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Abstract 
 

  We consider a single server retrial queueing system with variant working vacations and vacation interruption where 
the regular busy server is subjected to breakdown due to the arrival of negative customers. As soon as the orbit becomes empty at 
the time of regular service completion for a positive customer, the server takes at most J number working vacations until at least 
one customer is received in the orbit when the server returns from a working vacation. During the working vacation period, the 
server serves at a lower speed service rate (µv<µb). Using the method of supplementary variable technique, we determined the 
steady state probability generating function for the system and its orbit. We also obtained some analytical expressions for various 
performance measures such as system state probabilities, the mean orbit size, the mean system size, and reliability measures of 
this model. Finally, some numerical examples are presented.  
 
Keywords: retrial queue, G-queue, variant working vacations, vacation interruption
 

 
1. Introduction 

 
  In queueing theory, vacation queues and retrial 
queues have been intensive research topics for a long time. We 
can find general models in vacation queues from Ke et al. 
(2010) and in retrial queues from Artalejo and Gomez-Corral 
(2008). In a retrial queueing system, retrial queues with 
repeated attempts are characterized by the fact that an arriving 
customer finds the server busy upon arrival and is requested to 
leave the service area and join a retrial queue called orbit. 
After some time the customer in the orbit can repeat their 
request for service. An arbitrary customer in the orbit who 
repeats the request for service is independent of the rest of the 
customers in the orbit. Such queues play a special role in 
computer and telecommunication systems.  
  Queues with negative customers (called G-queues) 
have huge interests of concern due to their extensive 
applications in computers, communication networks, neural 
networks and manufacturing systems (Chao et al., 1999; 

 
Harrison, 2014). The name G-queue was adopted for a queue 
with negative customers in the acknowledgment of Gelenbe, 
who first introduced this type of queue in Gelenbe (1989, 
1991). Harrison (2004) has studied the idea of compositional 
reversed Markov processes with applications to G-networks. 
The positive customer arrives into the system and gets service 
as ordinary queueing customers, but the negative customers 
enter into the system only at the service time of positive 
customers. This type of negative customer removes the 
positive customers who is in service from the system and 
causes the server breakdown and the service channel will fail 
for a short interval of time. When the server fails, it will be 
sent for repair immediately. After completion of repair, the 
server is again treated as good as new. Do (2011) has 
presented a survey on queueing systems with G-networks, 
negative customers and applications. Choudhury and Ke 
(2012) and Rajadurai et al. (2014, 2015a) have discussed the 
retrial queue with the concept of breakdown and repair. 
Recently, Krishnakumar et al. (2013), Do et al. (2014), Gao 
and Wang (2014), Peng et al. (2014), and Rajadurai et al. 
(2015b, 2016a, 2016b) have discussed different types of 
queueing models operating with the simultaneous presence of 
negative arrivals. 
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In a vacation queueing system, the server 
completely stops the service and is unavailable for primary 
customers during a short period of time. This period of time is 
referred as a vacation. But in a working vacation period (WV), 
the server gives service to customers at a lower service rate. 
This queueing system has major applications in providing 
network service, web service, file transfer service, and mail 
service.  

In 2002, an M/M/1 queueing system with working 
vacations was first introduced by Servi and Finn (2002). 
Later, Wu and Takagi (2006) extended the M/M/1/WV queue 
to an M/G/1/WV queue. Do (2010) have studied the concept 
of M/M/1 retrial queue with working vacations. 
Arivudainambi et al. (2014) introduced M/G/1 retrial queue 
with a single working vacation. Furthermore, during the 
working vacation period if there are customers at a lower 
service completion instant, the server can stop the vacation 
and come back to the normal busy state. This policy is called 
vacation interruption. Recently, Gao et al. (2014), Gao and 
Liu (2013), Rajadurai et al. (2016b, 2016c), Zhang and Hou 
(2012), Zhang and Liu (2015), analyzed a single server retrial 
queue with working vacations and vacation interruption.  

 
1.1 The organization of the paper 

 
In this paper, we consider a generalization of the well-

known model discussed by Arivudainambi et al. (2014) and Gao 
et al. (2014) with concepts of  an M/G/1 retrial G-queue with 
unreliable server under variant working vacations policy and 
vacation interruption. To the authors best of knowledge, there are 
reports available on the concept of a retrial queueing system with 
a working vacation using the method of matrix geometry analysis, 
but no work was published in the queueing literature with the 
combination of a single server retrial queueing system with 
general retrial times, negative customers, variant working 
vacations, vacation interruption, server breakdowns, and repair 
using the supplementary variable technique. The mathematical 
results and theory of queues of this model provide to serve a 
specific and convincing application in the computer processing 
system. This proposed model has potential practical real life 
application in production to order system to enhance the 
performance of the production facility and to stop the production 
facility from becoming overloaded, in computer processing 
system and telephone consultation of medical service systems. 
Our model is helpful to managers who design a system with 
economic management. 

