

- (1) UP-endomorphism of A if A' = A,
- (2) UP-epimorphism if f is surjective,
- (3) UP-monomorphism if f is injective, and
- (4) UP-isomorphism if f is bijective. Moreover, we say A is UP-isomorphic to A', symbolically, $A \cong A'$, if there is a UP-isomorphism from A to A'.

Proposition 1.22. (Iampan, 2014) Let $(A; \cdot, 0_A)$ and $(B; *, 0_B)$ be UP-algebras and let $f: A \to B$ be a UP-homomorphism. Then $f(0_A) = 0_B$.

Definition 1.23. (Sithar Selvam et al., 2013) Let $f: A \to B$ be a function and μ be a *Q*-fuzzy set in *B*. We define a new *Q*-fuzzy set in *A* by μ_f as

$$\mu_f(x,q) = \mu(f(x),q)$$
 for all $x \in A$ and $q \in Q$.

Definition 1.24. (Sithar Selvam et al., 2013) Let $f: A \to B$ be a bijection and μ_f be a Q-fuzzy set in A. We define a new Q-fuzzy set in B by μ as

$$\mu(y,q) = \mu_f(x,q)$$
 where $f(x) = y$ for all $y \in B$ and $q \in Q$.

Definition 1.25. (Sithar Selvam et al., 2013) Let μ be a *Q*-fuzzy set in *A* and δ be a *Q*-fuzzy set in *B*. The *Cartesian product* $\mu \times \delta \colon (A \times B) \times Q \to [0, 1]$ is defined by

$$(\mu \times \delta)((x, y), q) = \max\{\mu(x, q), \delta(y, q)\}$$
 for all $x \in A, y \in B$ and $q \in Q$.

The dot product $\mu \cdot \delta \colon (A \times B) \times Q \to [0, 1]$ is defined by

 $(\mu \cdot \delta)((x, y), q) = \min\{\mu(x, q), \delta(y, q)\}$ for all $x \in A, y \in B$ and $q \in Q$.

2 Main Results

In this section, we study Q-fuzzy UP-ideals and Q-fuzzy UP-subalgebras of UP-algebras, and their properties are investigated. Relations between a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) and a level subsets of a Q-fuzzy set are investigated, and conditions for a Q-fuzzy set to be a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) are provided. Finally, prove that it is not true that if $\mu \cdot \delta$ is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of $A \times B$, then either μ is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of A or δ is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of B.

Theorem 2.1. Every q-fuzzy UP-ideal of A is a q-fuzzy UP-subalgebra of A.

Proof. Let f be a q-fuzzy UP-ideal of A. Let $x, y \in A$. Then

$f(x \cdot y, q) \ge \min\{f(x \cdot (y \cdot y), q), f(y, q)\}$	(Definition 1.10 (2))
$= \min\{f(x \cdot 0, q), f(y, q)\}$	(Proposition 1.2 (1))
$= \min\{f(0,q), f(y,q)\}$	(UP-3)
=f(y,q)	(Definition $1.10(1)$)
$\geq \min\{f(x,q), f(y,q)\}.$	

Hence, f is a q-fuzzy UP-subalgebra of A.

With Definition 1.10 and Theorem 2.1, we obtain the corollary.

Corollary 2.2. Every Q-fuzzy UP-ideal of A is a Q-fuzzy UP-subalgebra of A.

Theorem 2.3. If f is a q-fuzzy UP-subalgebra of A, then $f(0,q) \ge f(x,q)$ for all $x \in A$.

Proof. Assume that f is a q-fuzzy UP-subalgebra of A. By Proposition 1.2 (1), we have $f(0,q) = f(x \cdot x, q) \ge \min\{f(x,q), f(x,q)\} = f(x,q)$ for all $x \in A$.

With Definition 1.13 and Theorem 2.3, we obtain the corollary.

Corollary 2.4. If f is a Q-fuzzy UP-subalgebra of A, then $f(0,q) \ge f(x,q)$ for all $x \in A$ and $q \in Q$.

We can easily prove the following three lemmas.

Lemma 2.5. Let f be a Q-fuzzy set in A and for any $t \in [0,1]$. Then the following properties hold:

(1) $L(f;t) = U(\overline{f};1-t),$

(2)
$$L^{-}(f;t) = U^{+}(\overline{f};1-t),$$

- (3) $U(f;t) = L(\overline{f}; 1-t)$, and
- (4) $U^+(f;t) = L^-(\overline{f};1-t).$

Lemma 2.6. Let f be a Q-fuzzy set in A and for any $t \in [0,1]$ and $q \in Q$. Then the following properties hold:

- (1) $L(f;t,q) = U(\overline{f};1-t,q),$
- (2) $L^{-}(f;t,q) = U^{+}(\overline{f};1-t,q),$
- (3) $U(f;t,q) = L(\overline{f};1-t,q)$, and
- (4) $U^+(f;t,q) = L^-(\overline{f};1-t,q).$

Lemma 2.7. Let f be a Q-fuzzy set in A and for any $t \in [0,1]$ and $q \in Q$. Then the following properties hold:

- (1) $L(f;t) = \bigcap_{q \in Q} L(f;t,q),$
- (2) $L^{-}(f;t) = \bigcap_{q \in Q} L^{-}(f;t,q),$
- (3) $U(f;t) = \bigcap_{q \in Q} U(f;t,q)$, and
- (4) $U^+(f;t) = \bigcap_{q \in Q} U^+(f;t,q).$

Lemma 2.8. (Malik and Arora, 2014) For any $a, b \in \mathbb{R}$ such that $a < b, a < \frac{b+a}{2} < b$.

Theorem 2.9. Let f be a Q-fuzzy set in A. Then the following statements hold:

- (1) \overline{f} is a Q-fuzzy UP-ideal of A if and only if the following condition (\star) holds: for any $t \in [0,1]$ and $q \in Q$, L(f;t,q) is either empty or a UP-ideal of A,
- (2) \overline{f} is a Q-fuzzy UP-ideal of A if and only if the following condition (\star) holds: for any $t \in [0,1]$ and $q \in Q$, $L^-(f;t,q)$ is either empty or a UP-ideal of A,
- (3) f is a Q-fuzzy UP-ideal of A if and only if the following condition (\star) holds: for any $t \in [0,1]$ and $q \in Q$, U(f;t,q) is either empty or a UP-ideal of A, and
- (4) f is a Q-fuzzy UP-ideal of A if and only if the following condition (\star) holds: for any $t \in [0,1]$ and $q \in Q$, $U^+(f;t,q)$ is either empty or a UP-ideal of A.

Proof. (1) Assume that \overline{f} is a *Q*-fuzzy UP-ideal of *A*. Then \overline{f} is a *q*-fuzzy UP-ideal of *A* for all $q \in Q$. Let $q \in Q$ and $t \in [0,1]$ be such that $L(f;t,q) \neq \emptyset$ and let $x \in L(f;t,q)$. Then $f(x,q) \leq t$. Now,

$$\overline{f}(0,q) = \overline{f}(x \cdot 0,q) \tag{UP-3}$$

$$\geq \min\{\overline{f}(x \cdot (x \cdot 0), q), \overline{f}(x, q)\}$$
 (Definition 1.10 (2))
$$= \min\{\overline{f}(x \cdot 0, q), \overline{f}(x, q)\}$$
 (UP-3)

$$=\min\{\overline{f}(0,q),\overline{f}(x,q)\}\tag{UP-3}$$

$$=\overline{f}(x,q).$$
 (Definition 1.10 (1))

Then $1 - f(0,q) \ge 1 - f(x,q)$, so $f(0,q) \le f(x,q) \le t$. Hence, $0 \in L(f;t,q)$. Let $x, y, z \in A$ be such that $x \cdot (y \cdot z) \in L(f;t,q)$ and $y \in L(f;t,q)$. Then $f(x \cdot (y \cdot z),q) \le t$ and $f(y,q) \le t$. By Definition 1.10 (2), we have $\overline{f}(x \cdot z,q) \ge \min\{\overline{f}(x \cdot (y \cdot z),q)\}$. Thus

$$1 - f(x \cdot z, q) \ge \min\{1 - f(x \cdot (y \cdot z), q), 1 - f(y, q)\}$$

= 1 - max{f(x \cdot (y \cdot z), q), f(y, q)}. (Lemma 1.8 (1))

Then $f(x \cdot z, q) \leq \max\{f(x \cdot (y \cdot z), q), f(y, q)\} \leq t$. Hence, $x \cdot z \in L(f; t, q)$. Therefore, L(f; t, q) is a UP-ideal of A.