The rest of this paper is given as follows. The detailed 
mathematical model description and practical applications of this 
model are given is section 2. In section 3, the steady state joint 
distribution of the server state and the number of customers in the 
orbit/system are obtained. Some system performance measures 
and reliability measures are discussed in section 4. In section 5, 
important special cases are derived. In section 6, the effects of 
various parameters on the system performance are analyzed 
numerically. Conclusion and summary of the work are presented 
in section 7. 

 
2. Description of the Model 
 
 this section, we consider a single server retrial 
queueing system with variant working vacations and vacation 
interruption, where the regular busy server is subjected to 
breakdown due to the arrival of negative customers. 

• The arrival process: Customers arrive at the system 
according to a Poisson process with rateλ.  

• The retrial process: If an arriving positive customer 
finds the server free, the customer begins his service 
immediately. Otherwise the server is busy, on working 
vacation or breakdown; the arrivals join the pool of 
blocked customers called an orbit in accordance with 
FCFS discipline. That is, only one customer at the head 
of the orbit queue is allowed access to the server. Inter-
retrial times follow a general random variable R with an 
arbitrary distribution ( )R t having corresponding Laplace 
Stieltijes Transform (LST) ( ).R ϑ∗  

• The variant working vacations policy: The server 
begins a working vacation each time the orbit becomes 
empty and the vacation time follows an exponential 
distribution with parameter θ. If any customer arrives in 
a vacation period, the server continues to work at a 
lower speed service rate (µv < µb). The working vacation 
period is an operational period at a lower speed. 
According to the vacation interruption rule, if any 
customer is in the system at the service completion 
instant in the vacation period, the server will stop the 
vacation and come back to the normal busy state 
immediately. Otherwise, if no customers are in the 
system at the end of the vacation or at regular service 
completion instant, the server takes at most J number 
working vacations until at least one customer is received 
in the orbit and then the server returns from a working 
vacation. After completion of Jth working vacation, if 
there is no customer in the orbit, the server remains idle 
to serve a new customer. When a vacation ends, if there 
are customers in the orbit, the server switches to the 
normal working level. During the working vacation 
period, the service time follows a general random 
variable Sv with distribution function (d.f) ( )vS t     

having LST * ( )vS ϑ  and the first moment is 

0

( ) ( ),x
v vS xe dS xθθ

∞
′∗ −= ∫ for (i = 1, 2, ...J). 

• The regular service process: Whenever a new positive 
customer or retry positive customer arrives at the server 
idle state, the server immediately starts normal service 
for the arrivals. The service time follows a general 
distribution and it is denoted by the random variable bS  

with distribution function ( )bS t  having LST *( )bS ϑ  and 

the first moment is given by 
0

( ) ( ).x
b bS xe dS xδδ

∞
′∗ −= ∫  

• The removal rule and the repair process: The negative 
customers arrive from outside the system according to a 
Poisson arrival rate δ. These negative customers arrive 
only at the regular service time of the positive 
customers. Negative customers can not accumulate in a 
queue and do not receive service, will remove the 
positive customers being in service from the system.  
These types of negative customers cause server 
breakdown and the service channel will fail for a short 
interval of time. When the server fails, it is sent for 
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repair immediately. After completion of repair, the 
server is again treated as good as new. The repair time 
(denoted by G) of the server is assumed to be arbitrarily 
distributed with distribution function G(t) having 
LST *( )G ϑ and the first and second moments are 

denoted by (1)g and (2) .g  
• Various stochastic processes involved in the system are 

assumed to be independent of each other.  
 

2.1 Practical application of the proposed model 
 

Example 1: Our model has a potential practical application in 
the area of a computer processing system. In a computer 
processing system, the buffer size (orbit) used to store 
messages is finite and the messages (customers) arrive into the 
system one by one. The processor (server) is in charge of 
processing messages. A working mail server may be affected 
by a virus (negative customers) and the system may be 
subjected to electronic fails (breakdowns) during the service 
period and receive repair immediately. If the processor is 
available, indicating that it is not currently working on a task, 
a message is processed. The messages are temporarily stored 
in a buffer to be served some time later (retrial time) 
according to first-come-first-serve (FCFS) if the processor is 
unavailable. To enhance the computer performance, whenever 
all messages are processed and no new messages arrive, the 
processor will perform a sequence of maintenance jobs, such 
as virus scan (working vacations). During the maintenance 
period, the processor can deal with the messages at the slower 
rate to economize the cost (working vacation period). Upon 
completion of the each maintenance, the processor checks the 
messages and decides whether or not to resume the normal 
service rate (first working vacation). At this moment, if no 
message is in the system then the processor may decide to go 
for another maintenance activity (finite number of working 
vacations). This type of working vacation discipline is a good 
approximation of such computer processing system.  

 
Example 2: The suggested model has another practical real 
life application in the telephone consultation of medical 
service systems. Nowadays, many doctors have opened 
telephone consultation services to patients (called positive 
customers). Here, we consider a telephone consultation 
service system staffed with a chief physician (main server) 
and a physician assistant (substitute server). The physician 
assistant only provides service to the patients when the chief 
physician is on vacation (working vacation) and the service 
rate of the physician assistant is usually slower than the chief 
physician. In generally, there is a phone operator who is 
responsible to establish communications between doctors and 
patients or notes down the order of the calls, corresponding to 
the ‘orbit’. If the line is busy when a patient makes a call, he 
cannot queue but tries again sometime later (retrial), otherwise 
he is served immediately by the chief physician or the 
physician assistant. During the consultation time of patients, 
the telephone signal status is very low or no network coverage 
(negative customer), and the patient’s call has lost service. 
Once the signal strength is full (repaired), then the system is 
again treated as good as new to serve. When the chief 
physician finds no patient call, he will need to rest from his 

work, i.e., go on a vacation. During the chief physician’s 
vacation period, the physician assistant will serve the patients, 
if any, and after his service completion if there are patients in 
the system, the chief physician will come back from his 
vacation whether his vacation has ended or not, i.e., vacation 
interruption happens. Meanwhile, if there is no patient when a 
vacation ends, the chief physician begins a finite number of 
vacations (at most J working vacations), otherwise, the chief 
physician takes over as the physician assistant. To understand 
the patient’s condition, the chief physician will restart his 
service no matter how long the physician assistant has served 
the patient. On the other hand, to minimize the idle time of the 
chief physician, immediately on a service completion, the 
phone operator will call (or search for) the customers who are 
in orbit under FCFS and the search time is assumed to be 
generally distributed, which is corresponding to the general 
retrial time policy. 
 
3. Steady State Analysis of the System 
 
  In this section, we develop the steady state 
difference-differential equations for the retrial queueing 
system by treating the elapsed retrial times, the elapsed 
service times, the elapsed working vacation times, and the 
elapsed repair times as supplementary variables. Then we 
derive the probability generating function (PGF) for the server 
states and the PGF for the number of customers in the system 
and orbit. 
 
3.1 The steady state equations 

 
  In steady state, we assume that R(0)=0, R(∞)=1, 
Sb(0) = 0, Sb(∞) = 1, Sv(0) = 0, Sv(∞) = 1, G(0) = 0, G(∞) = 1 
are continuous at x = 0. So that the function 

( ),a x ( ),b xµ ( )v xµ , and ( )yξ  are the conditional completion 
rates (hazard rate) for retrial, normal service, lower rate 
service, and repair, respectively. 

( ) ( )( ) ( ). .,  ( ) ;  ( ) ;  ( ) ;   ( ) .
1 ( ) 1 ( ) 1 ( ) 1 ( )

b v
b v

b v

dS x dS xdR x dG xi e a x dx x dx x dx x dx
R x S x S x G x

µ µ ξ= = = =
− − − −

 
In addition, let 0 0 0 0( ),  ( ),  ( ) and ( )b vR t S t S t G t  be the elapsed 
retrial time, elapsed normal service time, elapsed working 
vacation time, and elapsed repair time, respectively, at time t. 
Further, we introduce the random variable (i = 1, 2,…J), 
 

th0,  if the server is free and in working vacation period,
1,  if the server is free and in regular service period,

( ) 2,  if the server is busy and in regular service period at time ,

3,  if the ser

i

C t t=
thver is busy and in  working vacation period at time ,

4,  if the server is under repair period at time .
i t

t










 
    Thus the supplementary variables 

0 0 0 0( ),  ( ),  ( ) and ( )b vR t S t S t G t  are introduced in order to obtain a 
bivariate Markov process{ }( ), ( );  0 ,C t N t t ≥  where C(t) 
denotes the server states (0,1,2,3,4) depending on whether the 
server is free on both regular busy period and working 
vacation period, regular busy, on working vacation, or under 
repair. If C(t) = 1 and N(t) > 0, then R0(t) represents the 
elapsed retrial time and if C(t) = 2 and N(t) ≥ 0, then 
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0 ( )bS t corresponds to the elapsed time of the customer being served in a regular busy period. If C(t) = 3 and N(t) ≥ 0, then 
0 ( )vS t corresponds to the elapsed time the customer is being served at the lower rate service period on ith stage. If C(t) = 4 and 