Conversely, assume that the condition (*) holds and suppose that $\overline{f}(0,q) \geq \overline{f}(x,q)$ for all $x \in A$ and $q \in Q$ is false. Then there exist $x \in A$ and $q \in Q$ such that $\overline{f}(0,q) < \overline{f}(x,q)$. Thus 1 - f(0,q) < 1 - f(x,q), so f(0,q) > f(x,q). Let $t = \frac{f(0,q) + f(x,q)}{2}$. Then $t \in [0,1]$ and by Lemma 2.8, we have f(0,q) > t > f(x,q). Thus $x \in L(f;t,q)$, so $L(f;t,q) \neq \emptyset$. By assumption, we have L(f;t,q) is a UP-ideal of A. It follows that $0 \in L(f;t,q)$, so $f(0,q) \leq t$ which is a contradiction. Hence, $\overline{f}(0,q) \geq \overline{f}(x,q)$ for all $x \in A$ and $q \in Q$. Suppose that $\overline{f}(x \cdot z,q) \geq \min\{\overline{f}(x \cdot (y \cdot z),q), \overline{f}(y,q)\}$ for all $x, y, z \in A$ and $q \in Q$ is false. Then there exist $x, y, z \in A$ and $q \in Q$ such that $\overline{f}(x \cdot z,q) < \min\{\overline{f}(x \cdot (y \cdot z),q), \overline{f}(y,q)\}$.

$$1 - f(x \cdot z, q) < \min\{1 - f(x \cdot (y \cdot z), q), 1 - f(y, q)\}$$

= 1 - max{f(x \cdot (y \cdot z), q), f(y, q)}. (Lemma 1.8 (1))

Then $f(x \cdot z, q) > \max\{f(x \cdot (y \cdot z), q), f(y, q)\}$. Let $g_0 = \frac{f(x \cdot z, q) + \max\{f(x \cdot (y \cdot z), q), f(y, q)\}}{2}$. Then $g_0 \in [0, 1]$ and by Lemma 2.8, we have $f(x \cdot z, q) > g_0 > \max\{f(x \cdot (y \cdot z), q), f(y, q)\}$. Thus $f(x \cdot (y \cdot z), q) < g_0$ and $f(y, q) < g_0$, so $x \cdot (y \cdot z) \in L(f; g_0, q)$ and $y \in L(f; g_0, q)$, so $L(f; g_0, q) \neq \emptyset$. By assumption, we have $L(f; g_0, q)$ is a UP-ideal of A. It follows that $x \cdot z \in L(f; g_0, q)$, so $f(x \cdot z, q) \leq g_0$ which is a contradiction. Hence, $\overline{f}(x \cdot z, q) \geq \min\{\overline{f}(x \cdot (y \cdot z), q), \overline{f}(y, q)\}$ for all $x, y, z \in A$ and $q \in Q$. Therefore, \overline{f} is a q-fuzzy UP-ideal of A for all $q \in Q$. Consequently, \overline{f} is a Q-fuzzy UP-ideal of A.

(2) Similarly to as in the proof of (1).

(3) Assume that f is a Q-fuzzy UP-ideal of A. Then f is a q-fuzzy UP-ideal of A for all $q \in Q$. Let $q \in Q$ and $t \in [0,1]$ be such that $U(f;t,q) \neq \emptyset$ and let $x \in U(f;t,q)$. Then $f(x,q) \geq t$. Now,

$$f(0,q) = f(x \cdot 0,q) \tag{UP-3}$$

$$\geq \min\{f(x \cdot (x \cdot 0), q), f(x, q)\}$$
 (Definition 1.10 (2))
= $\min\{f(x \cdot 0, q), f(x, q)\}$ (UP-3)

$$= \min\{f(0,q), f(x,q)\}$$
(UP-3)
= $f(x,q)$ (Definition 1.10 (1))

$$\geq t.$$

Hence, $0 \in U(f;t,q)$. Let $x, y, z \in A$ be such that $x \cdot (y \cdot z) \in U(f;t,q)$ and $y \in U(f;t,q)$. Then $f(x \cdot (y \cdot z),q) \ge t$ and $f(y,q) \ge t$. By Definition 1.10 (2), we have $f(x \cdot z,q) \ge \min\{f(x \cdot (y \cdot z),q), f(y,q)\} \ge t$. Thus $x \cdot z \in U(f;t,q)$. Hence, U(f;t,q) is a UP-ideal of A.

Conversely, assume that the condition (\star) holds and suppose that $f(0,q) \geq f(x,q)$ for all $x \in A$ and $q \in Q$ is false. Then there exist $x \in A$ and $q \in Q$ such that f(0,q) < f(x,q). Let $t = \frac{f(0,q)+f(x,q)}{2}$. Then $t \in [0,1]$ and by Lemma 2.8, we have f(0,q) < t < f(x,q). Thus $x \in U(f;t,q)$, so $U(f;t,q) \neq \emptyset$. By assumption, we have U(f;t,q) is a UP-ideal of A. It follows that $0 \in U(f;t,q)$, so $f(0,q) \geq t$ which is a contradiction. Hence, $f(0,q) \geq f(x,q)$ for all $x \in A$ and $q \in Q$. Suppose that $f(x \cdot z,q) \geq \min\{f(x \cdot (y \cdot z),q), f(y,q)\}$ for all $x, y, z \in A$ and $q \in Q$ is false. Then there exist $x, y, z \in A$ and $q \in Q$ such that $f(x \cdot z,q) < \min\{f(x \cdot (y \cdot z),q), f(y,q)\}$. Let $g_0 = \frac{f(x \cdot z,q) + \min\{f(x \cdot (y \cdot z),q), f(y,q)\}}{2}$. Then $g_0 \in [0,1]$ and By Lemma 2.8, we have $f(x \cdot z,q) < g_0 < \min\{f(x \cdot (y \cdot z),q), f(y,q)\}$. Thus

 $f(x \cdot (y \cdot z), q) > g_0$ and $f(y, q) > g_0$, so $x \cdot (y \cdot z) \in U(f; g_0, q)$ and $y \in U(f; g_0, q)$, so $U(f; g_0, q) \neq \emptyset$. By assumption, we have $U(f; g_0, q)$ is a UP-ideal of A. It follows that $x \cdot z \in U(f; g_0, q)$, so $f(x \cdot z, q) \ge g_0$ which is a contradiction. Hence, $f(x \cdot z, q) \ge \min\{f(x \cdot (y \cdot z), q), f(y, q)\}$ for all $x, y, z \in A$ and $q \in Q$. Therefore, fis a q-fuzzy UP-ideal of A for all $q \in Q$. Consequently, f is a Q-fuzzy UP-ideal of A.

(4) Similarly to as in the proof of (3).

Corollary 2.10. Let f be a Q-fuzzy set in A. Then the following statements hold:

- (1) if \overline{f} is a Q-fuzzy UP-ideal of A, then for any $t \in [0, 1]$, L(f; t) is either empty or a UP-ideal of A,
- (2) if \overline{f} is a Q-fuzzy UP-ideal of A, then for any $t \in [0,1]$, $L^{-}(f;t)$ is either empty or a UP-ideal of A,
- (3) if f is a Q-fuzzy UP-ideal of A, then for any $t \in [0,1]$, U(f;t) is either empty or a UP-ideal of A, and
- (4) if f is a Q-fuzzy UP-ideal of A, then for any $t \in [0,1]$, $U^+(f;t)$ is either empty or a UP-ideal of A.

Proof. (1) Assume that f is a Q-fuzzy UP-ideal of A. By Theorem 2.9 (1), we have that for any $t \in [0,1]$ and $q \in Q$, L(f;t,q) is either empty or a UP-ideal of A. Let $t \in [0,1]$. If $L(f;t,q) = \emptyset$ for some $q \in Q$, it follows from Lemma 2.7 (1) that $L(f;t) = \bigcap_{q \in Q} L(f;t,q) = \emptyset$. If $L(f;t,q) \neq \emptyset$ for all $q \in Q$, it follows from Theorem 2.9 (1) that L(f;t,q) is a UP-ideal of A for all $q \in Q$. By Lemma 2.7 (1) and Theorem 1.4, we have $L(f;t) = \bigcap_{q \in Q} L(f;t,q)$ is a UP-ideal of A.

(2) Similarly to as in the proof of (1).

(3) Assume that f is a Q-fuzzy UP-ideal of A. By Theorem 2.9 (3), we have that for any $t \in [0,1]$ and $q \in Q$, U(f;t,q) is either empty or a UP-ideal of A. Let $t \in [0,1]$. If $U(f;t,q) = \emptyset$ for some $q \in Q$, it follows from Lemma 2.7 (3) that $U(f;t) = \bigcap_{q \in Q} U(f;t,q) = \emptyset$. If $U(f;t,q) \neq \emptyset$ for all $q \in Q$, it follows from Theorem 2.9 (3) that U(f;t,q) is a UP-ideal of A for all $q \in Q$. By Lemma 2.7 (3) and Theorem 1.4, we have $U(f;t) = \bigcap_{q \in Q} U(f;t,q)$ is a UP-ideal of A.

(4) Similarly to as in the proof of (3).