N(t) ≥ 0, then 0 ( )G t  corresponds to the elapsed time of the server being repaired. 
  We analyze the ergodicity of the embedded Markov chain at departure, vacation or repair epochs. Let {tn; n = 1,2,...} 
be the sequence of epochs of either normal service completion times or working vacation completion times or the repair period 

ends. The sequence of random vectors ( ) ( ){ } ,  n n nZ X t N t= + +  forms a Markov chain which is embedded in the retrial queueing 

system. It follows from Appendix that { };  nZ n N∈ is ergodic if and only if ( )Rρ λ∗<  for our system is stable, where 

( )( )( )* (1)1 ( ) 1 .bS gρ λ δ δ δ= − +  

  For the process, we define the limiting probabilities as { }0 ( ) ( ) 0,  ( ) 0Q t P C t N t= = =  and { }0 ( ) ( ) 1,  ( ) 0P t P C t N t= = =  
as the probability densities 

{ }
{ }
{ }

0

0
,

0
,

( , )    ( ) 1, ( ) ,  ( ) ,  for 0,  0 and 1.

( , ) ( ) 2, ( ) ,  ( ) ,  for 0,  0,  0.

( , )  ( ) 3, ( ) ,  ( ) ,  for 0,  0 and 0.

( , )  

n

b n b

i n v

n

P x t dx P C t N t n x R t x dx t x n

x t dx P C t N t n x S t x dx t x n

Q x t dx P C t N t n x S t x dx t x n

R x t dx

= = = ≤ < + ≥ ≥ ≥

Π = = = ≤ < + ≥ ≥ ≥

= = = ≤ < + ≥ ≥ ≥

{ }0 ( ) 4,  ( ) ,  ( ) ,for 0,  0 and 0.P C t N t n x G t x dx t x n= = = ≤ < + ≥ ≥ ≥

 

 
The following probabilities are used in the subsequent sections:  

,0 ( )iQ t  is the probability that the system is idle at time t and the server is in ith working vacation. 0 ( )P t  is the probability that the 

system is idle at time t and the server is in a regular busy period. ( , )nP x t  is the probability that at time t there are exactly n 
customers in the orbit with the elapsed retrial time of the test customer undergoing retrial lying in between x and x + dx. 

, ( , )b n x tΠ  is the probability that at time t there are exactly n customers in the orbit with the elapsed regular service time of the 

test customer undergoing service lying in between x and x + dx. , ( , )i nQ x t  is the probability that at time t there are exactly n 
customers in the orbit with the elapsed lower rate service time of the test customer undergoing service lying in between x and x + 
dx on ith stage. ( , )nR x t  is the probability that at time t there are exactly n customers in the orbit with the elapsed repair time of 

server in between x and x + dx. We assume that the stability condition ( )( )Rρ λ∗<  is fulfilled in the sequel and so that we can 

set ,0 ,0lim ( );i it
Q Q t

→∞
= 0 0lim ( )

t
P P t

→∞
=  and limiting densities for  0,   0,  1t x n≥ ≥ ≥  and (i=1,2,…J)  

 
, , , ,( ) lim ( , );    ( ) lim ( , );    ( ) lim ( , )   and  ( ) lim ( , ).n n b n b n i n i n n nt t t t

P x P x t x x t Q x Q x t R x R x t
→∞ →∞ →∞ →∞

= Π = Π = =  

 
 By using the method of supplementary variable technique, we formulate the system of governing equations of this model 
as follows: 

0 ,0.JP Qλ θ=             (1) 

( ) 1,0 ,0 1,0 0
0 0 0

 ( ) ( ) ( ) ( ) ( ) ( ) .b b vQ x x dx Q x x dx R x x dxλ θ µ µ ξ
∞ ∞ ∞

+ = Π + +∫ ∫ ∫      (2) 

( ) ,0 1,0 ,0
0

( ) ( ) ,  ( 1, 2,... ).i i i vQ Q Q x x dx i Jλ θ θ µ
∞

−+ = + =∫        (3) 

( )( )
( ) ( ) 0,  1.n

n
dP x

a x P x n
dx

λ+ + = ≥         (4) 

( ),0
,0

( )
( ) ( ) 0,  0.b

b b
d x

x x n
dx

λ δ µ
Π

+ + + Π = =        (5) 

( ),
, , 1

( )
( ) ( ) ( ),  1.b n

b b n b n
d x

x x x n
dx

λ δ µ λ −
Π

+ + + Π = Π ≥       (6) 
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( ),0
,0

( )
( ) ( ) 0,  0,  ( 1, 2,... ).i

v i
dQ x

x Q x n i J
dx

λ θ µ+ + + = = =       (7) 

( ),
, , 1

( )
( ) ( ) ( ),  1,  ( 1, 2,... ).i n

v i n i n
dQ x

x Q x Q x n i J
dx

λ θ µ λ −+ + + = ≥ =      (8) 

( )0
0

( )
( ) ( ) 0,  0.

dR x
x R x n

dx
λ ξ+ + = =         (9) 

( ) 1
( )

( ) ( ) ( ),   1.n
n n

dR x
x R x R x n

dx
λ ξ λ −+ + = ≥        (10) 

To solve Equations (4) through (10), the steady state boundary conditions at x = 0 are followed, 

, ,
10 0 0

(0) ( ) ( ) ( ) ( ) ( ) ( ) ,  1.
J

n b n b i n v n
i

P x x dx Q x x dx R x x dx nµ µ ξ
∞ ∞ ∞

=

= Π + + ≥∑∫ ∫ ∫     (11) 

,0 1 ,0 0
10 0

(0) ( ) ( ) ( ) ,  0.
J

b i
i

P x a x dx Q x dx P nθ λ
∞ ∞

=

 
 Π = + + =
 
 

∑∫ ∫       (12) 

, 1 ,
10 0 0

(0) ( ) ( ) ( ) ( ) ,  1.
J

b n n n i n
i

P x a x dx P x dx Q x dx nλ θ
∞ ∞ ∞

+
=

 
 Π = + + ≥
 
 

∑∫ ∫ ∫       (13) 

,0
,

,       0,  ( 1, 2,... )
(0)  .

0,             1
i

i n
Q n i J

Q
n

λ = == 
≥

        (14) 

0

(0) ( ) ,  0.n nR x dx nδ
∞

= Π ≥∫           (15)  

The normalizing condition is 

0 ,0 , ,
1 1 0 10 0 0 0

( ) ( ) ( ) ( ) 1.
J J

i n b n i n n
i n n i

P Q P x dx x dx Q x dx R x dx
∞ ∞ ∞ ∞∞ ∞

= = = =

 
 + + + Π + + =
 
 

∑ ∑ ∑ ∑∫ ∫ ∫ ∫     (16) 

 
3.2 Steady state solution 
   
  The steady state solution of the retrial queueing model is obtained by using the PGF function technique. To solve the 
above equations, the PGFs are defined for |z| ≤ 1 as follows:  

, ,
1 1 0 0

, ,
0 0 0 0

( , ) ( ) ;  (0, ) (0) ;  ( , ) ( ) ;   (0, ) (0) ;  

( , ) ( ) ;  (0, ) (0) ;   ( , ) ( )  and  ( ,0) (0) .

n n n n
n n b b n b b n

n n n n

n n n n
i i n i i n n n

n n n n

P x z P x z P z P z x z x z z z

Q x z Q x z Q z Q z R x z R x z R x R z

∞ ∞ ∞ ∞

= = = =
∞ ∞ ∞ ∞

= = = =

= = Π = Π Π = Π

= = = =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

On multiplying the Equations (4) through (10) by zn and summing over n, (n = 0,1,2...) and solving the partial differential 
equations, we get 

( , ) (0, )[1 ( )] .xP x z P z R x e λ−= −          (17) 
( )( , ) (0, )[1 ( )] .bA z x

b b bx z z S x e−Π = Π −         (18) 
( )( , ) (0, )[1 ( )] .vA z x

i i vQ x z Q z S x e−= −         (19) 
( )( , ) (0, )[1 ( )] .b z xR x z R z G x e−= −          (20)  

where ( ) ( )( ) (1 ),   ( ) (1 )    and   ( ) (1 ) .b vb z z A z z A z zλ δ λ θ λ= − = + − = + −  
From the Equations (11) through (15), we can obtain 