Theorem 2.11. Let f be a Q-fuzzy set in A. Then the following statements hold:

- (1) \overline{f} is a Q-fuzzy UP-subalgebra of A if and only if the following condition (\star) holds: for any $t \in [0,1]$ and $q \in Q$, L(f;t,q) is either empty or a UP-subalgebra of A,
- (2) \overline{f} is a Q-fuzzy UP-subalgebra of A if and only if the following condition (\star) holds: for any $t \in [0,1]$ and $q \in Q$, $L^-(f;t,q)$ is either empty or a UPsubalgebra of A,
- (3) f is a Q-fuzzy UP-subalgebra of A if and only if the following condition (\star) holds: for any $t \in [0, 1]$ and $q \in Q$, U(f; t, q) is either empty or a UP-subalgebra of A, and
- (4) f is a Q-fuzzy UP-subalgebra of A if and only if the following condition (\star) holds: for any $t \in [0,1]$ and $q \in Q$, $U^+(f;t,q)$ is either empty or a UPsubalgebra of A.

Proof. (1) Assume that \overline{f} is a Q-fuzzy UP-subalgebra of A. Then \overline{f} is a q-fuzzy UP-subalgebra of A for all $q \in Q$. Let $q \in Q$ and $t \in [0, 1]$ be such that $L(f; t, q) \neq \emptyset$ and let $x, y \in L(f; t, q)$. Then $f(x, q) \leq t$ and $f(y, q) \leq t$. Now,

$$\overline{f}(x \cdot y, q) \ge \min\{\overline{f}(x, q), \overline{f}(y, q)\} = \min\{1 - f(x, q), 1 - f(y, q)\} = 1 - \max\{f(x, q), f(y, q)\}.$$
(Lemma 1.8 (1))

Then $f(x \cdot y, q) \leq \max\{f(x, q), f(y, q)\} \leq t$, so $x \cdot y \in L(f; t, q)$. Hence, L(f; t, q) is a UP-subalgebra of A.

Conversely, assume that the condition (\star) holds. Let $x, y \in A$ and $q \in Q$ and let $t = \max\{f(x,q), f(y,q)\}$. Thus $f(x,q) \leq t$ and $f(y,q) \leq t$, so $x, y \in L(f;t,q) \neq \emptyset$. By assumption, we have L(f;t,q) is a UP-subalgebra of A. It follows that $x \cdot y \in L(f;t,q)$. Thus $f(x \cdot y,q) \leq t = \max\{f(x,q), f(y,q)\}$, so

$$1 - f(x \cdot y, q) \ge 1 - \max\{f(x, q), f(y, q)\}$$

= min{1 - f(x, q), 1 - f(y, q)}. (Lemma 1.8 (1))

Hence, $\overline{f}(x \cdot y, q) \ge \min\{\overline{f}(x, q), \overline{f}(y, q)\}$. Therefore, \overline{f} is a q-fuzzy UP-subalgebra of A for all $q \in Q$. Consequently, \overline{f} is a Q-fuzzy UP-subalgebra of A.

(2) Similarly to as in the proof of the necessity of (1).

Conversely, assume that the condition (*) holds. Assume that there exist $x, y \in A$ and $q \in Q$ such that $\overline{f}(x \cdot y, q) < \min\{\overline{f}(x, q), \overline{f}(y, q)\}$. By Lemma 1.8 (1), we have $1 - f(x \cdot y, q) < \min\{1 - f(x, q), 1 - f(y, q)\} = 1 - \max\{f(x, q), f(y, q)\}$. Thus $f(x, y, q) > \max\{f(x, q), f(y, q)\}$. Now $f(x \cdot y, q) \in [0, 1]$, we choose $t = f(x \cdot y, q)$. Thus f(x, q) < t and f(y, q) < t, so $x, y \in L^-(f; t, q) \neq \emptyset$. By assumption, we have $L^-(f; t, q)$ is a UP-subalgebra of A and so $x \cdot y \in L^-(f; t, q)$. Thus $f(x \cdot y, q) < t =$ $f(x \cdot y, q)$ which is a contradiction. Hence, $\overline{f}(x \cdot y, q) \geq \min\{\overline{f}(x, q), \overline{f}(y, q)\}$ for all $x, y \in A$ and $q \in Q$. Therefore, \overline{f} is a q-fuzzy UP-subalgebra of A for all $q \in Q$. Consequently, \overline{f} is a Q-fuzzy UP-subalgebra of A.

(3) Assume that f is a Q-fuzzy UP-subalgebra of A. Then f is a q-fuzzy UP-subalgebra of A for all $q \in Q$. Let $q \in Q$ and $t \in [0,1]$ be such that $U(f;t,q) \neq \emptyset$ and let $x, y \in U(f;t,q)$. Then $f(x,q) \ge t$ and $f(y,q) \ge t$, we have $f(x \cdot y,q) \ge \min\{f(x,q), f(y,q)\} \ge t$. Thus $x \cdot y \in U(f;t,q)$. Hence, U(f;t,q) is a UP-subalgebra of A.

Conversely, assume that the condition (\star) holds. Let $x, y \in A$ and $q \in Q$ and let $t = \min\{f(x,q), f(y,q)\}$. Thus $f(x,q) \ge t$ and $f(y,q) \ge t$, so $x, y \in U(f;t,q) \ne \emptyset$. By assumption, we have U(f;t,q) is a UP-subalgebra of A. It follows that $x \cdot y \in U(f;t,q)$. Thus $f(x \cdot y,q) \ge t = \min\{f(x,q), f(y,q)\}$. Hence, f is a q-fuzzy UP-subalgebra of A for all $q \in Q$. Consequently, f is a Q-fuzzy UP-subalgebra of A.

(4) Similarly to as in the proof of the necessity of (3).

Conversely, assume that the condition (*) holds. Assume that there exist $x, y \in A$ and $q \in Q$ such that $f(x \cdot y, q) < \min\{f(x, q), f(y, q)\}$. Then $f(x \cdot y, q) \in [0, 1]$. Choose $t = f(x \cdot y, q)$. Thus f(x, q) > t and f(y, q) > t, so $x, y \in U^+(f; t, q) \neq \emptyset$. By assumption, we have $U^+(f; t, q)$ is a UP-subalgebra of A and so $x \cdot y \in U^+(f; t, q)$. Thus $f(x \cdot y, q) > t = f(x \cdot y, q)$ which is a contradiction. Hence, $f(x \cdot y, q) \ge$ $\min\{f(x, q), f(y, q)\}$ for all $x, y \in A$ and $q \in Q$. Therefore, f is a q-fuzzy UPsubalgebra of A for all $q \in Q$. Consequently, f is a Q-fuzzy UP-subalgebra of A. Corollary 2.12. Let f be a Q-fuzzy set in A. Then the following statements hold:

- (1) if \overline{f} is a Q-fuzzy UP-subalgebra of A, then for any $t \in [0,1]$, L(f;t) is either empty or a UP-subalgebra of A,
- (2) if \overline{f} is a Q-fuzzy UP-subalgebra of A, then for any $t \in [0,1]$, $L^{-}(f;t)$ is either empty or a UP-subalgebra of A,
- (3) if f is a Q-fuzzy UP-subalgebra of A, then for any $t \in [0,1]$, U(f;t) is either empty or a UP-subalgebra of A, and
- (4) if f is a Q-fuzzy UP-subalgebra of A, then for any $t \in [0,1]$, $U^+(f;t)$ is either empty or a UP-subalgebra of A.

Proof. (1) Assume that \overline{f} is a *Q*-fuzzy UP-subalgebra of *A*. By Theorem 2.11 (1), we have for any *t* ∈ [0,1] and *q* ∈ *Q*, *L*(*f*;*t*,*q*) is either empty or a UP-subalgebra of *A*. Let *t* ∈ [0,1]. If *L*(*f*;*t*,*q*) = Ø for some *q* ∈ *Q*, it follows from Lemma 2.7 (1) that $L(f;t) = \bigcap_{q \in Q} L(f;t,q) = \emptyset$. If $L(f;t,q) \neq \emptyset$ for all *q* ∈ *Q*, it follows from Theorem 2.11 (1) that L(f;t,q) is a UP-subalgebra of *A* for all *q* ∈ *Q*. By Lemma 2.7 (1) and Theorem1.7, we have $L(f;t) = \bigcap_{q \in Q} L(f;t,q)$ is a UP-subalgebra of *A*. (2) Similarly to as in the proof of (1).

(3) Assume that f is a Q-fuzzy UP-subalgebra of A. By Theorem 2.11 (3), we have for any $t \in [0, 1]$ and $q \in Q$, U(f; t, q) is either empty or a UP-subalgebra of A. Let $t \in [0, 1]$. If $U(f; t, q) = \emptyset$ for some $q \in Q$, it follows from Lemma 2.7 (3) that $U(f; t) = \bigcap_{q \in Q} U(f; t, q) = \emptyset$. If $U(f; t, q) \neq \emptyset$ for all $q \in Q$, it follows from Theorem 2.11 (3) that U(f; t, q) is a UP-subalgebra of A for all $q \in Q$. By Lemma 2.7 (3) and Theorem 1.7, we have $U(f; t) = \bigcap_{q \in Q} U(f; t, q)$ is a UP-subalgebra of A. (4) Similarly to as in the proof of (3).