,0 0
1 10 0 0

(0, ) ( , ) ( ) ( , ) ( ) ( , ) ( ) .
J J

b b i v i
i i

P z x z x dx Q x z x dx R x z x dx Q Pµ µ ξ λ
∞ ∞ ∞

= =

 
= Π + + − +  

 
∑ ∑∫ ∫ ∫    (21) 
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0
10 0 0

1(0, ) ( , ) ( ) ( , ) ( , ) ( ) .
J

b i v
i

z P x z a x dx P x z dx Q x z x dx P
z

λ θ µ λ
∞ ∞ ∞

=

Π = + + +∑∫ ∫ ∫      (22) 

,0(0, ) .i iQ z Qλ=             (23)  

0

(0, ) ( , ) .bR z x z dxδ
∞

= Π∫            (24) 

Inserting the equations (21) through (24) in (18) and do some calculation, we get, 

( ) 0 ,0
1

(0, )(0, ) ( ) 1 ( ) ( ) .
J

b i
i

P zz R z R P V z Q
z

λ λ λ λ∗ ∗

=

 Π = + − + +  ∑      (25) 

where ( )*( ) 1 ( ) .
(1 ) v vV z S A z

z
θ

θ λ
 = − + −

 

Using the equation (21)-(25) in (17), we get 

     ( ) ( ) ( )* * *
,0 0

1 1

(0, )  (0, ) ( ) (0, ) ( ) (0, ) ( ) .
J J

b b b i v v i
i i

P z z S A z Q z S A z R z G b z Q Pλ
= =

 
= Π + + − +  

 
∑ ∑            (26) 

Using equation (18) and (25) through (26) in (24), we get 

( )*1 ( )
(0, ) (0, ) .

( )
b b

b
b

S A z
R z z

A z
δ

 −
 = Π
 
 

        (27) 

Using equations (24)through (27), we get 

( ) ( )

( )

*
0 ,0

1

( ) 1 ( ) ( ) ( ) 1

(0, ) .
( ) (1 ( )) ( )

J

i v v
i

z P S z Q V z S z S A z

P z
z R z R S z

λ

λ λ
=

∗ ∗

   − + + −    =
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Using equation (28) in (25), we get 
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Using equations (23) and (27) through (29) in (17) through (20), then we get the results for the following 
PGFs ( , ),  ( , ),  ( , ) and ( , , ).b iP x z x z Q x z R x y zΠ  Next we are interested in investigating the marginal orbit size distributions 
due to system state of the server. 
 
Corollary 1. Under the stability condition ( )Rρ λ∗< , the stationary joint distributions of the number of customers in the orbit 
when server being idle, busy, on working vacation and under repairs is given by 
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Corollary 2. The probability generating function of number of customers in the system and orbit size distribution at stationary 
point of time is 
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Where P0 and Qi,0  is given in Equation (34). 
 
4. System Performance Measures 
 
  In this section, we derive some system probabilities, mean number of customers in the orbit/system and reliability 
measures of the model.  
 
4.1 System state probabilities 
 
 From Equations (30) through (33), by setting 1z →  and applying L-Hospital’s rule whenever necessary, then we get 
the following results, 
(i) The probability that the server is idle during the retrial, is given by, 
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(ii) The probability that the server is regular busy, is given by, 
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(iii) The probability that the server is on working vacation, is given by, 
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(iv) The probability that the server is under repair, is given by,  
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4.2 Mean system size and orbit size  
 
If the system is in the steady state condition,  
 
(i) The mean number of customers in the orbit (Lq) is obtained by differentiating (35) with respect to z and evaluating at z = 1  
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(ii) The mean number of customers in the system (Ls) is obtained by differentiating (34) with respect to z and evaluating 

at z = 1 
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4.3 Reliability measures  
 
  To justify and validate the analytical results of the model, the availability measure (Av) and failure frequency (Ff) are 
obtained as follows: 

(i) The steady state availability Av, which is the probability that the server is either busy, on a working vacation or in an idle 
period such that the steady state availability of the server is given by 
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(ii) The steady state failure frequency is obtained as 
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5. Special Cases 
 
  In this section, we analyze briefly some special cases of our model, which are consistent with the existing literature. 
Case (i): No negative arrival, no breakdown, no vacation interruption, and single working vacation 
  In this case, our model becomes an M/G/1 retrial queue with a single working vacation. We assume that (δ, θ, J) → (0, 
0, 1) in the main result is obtained as follows,  
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This coincides with the result of Arivudainambi et al. (2014). 
Case (ii): No negative arrival, no breakdown, and multiple working vacations 
 In this case, our model becomes a single server retrial queueing system with working vacations. We assume that δ = 0 
and J = ∞ and the main result of  Ks(z) can be as follows:  
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This coincides with the result of Gao et al. (2014). 
Case (iii): Single working vacation 
  When J = 1, our model can be reduced to a single server retrial queueing system with negative customers, single 
working vacation, and vacation interruption where the server is subjected to breakdown and repair. 
Case (iv): Multiple working vacations 
 When J = ∞, our model can be reduced to a single server retrial queueing system with negative customers, multiple 
working vacations, and vacation interruption where the server is subjected to breakdown and repair. 

6. Numerical Examples 
 
 In this section, we present some numerical examples 

using MATLAB in order to illustrate the effect of various 
parameters in the system performance measures. For the 
purpose of a numerical illustration, we assume that all 
distribution functions like retrial, regular service, working 
vacation, and repair are exponentially, Erlangian, and hyper-
exponentially distributed. All parameter values are selected 
with the aim of satisfying the steady state condition ( )Rρ λ∗< , 

where the exponential distribution is ( ) , 0xf x e xυυ −= > , 

Erlang–2 stage distribution is 2( ) , 0xf x xe xυυ −= >  ,and hyper-

exponential distribution is
22( ) (1 ) , 0x xf x c e c e xυ υυ υ− −= + − > . 

The interpretation of the results based on numerical 
illustration carried out for the different performance measures 
is shown in Tables 1-3. 
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Table 1.    Effects of retrial rates (a) on Q1,0, Lq and P. 
Retrial  distribution Exponential  Erlang-2 stage  Hyper-Exponential 

a Q1,0 Lq P  Q1,0 Lq P  Q1,0 Lq P 
retrial rate            

2.00 0.1053 0.2736 0.1228  0.0048 1.5899 0.5394  0.0829 0.3967 0.2011 
3.00 0.1115 0.1702 0.0827  0.0321 0.4576 0.3532  0.0930 0.2643 0.1354 
4.00 0.1147 0.1180 0.0623  0.0455 0.3268 0.2617  0.0981 0.1977 0.1020 
5.00 0.1167 0.0865 0.0500  0.0534 0.2615 0.2076  0.1013 0.1576 0.0818 
6.00 0.1180 0.0654 0.0417  0.0586 0.2211 0.1720  0.1033 0.1309 0.0682 

 
Table 2.    Effects of negative arrival rates (δ) on Lq, Av and Ff. 

Retrial  distribution Exponential  Erlang-2 stage  Hyper-Exponential 
δ Lq Av Ff  Lq Av Ff  Lq Av Ff 

negative  arrival rate            
0.20 0.3282 0.9980 0.0020  0.7140 0.9870 0.0065  0.4330 0.9976 0.0031 
0.30 0.3535 0.9970 0.0044  0.8093 0.9808 0.0144  0.4667 0.9965 0.0069 
0.40 0.3784 0.9961 0.0078  0.9048 0.9747 0.0253  0.5002 0.9954 0.0121 
0.50 0.4031 0.9951 0.0121  1.0005 0.9687 0.0391  0.5334 0.9943 0.0187 
0.60 0.4274 0.9942 0.0173  1.0964 0.9628 0.0557  0.5665 0.9933 0.0266 

 
Table 3.    Effects of lower speed service rates (μv) on P0, Lq and Q1. 

Vacation distribution Exponential  Erlang-2 stage  Hyper-Exponential 
μv P0 Lq Q1  P0 Lq Q1  P0 Lq Q1  

Lower speed service rate            
2.00 0.2334 0.0788 0.0729  0.1633 0.1539 0.0766  0.2178 0.1056 0.0783 
3.00 0.2405 0.0757 0.0601  0.1720 0.1536 0.0688  0.2256 0.1033 0.0665 
4.00 0.2455 0.0738 0.0512  0.1793 0.1514 0.0622  0.2313 0.1025 0.0578 
5.00 0.2493 0.0726 0.0445  0.1854 0.1489 0.0568  0.2357 0.1028 0.0511 