Corollary 2.13. Let I be a UP-ideal of A. Then the following statements hold:

- (1) for any $k \in (0,1]$, then there exists a Q-fuzzy UP-ideal g of A such that $L(\overline{g};t) = I$ for all t < k and $L(\overline{g};t) = A$ for all $t \ge k$, and
- (2) for any $k \in [0,1)$, then there exists a Q-fuzzy UP-ideal f of A such that U(f;t) = I for all t > k and U(f;t) = A for all $t \le k$.

Proof. (1) Let f be a Q-fuzzy set in A defined by

$$f(x,q) = \begin{cases} 0 & \text{if } x \in I, \\ k & \text{if } x \notin I, \end{cases}$$

for all $q \in Q$.

Case 1: To show that L(f;t) = I for all t < k, let $t \in [0,1]$ be such that t < k. Let $x \in L(f;t)$. Then $f(x,q) \le t < k$ for all $q \in Q$. Thus $f(x,q) \ne k$ for all $q \in Q$, so f(x,q) = 0 for all $q \in Q$. Thus $x \in I$, so $L(f;t) \subseteq I$. Now, let $x \in I$. Then $f(x,q) = 0 \le t$ for all $q \in Q$. Thus $x \in L(f;t)$, so $I \subseteq L(f;t)$. Hence, L(f;t) = Ifor all t < k.

Case 2: To show that L(f;t) = A for all $t \ge k$, let $t \in [0,1]$ be such that $t \ge k$. Clearly, $L(f;t) \subseteq A$. Let $x \in A$. Then

$$f(x,q) = \begin{cases} 0 < t & \text{if } x \in I, \\ k \le t & \text{if } x \notin I, \end{cases}$$

for all $q \in Q$. Thus $x \in L(f;t)$, so $A \subseteq L(f;t)$. Hence, L(f;t) = A for all $t \ge k$. We claim that L(f;t,q) = L(f;t,q') for all $q,q' \in Q$. For $q,q' \in Q$, we obtain

$$\begin{aligned} x \in L(f; t, q) &\Leftrightarrow f(x, q) \leq t \\ &\Leftrightarrow f(x, q') \leq t \\ &\Leftrightarrow x \in L(f; t, q'). \end{aligned} \tag{f}(x, q) = f(x, q'))$$

Hence, L(f;t,q) = L(f;t,q') for all $q,q' \in Q$. By Lemma 2.7 (1), we have $L(f;t) = \bigcap_{q \in Q} L(f;t,q)$. By the claim, we have L(f;t) = L(f;t,q) for all $q \in Q$. Since L(f;t,q) = L(f;t) = I for all t < k and L(f;t,q) = L(f;t) = A for all $t \ge k$, it follows from Theorem 2.9 (1) that \overline{f} is a Q-fuzzy UP-ideal of A. By Remark 1.17, we have $L(\overline{f};t) = L(f;t) = I$ for all t < k and $L(\overline{f};t) = L(f;t) = A$ for all $t \ge k$. Let $\overline{f} = g$. Then g is a Q-fuzzy UP-ideal of A such that $L(\overline{g};t) = I$ for all t < k and $L(\overline{g};t) = A$ for all t < k and $L(\overline{g};t) = A$ for all $t \ge k$.

(2) Let f be a Q-fuzzy set in A defined by

$$f(x,q) = \begin{cases} 1 & \text{if } x \in I, \\ k & \text{if } x \notin I, \end{cases}$$

for all $q \in Q$.

Case 1: To show that U(f;t) = I for all t > k, let $t \in [0,1]$ be such that t > k. Let $x \in U(f;t)$. Then $f(x,q) \ge t > k$ for all $q \in Q$. Thus $f(x,q) \ne k$ for all $q \in Q$, so f(x,q) = 1 for all $q \in Q$. Thus $x \in I$, so $U(f;t) \subseteq I$. Now, let $x \in I$. Then $f(x,q) = 1 \ge t$ for all $q \in Q$. Thus $x \in U(f;t)$, so $I \subseteq U(f;t)$. Hence, U(f;t) = I for all t > k.

Case 2: To show that U(f;t) = A for all $t \leq k$, let $t \in [0,1]$ be such that $t \leq k$. Clearly, $U(f;t) \subseteq A$. Let $x \in A$. Then

$$f(x,q) = \begin{cases} k \ge t & \text{if } x \notin I, \\ 1 > t & \text{if } x \in I, \end{cases}$$

for all $q \in Q$. Thus $x \in U(f;t)$, so $A \subseteq U(f;t)$. Hence, U(f;t) = A for all $t \leq k$. We claim that U(f;t,q) = U(f;t,q') for all $q,q' \in Q$. For $q,q' \in Q$, we obtain

$$\begin{aligned} x \in U(f;t,q) &\Leftrightarrow f(x,q) \geq t \\ &\Leftrightarrow f(x,q') \geq t \\ &\Leftrightarrow x \in U(f;t,q'). \end{aligned} \tag{f}(x,q) = f(x,q'))$$

Hence, U(f;t,q) = U(f;t,q') for all $q,q' \in Q$. By Lemma 2.7 (3), we have $U(f;t) = \bigcap_{q \in Q} U(f;t,q)$. By the claim, we have U(f;t) = U(f;t,q) for all $q \in Q$. Since U(f;t,q) = U(f;t) = I for all t > k and U(f;t,q) = U(f;t) = A for all $t \le k$, it follows from Theorem 2.9 (3) that f is a Q-fuzzy UP-ideal of A.

Corollary 2.14. Let S be a UP-subalgebra of A. Then the following statements hold:

- (1) for any $k \in (0, 1]$, then there exists a Q-fuzzy UP-subalgebra g of A such that $L(\overline{q}; t) = S$ for all t < k and $L(\overline{q}; t) = A$ for all $t \ge k$, and
- (2) for any $k \in [0,1)$, then there exists a Q-fuzzy UP-subalgebra f of A such that U(f;t) = S for all t > k and U(f;t) = A for all $t \le k$.

Proof. (1) Let f be a Q-fuzzy set in A defined by

$$f(x,q) = \begin{cases} 0 & \text{if } x \in S, \\ k & \text{if } x \notin S, \end{cases}$$

for all $q \in Q$.

In the proof of Corollary 2.13 (1), we have L(f;t) = S for all t < k and L(f;t) = A for all $t \ge k$, and L(f;t,q) = L(f;t,q') for all $q,q' \in Q$. By Lemma 2.7 (1), we have $L(f;t) = \bigcap_{q \in Q} L(f;t,q)$. By the claim, we have L(f;t) = L(f;t,q) for all $q \in Q$. Since L(f;t,q) = L(f;t) = S for all t < k and L(f;t,q) = L(f;t) = A for all $t \ge k$, it follows from Theorem 2.11 (1) that \overline{f} is a Q-fuzzy UP-subalgebra of A. By

Remark 1.17, we have $L(\overline{\overline{f}};t) = L(f;t) = S$ for all t < k and $L(\overline{\overline{f}};t) = L(f;t) = A$ for all $t \ge k$. Let $\overline{f} = g$. Then g is a Q-fuzzy UP-subalgebra of A such that $L(\overline{g};t) = S$ for all t < k and $L(\overline{g};t) = A$ for all $t \ge k$.

(2) Let f be a $Q\mbox{-fuzzy}$ set in A defined by

$$f(x,q) = \begin{cases} 1 & \text{if } x \in S, \\ k & \text{if } x \notin S, \end{cases}$$

for all $q \in Q$.

In the proof of Corollary 2.13 (2), we have U(f;t) = S for all t > k and U(f;t) = A for all $t \le k$, and U(f;t,q) = U(f;t,q') for all $q,q' \in Q$. By Lemma 2.7 (3), we have $U(f;t) = \bigcap_{q \in Q} U(f;t,q)$. By the claim, we have U(f;t) = U(f;t,q) for all $q \in Q$. Since U(f;t,q) = U(f;t) = S for all t > k and U(f;t,q) = U(f;t) = A for all $t \le k$, it follows from Theorem 2.11 (3) that f is a Q-fuzzy UP-subalgebra of A.

Theorem 2.15. Let f be a Q-fuzzy set in A and s < t for $s, t \in [0, 1]$. Then the following statements hold:

- (1) L(f; s, q) = L(f; t, q) if and only if there is no $x \in A$ such that $s < f(x, q) \le t$,
- (2) $L^{-}(f; s, q) = L^{-}(f; t, q)$ if and only if there is no $x \in A$ such that $s \leq f(x, q) < t$,
- (3) U(f; s, q) = U(f; t, q) if and only if there is no $x \in A$ such that $s \leq f(x, q) < t$, and
- (4) $U^+(f; s, q) = U^+(f; t, q)$ if and only if there is no $x \in A$ such that $s < f(x, q) \le t$.

Proof. (1) Assume that L(f; s, q) = L(f; t, q). Suppose that there is $x \in A$ such that $s < f(x, q) \le t$. Then $x \in L(f; t, q)$ but $x \notin L(f; s, q)$, so $L(f; t, q) \neq L(f; s, q)$ which is a contradiction. Hence, there is no $x \in A$ such that $s < f(x, q) \le t$.

Conversely, assume that there is no $x \in A$ such that $s < f(x,q) \le t$. Let $x \in L(f;s,q)$. Then $f(x,q) \le s < t$, so $x \in L(f;t,q)$. Thus $L(f;s,q) \subseteq L(f;t,q)$. Suppose that $L(f;t,q) \nsubseteq L(f;s,q)$. Then there exists $x \in L(f;t,q)$ but $x \notin L(f;s,q)$. Thus $f(x,q) \le t$ and f(x,q) > s, so $s < f(x,q) \le t$ which is a contradiction. Thus $L(f;t,q) \subseteq L(f;s,q)$. Hence, L(f;s,q) = L(f;t,q).

(2) Similarly to as in the proof of (1).

(3) Assume that U(f; s, q) = U(f; t, q). Suppose that there is $x \in A$ such that $s \leq f(x,q) < t$. Then $x \in U(f; s, q)$ but $x \notin U(f; t, q)$, so $U(f; s, q) \neq U(f; t, q)$ which is a contradiction. Hence, there is no $x \in A$ such that $s \leq f(x,q) < t$.

Conversely, assume that there is no $x \in A$ such that $s \leq f(x,q) < t$. Let $x \in U(f;t,q)$. Then $f(x,q) \geq t > s$, so $x \in U(f;s,q)$. Thus $U(f;t,q) \subseteq U(f;s,q)$. Suppose that $U(f;s,q) \nsubseteq U(f;t,q)$. Then there exists $x \in U(f;s,q)$ but $x \notin U(f;t,q)$. Thus $f(x,q) \geq s$ and f(x,q) < t, so $s \leq f(x,q) < t$ which is a contradiction. Thus $U(f;s,q) \subseteq U(f;t,q)$. Hence, U(f;s,q) = U(f;t,q).

(4) Similarly to as in the proof of (3).

Corollary 2.16. Let f be a Q-fuzzy set in A and s < t for $s, t \in [0, 1]$. Then the following statements hold:

- (1) L(f; s, q) = L(f; t, q) if and only if $U^+(f; s, q) = U^+(f; t, q)$, and
- (2) U(f; s, q) = U(f; t, q) if and only if $L^{-}(f; s, q) = L^{-}(f; t, q)$.

Proof. (1) It follows from Theorem 2.15 (1) and Theorem 2.15 (4).

(2) It follows from Theorem 2.15 (2) and Theorem 2.15 (3).

Theorem 2.17. Let $(A; \cdot, 0_A)$ and $(B; *, 0_B)$ be UP-algebras and let $f: A \to B$ be a UP-homomorphism. Then the following statements hold:

- (1) if μ is a q-fuzzy UP-ideal of B, then μ_f is also a q-fuzzy UP-ideal of A, and
- (2) if μ is a q-fuzzy UP-subalgebra of B, then μ_f is also a q-fuzzy UP-subalgebra of A.

Proof. (1) Assume that μ is a q-fuzzy UP-ideal of B. Let $x \in A$. Then

$\mu_f(0_A, q) = \mu(f(0_A), q)$	
$=\mu(0_B,q)$	(Proposition 1.22)
$\geq \mu(f(x),q)$	(Definition 1.10 (1))
$=\mu_f(x,q).$	

Let $x, y, z \in A$. Then

$$\mu_{f}(x \cdot z, q) = \mu(f(x \cdot z), q)$$

$$= \mu(f(x) * f(z), q)$$

$$\geq \min\{\mu(f(x) * (f(y) * f(z)), q), \mu(f(y), q)\} \quad \text{(Definition 1.10 (2))}$$

$$= \min\{\mu(f(x) * f(y \cdot z), q), \mu(f(y), q)\}$$

$$= \min\{\mu(f(x \cdot (y \cdot z)), q), \mu(f(y), q)\}$$

$$= \min\{\mu_{f}(x \cdot (y \cdot z), q), \mu_{f}(y, q)\}.$$

Hence, μ_f is a q-fuzzy UP-ideal of A.

(2) Assume that μ is a q-fuzzy UP-subalgebra of B. Let $x, y \in A$. Then

$$\mu_{f}(x \cdot y, q) = \mu(f(x \cdot y), q) = \mu(f(x) * f(y), q) \geq \min\{\mu(f(x), q), \mu(f(y), q)\}$$
(Definition 1.13)
= min{\mathcal{\mu_{f}}(x, q), \mathcal{\mu_{f}}(y, q)}.

Hence, μ_f is a q-fuzzy UP-subalgebra of A.

With Definition 1.10 and 1.13 and Theorem 2.17, we obtain the corollary.

Corollary 2.18. Let $f: A \to B$ be a UP-homomorphism. Then the following statements hold:

- (1) if μ is a Q-fuzzy UP-ideal of B, then μ_f is also a Q-fuzzy UP-ideal of A, and
- (2) if μ is a Q-fuzzy UP-subalgebra of B, then μ_f is also a Q-fuzzy UP-subalgebra of A.

Theorem 2.19. Let $(A; \cdot, 0_A)$ and $(B; *, 0_B)$ be UP-algebras and let $f: A \to B$ be a UP-isomorphism. Then the following statements hold:

- (1) if μ_f is a q-fuzzy UP-ideal of A, then μ is also a q-fuzzy UP-ideal of B, and
- (2) if μ_f is a q-fuzzy UP-subalgebra of A, then μ is also a q-fuzzy UP-subalgebra of B.

Proof. (1) Assume that μ_f is a q-fuzzy UP-ideal of A. Let $y \in B$. Then there exists $x \in A$ such that f(x) = y, we have

$$\mu(0_B, q) = \mu(y * 0_B, q)$$
(UP-3)

$$= \mu(f(x) * f(0_A), q)$$
(Proposition 1.22)

$$= \mu(f(x \cdot 0_A, q)$$
(UP-3)

$$= \mu_f(x \cdot 0_A, q)$$
(UP-3)

$$\geq \mu_f(x, q)$$
(UP-3)

$$\geq \mu_f(x, q)$$
(UP-3)

$$= \mu(f(x), q)$$
(Definition 1.10 (1))

$$= \mu(y, q).$$

Let $a, b, c \in B$. Then there exist $x, y, z \in A$ such that f(x) = a, f(y) = b and f(z) = c, we have

$$\begin{split} \mu(a * c, q) &= \mu(f(x) * f(z), q) \\ &= \mu(f(x \cdot z), q) \\ &= \mu_f(x \cdot z, q) \\ &\geq \min\{\mu_f(x \cdot (y \cdot z), q), \mu_f(y, q)\} \quad \text{(Definition 1.10 (2))} \\ &= \min\{\mu(f(x \cdot (y \cdot z)), q), \mu(f(y), q)\} \\ &= \min\{\mu(f(x) * (f(y) * f(z)), q), \mu(f(y), q)\} \\ &= \min\{\mu(a * (b * c), q), \mu(b, q)\}. \end{split}$$

Hence, μ is a q-fuzzy UP-ideal of B.

(2) Assume that μ_f is a q-fuzzy UP-subalgebra of A. Let $a, b \in B$. Then there exist $x, y \in A$ such that f(x) = a and f(y) = b, we have

$$\mu(a * b, q) = \mu(f(x) * f(y), q) = \mu(f(x \cdot y), q) = \mu_f(x \cdot y, q) \geq \min\{\mu_f(x, q), \mu_f(y, q)\}$$
(Definition 1.13)
= min{\(\mu(f(x), q), \mu(f(y), q)\)}
= min{\(\mu(a, q), \mu(b, q)\)}.

Hence, μ is a q-fuzzy UP-subalgebra of B.

With Definition 1.10 and 1.13 and Theorem 2.19, we obtain the corollary.

Corollary 2.20. Let $f: A \to B$ be a UP-isomorphism. Then the following statements hold:

- (1) if μ_f is a Q-fuzzy UP-ideal of A, then μ is also a Q-fuzzy UP-ideal of B, and
- (2) if μ_f is a Q-fuzzy UP-subalgebra of A, then μ is also a Q-fuzzy UP-subalgebra of B.

Lemma 2.21. (Bali, 2005) For any $a, b, c, d \in \mathbb{R}$, the following properties hold:

- (1) $\max\{\max\{a, b\}, \max\{c, d\}\} = \max\{\max\{a, c\}, \max\{b, d\}\}, and$
- (2) $\min\{\min\{a, b\}, \min\{c, d\}\} = \min\{\min\{a, c\}, \min\{b, d\}\}.$

Let $(A;\cdot,0_A)$ and $(B;*,0_B)$ be UP-algebras. We can easily prove that $A\times B$ is a UP-algebra defined by

$$(x_1, x_2) \diamond (y_1, y_2) = (x_1 \cdot y_1, x_2 * y_2)$$

for all $x_1, y_1 \in A$ and $x_2, y_2 \in B$.