 
  Table 1 shows that when retrial rate (a) increases, 
then the probability that server is idle in working vacation 
(Q1,0) increases, the mean orbit size (Lq) decreases and 
probability that server is idle during retrial time (P) also 
decreases for the values of λ = 1; θ = 2; µb = 5; δ = 0.2; µv = 
3; ξ = 3; J = ∞; c = 0.7. Table 2 shows that when the negative 
arrival rate (δ) increases, the mean orbit size (Lq) increases, 
the servers availability (Av) decreases, and the servers failure 
frequency (Ff) also increases for the values of  λ = 1; θ = 3; µb 
= 10; J = ∞; ξ = 5; a = 2; µv = 4; c = 0.7. Table 3 shows that 
when the lower speed service rate (μv) increases, the 
probability that the server is idle (P0) increases, then the mean 
orbit size (Lq) decreases and the probability that the server is 
on working vacation (Q1) also decrease for the values of  λ = 
0.5; θ = 2; a = 2; µb = 5; δ = 0.3; ξ = 3; J = 1; c = 0.7.  The 
above results facilitate an insight into the system performance 
measures of the unreliable M/G/1 retrial G-queue with variant 
working vacations. 
  For the effect of the parameters λ, a, δ, ξ, μb, and μv 
on the system performance measures, three dimensional 
graphs are illustrated in Figures 1-3. In Figure 1, the surface 
displays an upward trend as expected when increasing the 
value of the arrival rate (λ) and negative arrival rate (δ) against 
the mean orbit size (Lq), that is suppose the number of arriving 
messages and the number of viruses affecting time increases, 
the average number of packets in the buffer increases. Figure 
2 shows that the server’s availability probability (Av) increases 
when increasing the value of the lower service rate (µv) and 
regular service rate (µb) that is, if the systems availability 
increases when increasing the values of the processing time 
and the virus scan processing time. In Figure 3, we 
demonstrate the effect of variation of the mean orbit size (Lq) 
decreases for increasing the value of repair rate (ξ) and retrial 
rate (a), that is the average number of packets in the buffer 

increases which increases the values of retransmission time 
and recovering time of the system. 
  From the above numerical examples, we can find 
the influence of parameters on the performance measures in 
the system and know that the results are coincident with the 
practical situations. 

 
Figure 1.    Lq versus λ and δ. 

 
Figure 2.    Av versus μb and μv. 
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Figure 3.    Lq versus μv and a. 

 
7. Conclusions  
 
  In this paper, we have studied a single server retrial 
queueing system with variant working vacations and vacation 
interruption, where the regular busy server subjected to 
breakdown and repair due to the arrival of negative customers. 
The analytical results, which are validated with the help of 
numerical illustrations, may be useful in various real life 
situations to design the outputs. The probability generating 
functions for the numbers of customers in the system and its 
orbit when it is free, busy, on working vacation or under 
repair are found by using the supplementary variable 
technique. Some varieties of performance measures of the 
system are calculated. The explicit expressions for the average 
queue length of orbit and system have been obtained. Finally, 
some numerical examples are presented to study the impact of 
the system parameters. The novelty of this investigation is the 
introduction of both single working vacation (J=1) and 
multiple working vacations (J=∞) in presence of retrial G-
queues and server breakdown. This proposed model has 
potential practical real life application in production and order 
systems to enhance the performance of the production facility 
and to prevent the production facility from overload in a 
computer processing system or in telephone consultation of 
medical service systems. Hopefully, this investigation will be 
a great help to the system managers who can design a system 
with economic management and make decisions regarding the 
size of the system and other factors in a well-to-do manner. 
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Appendix:  
 
 The embedded Markov chain { };  nZ n N∈  is ergodic if and only if ( ),Rρ λ∗<  for our system to be stable, where 

( )( )( )* (1)1 ( ) 1 .bS gρ λ δ δ δ= − +  

Proof To prove the sufficient condition of ergodicity, it is very convenient to use Foster’s criterion (Pakes, 1969), which 
states that the chain { };  nZ n N∈ is an irreducible and aperiodic Markov chain is ergodic if there exists a non-negative 

function f(j),  j∈N and ε> 0, such that mean drift 1( ) ( ) /j n n nE f z f z z jψ += − =    is finite for all j∈N and jψ ε≤ − for all j∈N, 
except perhaps for a finite number j’s. In our case, we consider the function f(j)= j. then we have  

 
( )( )( )
( )( )( )

* (1)

* (1)

1 ( ) 1 1,                         if   0,

1 ( ) 1 ( ),                if   1, 2...

b
j

b

S g j

S g R j

λ δ δ δ
ψ

λ δ δ δ λ∗

 − + − == 
 − + − =


 

Clearly the inequality ( )Rρ λ∗<  is a sufficient condition for ergodicity.  

To prove the necessary condition, As noted in Sennott et al. (1983), if the Markov chain { };  1nZ n ≥  satisfies Kaplan’s 
condition, namely, ψj < ∞ for all j ≥ 0 and there exits j0 ∈ N such that ψj ≥ 0 for j ≥ j0. Notice that, in our case, Kaplan’s 
condition is satisfied because there is a k such that mij = 0 for j < i - k and i > 0, where Μ = (mij) is the one step transition 

matrix of { };  .nZ n N∈ Then ( )Rρ λ∗≥  implies the non-Ergodicity of the Markov chain.  
 

 