Theorem 2.22. Let $(A; \cdot, 0_A)$ and $(B; *, 0_B)$ be UP-algebras. Then the following statements hold:

- if μ is a q-fuzzy UP-ideal of A and δ is a q-fuzzy UP-ideal of B, then μ · δ is a q-fuzzy UP-ideal of A × B, and
- (2) if μ is a q-fuzzy UP-subalgebra of A and δ is a q-fuzzy UP-subalgebra of B, then μ · δ is a q-fuzzy UP-subalgebra of A × B.

Proof. (1) Assume that μ is a q-fuzzy UP-ideal of A and δ is a q-fuzzy UP-ideal of B. Let $(x_1, x_2) \in A \times B$. Then

$$\begin{aligned} (\mu \cdot \delta)((0_A, 0_B), q) &= \min\{\mu(0_A, q), \delta(0_B, q)\} \\ &\geq \min\{\mu(x_1, q), \delta(x_2, q)\} \\ &= (\mu \cdot \delta)((x_1, x_2), q). \end{aligned}$$
(Definition 1.10 (1))

Let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in A \times B$. Then

$$\begin{split} (\mu \cdot \delta)((x_1, x_2) \diamond (z_1, z_2), q) \\ &= (\mu \cdot \delta)((x_1 \cdot z_1, x_2 \ast z_2), q) \\ &= \min\{\mu(x_1 \cdot z_1, q), \delta(x_2 \ast z_2, q)\} \\ &\geq \min\{\min\{\mu(x_1 \cdot (y_1 \cdot z_1), q), \mu(y_1, q)\}, \\ &\min\{\delta(x_2 \ast (y_2 \ast z_2), q), \delta(y_2, q)\}\} \quad \text{(Definition 1.10 (2))} \\ &= \min\{\min\{\mu(x_1 \cdot (y_1 \cdot z_1), q), \delta(x_2 \ast (y_2 \ast z_2), q)\}, \\ &\min\{\mu(y_1, q), \delta(y_2, q)\}\} \quad \text{(Lemma 2.21 (2))} \\ &= \min\{(\mu \cdot \delta)((x_1 \cdot (y_1 \cdot z_1), x_2 \ast (y_2 \ast z_2)), q), (\mu \cdot \delta)((y_1, y_2), q)\} \\ &= \min\{(\mu \cdot \delta)((x_1, x_2) \diamond (y_1 \cdot z_1, y_2 \ast z_2), q), (\mu \cdot \delta)((y_1, y_2), q)\} \\ &= \min\{(\mu \cdot \delta)((x_1, x_2) \diamond ((y_1, y_2) \diamond (z_1, z_2)), q), (\mu \cdot \delta)((y_1, y_2), q)\}. \end{split}$$

Hence, $\mu \cdot \delta$ is a q-fuzzy UP-ideal of $A \times B$.

(2) Assume that μ is a q-fuzzy UP-subalgebra of A and δ is a q-fuzzy UP-subalgebra of B. Let $(x_1, x_2), (y_1, y_2) \in A \times B$. Then

 $\begin{aligned} (\mu \cdot \delta)((x_1, x_2) \diamond (y_1, y_2), q) \\ &= (\mu \cdot \delta)((x_1 \cdot y_1, x_2 * y_2), q) \\ &= \min\{\mu(x_1 \cdot y_1, q), \delta(x_2 * y_2, q)\} \\ &\geq \min\{\min\{\mu(x_1, q), \mu(y_1, q)\}, \min\{\delta(x_2, q), \delta(y_2, q)\}\} \quad \text{(Definition 1.13)} \\ &= \min\{\min\{\mu(x_1, q), \delta(x_2, q)\}, \min\{\mu(y_1, q), \delta(y_2, q)\}\} \quad \text{(Lemma 2.21 (2))} \\ &= \min\{(\mu \cdot \delta)((x_1, x_2), q), (\mu \cdot \delta)((y_1, y_2), q)\}. \end{aligned}$

Hence, $\mu \cdot \delta$ is a q-fuzzy UP-subalgebra of $A \times B$.

Give examples of conflict that μ and δ are q-fuzzy UP-ideals (resp. q-fuzzy UP-subalgebras) of A but $\mu \times \delta$ is not a q-fuzzy UP-ideal (resp. q-fuzzy UP-subalgebra) of $A \times A$.

Example 2.23. Let $A = \{0, 1\}$ be a set with a binary operation \cdot defined by the following Cayley table:

$$\begin{array}{c|cc} \cdot & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}$$

Then $(A; \cdot, 0)$ is a UP-algebra. Let $Q = \{q\}$. We define Q-fuzzy sets μ and δ in A as follows: $\mu(0,q) = 0.2, \delta(0,q) = 0.3, \mu(1,q) = 0.1$ and $\delta(1,q) = 0.1$. Using this data, we can show that μ and δ are q-fuzzy UP-ideals of A. Let $(x_1, x_2) = (0,0), (y_1, y_2) = (1,0), (z_1, z_2) = (1,1) \in A \times A$. Then

$$(\mu \times \delta)((x_1, x_2) \diamond (z_1, z_2), q) = 0.1$$

and

$$\min\{(\mu \times \delta)((x_1, x_2) \diamond [(y_1, y_2) \diamond (z_1, z_2)], q), (\mu \times \delta)((y_1, y_2), q)\} = 0.2.$$

Hence, $(\mu \times \delta)((x_1, x_2) \diamond (z_1, z_2), q) \not\geq \min\{(\mu \times \delta)((x_1, x_2) \diamond [(y_1, y_2) \diamond (z_1, z_2)], q), (\mu \times \delta)((y_1, y_2), q)\}$. Therefore, $\mu \times \delta$ is not a q-fuzzy UP-ideal of $A \times A$.

Example 2.24. Let $A = \{0, 1, 2\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2
0	0	1	2
1	0	0	1
2	0	0	0

Then $(A; \cdot, 0)$ is a UP-algebra. Let $Q = \{q\}$. We defined a Q-fuzzy set μ and δ in A as follows: $\mu(0,q) = 0.4, \delta(0,q) = 0.7, \mu(1,q) = 0.1, \delta(1,q) = 0.1, \mu(2,q) = 0.3$ and $\delta(2,q) = 0.3$. Using this data, we can show that μ and δ are q-fuzzy UP-subalgebras of A. Let $(x_1, x_2) = (0, 1), (y_1, y_2) = (1, 2) \in A \times A$. Then

$$(\mu \times \delta)((x_1, x_2) \diamond (y_1, y_2), q) = 0.1$$

and

$$\min\{(\mu \times \delta)((x_1, x_2), q), (\mu \times \delta)((y_1, y_2), q)\} = 0.3.$$

Hence, $(\mu \times \delta)((x_1, x_2) \diamond (y_1, y_2), q) \not\geq \min\{(\mu \times \delta)((x_1, x_2), q), (\mu \times \delta)((y_1, y_2), q)\}$. Therefore, $\mu \times \delta$ is not a q-fuzzy UP-subalgebra of $A \times A$.

With Definition 1.10 and 1.13 and Theorem 2.22, we obtain the corollary.

Corollary 2.25. The following statements hold:

- (1) if μ is a Q-fuzzy UP-ideal of A and δ is a Q-fuzzy UP-ideal of B, then $\mu \cdot \delta$ is a Q-fuzzy UP-ideal of $A \times B$, and
- (2) if μ is a Q-fuzzy UP-subalgebra of A and δ is a Q-fuzzy UP-subalgebra of B, then μ · δ is a Q-fuzzy UP-subalgebra of A × B.

Theorem 2.26. If μ is a Q-fuzzy set in A and δ is a Q-fuzzy set in B such that $\mu \cdot \delta$ is a q-fuzzy UP-ideal of $A \times B$, then the following statements hold:

- (1) either $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$ or $\delta(0_B, q) \ge \delta(x, q)$ for all $x \in B$,
- (2) if $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$, then either $\delta(0_B, q) \ge \mu(x, q)$ for all $x \in A$ or $\delta(0_B, q) \ge \delta(x, q)$ for all $x \in B$, and
- (3) if $\delta(0_B, q) \ge \delta(x, q)$ for all $x \in B$, then either $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$ or $\mu(0_A, q) \ge \delta(x, q)$ for all $x \in B$.

Proof. (1) Suppose that there exist $x \in A$ and $y \in B$ such that $\mu(0_A, q) < \mu(x, q)$ and $\delta(0_B, q) < \delta(y, q)$. Then

$$\begin{aligned} (\mu \cdot \delta)((x, y), q) &= \min\{\mu(x, q), \delta(y, q)\} \\ &> \min\{\mu(0_A, q), \delta(0_B, q)\} \\ &= (\mu \cdot \delta)((0_A, 0_B), q) \end{aligned}$$

which is a contradiction. Hence, $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$ or $\delta(0_B, q) \ge \delta(x, q)$ for all $x \in B$.

(2) Assume that $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$. Suppose that there exist $x \in A$ and $y \in B$ such that $\delta(0_B, q) < \mu(x, q)$ and $\delta(0_B, q) < \delta(y, q)$. Then $\mu(0_A, q) \ge \mu(x, q) > \delta(0_B, q)$. Thus

$$(\mu \cdot \delta)((x, y), q) = \min\{\mu(x, q), \delta(y, q)\}$$

>
$$\min\{\delta(0_B, q), \delta(0_B, q)\}$$

=
$$\delta(0_B, q)$$

=
$$\min\{\mu(0_A, q), \delta(0_B, q)\}$$

=
$$(\mu \cdot \delta)((0_A, 0_B), q)$$

which is a contradiction. Hence, $\delta(0_B, q) \ge \mu(x, q)$ for all $x \in A$ or $\delta(0_B, q) \ge \delta(x, q)$ for all $x \in B$.

(3) Assume that $\delta(0_B, q) \geq \delta(x, q)$ for all $x \in B$. Suppose that there exist $x \in A$ and $y \in B$ such that $\mu(0_A, q) < \mu(x, q)$ and $\mu(0_A, q) < \delta(y, q)$. Then $\delta(0_B, q) \geq \delta(x, q) > \mu(0_A, q)$. Thus

$$\begin{aligned} (\mu \cdot \delta)((x, y), q) &= \min\{\mu(x, q), \delta(y, q)\} \\ &> \min\{\mu(0_A, q), \mu(0_A, q)\} \\ &= \mu(0_A, q) \\ &= \min\{\mu(0_A, q), \delta(0_B, q)\} \\ &= (\mu \cdot \delta)((0_A, 0_B), q) \end{aligned}$$

which is a contradiction. Hence, $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$ or $\mu(0_A, q) \ge \delta(x, q)$ for all $x \in B$.

With Definition 1.10 and 1.13 and Theorem 2.26, we obtain the corollary.

Corollary 2.27. If μ is a Q-fuzzy set in A and δ is a Q-fuzzy set in B such that $\mu \cdot \delta$ is a Q-fuzzy UP-ideal of $A \times B$, then the following statements hold:

- (1) for all $q \in Q$, either $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$ or $\delta(0_B, q) \ge \delta(x, q)$ for all $x \in B$,
- (2) for all $q \in Q$, if $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$, then either $\delta(0_B, q) \ge \mu(x, q)$ for all $x \in A$ or $\delta(0_B, q) \ge \delta(x, q)$ for all $x \in B$, and
- (3) for all $q \in Q$, if $\delta(0_B, q) \ge \delta(x, q)$ for all $x \in B$, then either $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$ or $\mu(0_A, q) \ge \delta(x, q)$ for all $x \in B$.

Theorem 2.28. Let $(A; \cdot, 0_A)$ and $(B; *, 0_B)$ be UP-algebras and let μ be a Q-fuzzy set in A and δ be a Q-fuzzy set in B. Then the following statements hold:

- (1) if μ · δ is a q-fuzzy UP-ideal of A × B, then either μ is a q-fuzzy UP-ideal of A or δ is a q-fuzzy UP-ideal of B, and
- (2) if μ · δ is a q-fuzzy UP-subalgebra of A × B, then either μ is a q-fuzzy UPsubalgebra of A or δ is a q-fuzzy UP-subalgebra of B.

Proof. (1) Assume that $\mu \cdot \delta$ is a q-fuzzy UP-ideal of $A \times B$. Suppose that μ is not a q-fuzzy UP-ideal of A and δ is not a q-fuzzy UP-ideal of B. By Theorem 2.26 (1), we have $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$ or $\delta(0_B, q) \ge \delta(x, q)$ for all $x \in B$. Suppose that $\mu(0_A, q) \ge \mu(x, q)$ for all $x \in A$. By Theorem 2.26 (2), either $\delta(0_B, q) \ge \mu(x, q)$ for all $x \in A$ or $\delta(0_B, q) \ge \delta(x, q)$ for all $x \in B$. If $\delta(0_B, q) \ge \mu(x, q)$ for all $x \in A$, then $(\mu \cdot \delta)((x, 0_B), q) = \min\{\mu(x, q), \delta(0_B, q)\} = \mu(x, q)$. We consider, for all $x, y, z \in A$,

$$\begin{split} \mu(x \cdot z, q) &= \min\{\mu(x \cdot z, q), \delta(0_B, q)\} \\ &= (\mu \cdot \delta)((x \cdot z, 0_B), q) & (\text{Definition 1.25}) \\ &= (\mu \cdot \delta)((x \cdot z, 0_B * 0_B), q) & (\text{Proposition 1.2 (1)}) \\ &= (\mu \cdot \delta)((x, 0_B) \diamond (z, 0_B), q) \\ &\geq \min\{(\mu \cdot \delta)((x, 0_B) \diamond [(y, 0_B) \diamond (z, 0_B)], q), \\ & (\mu \cdot \delta)((y, 0_B), q)\} & (\text{Definition 1.10 (2)}) \\ &= \min\{(\mu \cdot \delta)((x \cdot (y \cdot z), 0_B * (0_B * 0_B)), q), (\mu \cdot \delta)((y, 0_B), q)\} \\ &= \min\{(\mu \cdot \delta)((x \cdot (y \cdot z), 0_B), q), (\mu \cdot \delta)((y, 0_B), q)\} & (\text{Proposition 1.2 (1)}) \\ &= \min\{\min\{\mu(x \cdot (y \cdot z), q), \delta(0_B, q)\}, \\ &\min\{\mu(y, q), \delta(0_B, q)\}\} & (\text{Definition 1.25}) \\ &= \min\{\mu(x \cdot (y \cdot z), q), \mu(y, q)\}. \end{split}$$

Hence, μ is a q-fuzzy UP-ideal of A which is a contradiction. Suppose that $\delta(0_B, q) \geq \delta(x, q)$ for all $x \in B$. By Theorem 2.26 (3), either $\mu(0_A, q) \geq \mu(x, q)$ for all $x \in A$ or $\mu(0_A, q) \geq \delta(x, q)$ for all $x \in B$. If $\mu(0_A, q) \geq \delta(x, q)$ for all $x \in B$, then $(\mu \cdot \delta)((0_A, x), q) = \min\{\mu(0_A, q), \delta(x, q)\} = \delta(x, q)$. We consider, for all $x, y, z \in B$,

$$\begin{split} \delta(x*z,q) &= \min\{\mu(0_A,q), \delta(x*z,q)\} \\ &= (\mu \cdot \delta)((0_A, x*z),q) & (\text{Definition 1.25}) \\ &= (\mu \cdot \delta)((0_A, 0_A, x*z),q) & (\text{Proposition 1.2 (1)}) \\ &= (\mu \cdot \delta)((0_A, x) \diamond (0_A, z),q) \\ &\geq \min\{(\mu \cdot \delta)((0_A, x) \diamond [(0_A, y) \diamond (0_A, z)],q), \\ & (\mu \cdot \delta)((0_A, y),q)\} & (\text{Definition 1.10 (2)}) \\ &= \min\{(\mu \cdot \delta)((0_A \cdot (0_A \cdot 0_A), x*(y*z)),q), (\mu \cdot \delta)((0_A, y),q)\} \\ &= \min\{(\mu \cdot \delta)((0_A, x*(y*z)),q), \\ & (\mu \cdot \delta)((0_A, y),q)\} & (\text{Proposition 1.2 (1)}) \\ &= \min\{\min\{\mu(0_A, q), \delta(x*(y*z),q)\}, \\ & \min\{\mu(0_A, q), \delta(y,q)\}\} & (\text{Definition 1.25}) \\ &= \min\{\delta(x*(y*z),q), \delta(y,q)\}. \end{split}$$

Hence, δ is a q-fuzzy UP-ideal of B which is a contradiction. Since μ is not a q-fuzzy UP-ideal of A and δ is not a q-fuzzy UP-ideal of B, we have $\mu(0_A, q) \geq \mu(x,q)$ for all $x \in A$ and $\delta(0_B,q) \geq \delta(x,q)$ for all $x \in B$. Let $x_1, x_2, x_3 \in A$ and $y_1, y_2, y_3 \in B$ be such that $\mu(x_1 \cdot x_3, q) < \min\{\mu(x_1 \cdot (x_2 \cdot x_3), q), \mu(x_2, q)\}$ and $\delta(y_1 * y_3, q) < \min\{\delta(y_1 * (y_2 * y_3), q), \delta(y_2, q)\}$, so $\min\{\mu(x_1 \cdot x_3, q), \delta(y_1 * y_3, q)\} < 0$

 $\min\{\min\{\mu(x_1 \cdot (x_2 \cdot x_3), q), \mu(x_2, q)\}, \min\{\delta(y_1 \ast (y_2 \ast y_3), q), \delta(y_2, q)\}\}.$ Thus

$$\min\{\mu(x_1 \cdot x_3, q), \delta(y_1 * y_3, q)\}$$

$$= (\mu \cdot \delta)((x_1 \cdot x_3, y_1 * y_3), q)$$

$$= (\mu \cdot \delta)((x_1, y_1) \diamond (x_3, y_3), q)$$

$$\ge \min\{(\mu \cdot \delta)((x_1, y_1) \diamond [(x_2, y_2) \diamond (x_3, y_3)], q),$$

$$(\mu \cdot \delta)((x_2, y_2), q)\}$$

$$= \min\{(\mu \cdot \delta)((x_1 \cdot (x_2 \cdot x_3), y_1 * (y_2 * y_3)), q), (\mu \cdot \delta)((x_2, y_2), q)\}$$

$$= \min\{\min\{\mu(x_1 \cdot (x_2 \cdot x_3), q), \delta(y_1 * (y_2 * y_3), q)\},$$

$$\min\{\mu(x_2, q), \delta(y_2, q)\}\}$$

$$= \min\{\min\{\mu(x_1 \cdot (x_2 \cdot x_3), q), \mu(x_2, q)\},$$

$$\min\{\delta(y_1 * (y_2 * y_3), q), \delta(y_2, q)\}\}.$$

$$(Lemma 2.21 (2))$$

It follows that $\min\{\mu(x_1 \cdot x_3, q), \delta(y_1 * y_3, q)\} \not\leq \min\{\min\{\mu(x_1 \cdot (x_2 \cdot x_3), q), \mu(x_2, q)\}, \min\{\delta(y_2 * y_3), q), \delta(y_2, q)\}\}$ which is a contradiction. Hence, μ is a q-fuzzy UP-ideal of A or δ is a q-fuzzy UP-ideal of B.

(2) Assume that $\mu \cdot \delta$ is a q-fuzzy UP-subalgebra of $A \times B$. Suppose that μ is not a q-fuzzy UP-subalgebra of A and δ is not a q-fuzzy UP-subalgebra of B. Then there exist $x, y \in A$ and $a, b \in B$ such that

$$\mu(x \cdot y, q) < \min\{\mu(x, q), \mu(y, q)\} \text{ and } \delta(a \ast b, q) < \min\{\delta(a, q), \delta(b, q)\}.$$

Then $\min\{\mu(x\cdot y,q),\delta(a\ast b,q)\}<\min\{\min\{\mu(x,q),\mu(y,q)\},\min\{\delta(a,q),\delta(b,q)\}\}.$ Consider,

$$\min\{\mu(x \cdot y, q), \delta(a * b, q)\} = (\mu \cdot \delta)((x \cdot y, a * b), q)$$
 (Definition 1.25)
$$= (\mu \cdot \delta)((x, a) \diamond (y, b), q)$$

$$\ge \min\{(\mu \cdot \delta)((x, a), q),$$
 (Definition 1.13)
$$= \min\{\min\{\mu(x, q), \delta(a, q)\},$$
 (Definition 1.25)
$$= \min\{\min\{\mu(x, q), \mu(y, q)\},$$
 (Definition 1.25)
$$= \min\{\min\{\mu(x, q), \mu(y, q)\},$$
 (Lemma 2.21 (2))

Thus $\min\{\mu(x \cdot y, q), \delta(a * b, q)\} \not\leq \min\{\min\{\mu(x, q), \mu(y, q)\}, \min\{\delta(a, q), \delta(b, q)\}\}$ which is a contradiction. Hence, μ is a q-fuzzy UP-subalgebra of A or δ is a q-fuzzy UP-subalgebra of B.

Give examples of conflict that μ and δ are not Q-fuzzy UP-ideals (resp. Q-fuzzy UP-subalgebras) of A but $\mu \cdot \delta$ is a Q-fuzzy UP-ideal (resp. Q-fuzzy UP-subalgebra) of $A \times A$.

Example 2.29. Let $A = \{0, 1\}$ be a set with a binary operation \cdot defined by the following table: $\cdot \mid 0 \quad 1$

$$\begin{array}{c|ccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}$$

Then $(A; \cdot, 0)$ is a UP-algebra. Let $Q = \{a, b\}$. We define two Q-fuzzy sets μ and δ in A as follows:

μ	\boldsymbol{a}	b
0	0.1	0.3
1	0.3	0.3

- 1

and

$$\begin{array}{c|ccc} \delta & a & b \\ \hline 0 & 0.3 & 0.1 \\ 1 & 0.3 & 0.3 \end{array}$$

Since $\mu(0, a) = 0.1 < 0.3 = \mu(1, a)$, we have $\mu(0, a) \not\geq \mu(1, a)$. Thus μ is not an *a*-fuzzy UP-ideal of *A*. Since $\delta(0, b) = 0.1 < 0.3 = \delta(1, b)$, we have $\delta(0, b) \not\geq \delta(1, b)$. Thus δ is not a *b*-fuzzy UP-ideal of *A*. Therefore, μ and δ are not *Q*-fuzzy UP-ideals of *A*. Using the above data, we can show that $\mu \cdot \delta$ is a *Q*-fuzzy UP-ideal of $A \times A$. Example 2.30. Let $A = \{0, 1\}$ be a set with a binary operation \cdot defined by the following table:

$$\begin{array}{c|cc} \cdot & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}$$

Then $(A; \cdot, 0)$ is a UP-algebra. Let $Q = \{a, b\}$. We defined two Q-fuzzy sets μ and δ in A as follows: $\frac{\mu}{2} \begin{bmatrix} a & b \\ a & b \end{bmatrix}$

and

$$\begin{array}{c|cccc} 0 & 0.1 & 0.3 \\ 1 & 0.3 & 0.3 \\ \hline \delta & a & b \\ \hline 0 & 0.3 & 0.1 \\ 1 & 0.3 & 0.3 \end{array}$$

Since $\mu(1 \cdot 1, a) = \mu(0, a) = 0.1 < 0.3 = \min\{0.3, 0.3\} = \min\{\mu(1, a), \mu(1, a)\}$, we have $\mu(1 \cdot 1, a) \not\geq \min\{\mu(1, a), \mu(1, a)\}$. Thus μ is not an *a*-fuzzy UP-subalgebra of A. Since $\delta(1 \cdot 1, b) = \delta(0, b) = 0.1 < 0.3 = \min\{0.3, 0.3\} = \min\{\delta(1, b), \delta(1, b)\}$, we have $\delta(1 \cdot 1, b) \not\geq \min\{\delta(1, b), \delta(1, b)\}$. Thus δ is not a *b*-fuzzy UP-subalgebra of A. Therefore, μ and δ are not Q-fuzzy UP-subalgebras of A. By Example 2.29, we have $\mu \cdot \delta$ is a Q-fuzzy UP-subalgebra of $A \times A$. By Corollary 2.2, we have $\mu \cdot \delta$ is a Q-fuzzy UP-subalgebra of $A \times A$.

Acknowledgements

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

- Bali, N. P. (2005). *Golden real analysis*. Chennai, India: Laxmi Publications.
- Iampan, A. (2017). A new branch of the logical algebra: UPalgebras. Journal of Algebra and Related Topics, 5(1), 35-54.
- Jun, Y. B. (2001). Q-fuzzy subalgebras of BCK/BCI-algebras. Scientiae Mathematicae Japonicae Online, 4, 197-202.
- Kim, K. H. (2006). On intuitionistic Q-fuzzy semiprime ideals in semigroups. Advance Fuzzy Math, 1(1), 15-21.
- Malik, S. C., & Arora, S. (2014). *Mathematical analysis (4th Ed.)*. New Delhi, India: New Age International.
- Mostafa, S. M., Abdel-Naby, M. A., & Elgendy, O. R. (2012). Fuzzy Q-ideals in Q-algebras. World Applied Programming, 2(2), 69-80.
- Muthuraj, R., Sridharan, M., Muthuraman, M. S., & SitharSelvam, P. M. (2010). Anti Q-fuzzy BG-ideals in BG-algebra. *International Journal of Computer Applications*, 4(11), 27-31.

- Priya, T., &Ramachandran, T. (2014). A note on anti Q-fuzzy R-closed PS-ideals in PS-algebras. Advances in Pure and Applied Mathematics, 6(2), 150-159.
- Roh, E. H., Kim, K. H., & Lee, J. G. (2006). Intuitionistic Qfuzzy subalgebras of BCK/BCI-algebras. *International Mathematical Forum*, 1(24), 1167-1174.
- Sithar Selvam, P. M., Priya, T., Nagalakshmi, K. T., & Ramachandran, T. (2013). A note on anti Q-fuzzy KU-subalgebras and homomorphism of KUalgebras *Bulletin of Mathematics and Statistics Research*, 1(1), 42-49.
- Sithar Selvam, P. M., Priya, T., & Ramachandran, T. (2012). Anti Q-fuzzy KU-ideals in KU-algebras and its lower level cuts. *International Journal of Engineering Research and Technology*, 2(4), 1286-1289.
- Sithar Selvam, P. M., Priya, T., Ramachandran, T., & Nagalakshmi, K. T. (2014). Anti Q-fuzzy R-closed KU-ideals in KU-algebras and its lower level cuts. *International Journal of Fuzzy Mathematical Archive*, 4(2), 61-71.
- Somjanta, J., Thuekaew, N., Kumpeangkeaw, P., & Iampan, A. (2016). Fuzzy sets in UP-algebras. Annals of Fuzzy Mathematics and Informatics, 12(6), 739-756.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.