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Abstract

This paper proposes the explicit formulas for the derivation of exact formulas from Average Run Lengths (ARLs) using
integral equation on CUSUM control chart when observations are long memory processes with exponential white noise. The
authors compared efficiency in terms of the percentage of absolute difference to a similar method to verify the accuracy of
the ARLs between the values obtained by the explicit formulas and numerical integral equation (NIE) method. The explicit
formulas were based on Banach fixed point theorem which was used to guarantee the existence and uniqueness of the
solution for ARFIMA(p,d,q). Results showed that the two methods are similar in good agreement with the percentage of
absolute difference at less than 0.23%. Therefore, the explicit formulas are an efficient alternative for implementation in real
applications because the computational CPU time for ARLs from the explicit formulas are 1 second preferable over the NIE
method.
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1. Introduction

CUSUM control chart was first introduced by Page
(1954)  and  has  been  continually  developed  by  many
researchers e.g. (Bissell, 1969; Ewan, 1963; Ewan & Kemp,
1960;   Hawkins & Olwell,  1998;  Johnson & Leone,  1962;
Lucas, 1976; Ryan, 1989). These are commonly used instead
of the Shewhart chart as they directly incorporate all of the
information in the sequence from the values and detect small
shifts in the mean more quickly and can widely implement
control processes. Usually, this involves an evaluation of the
control chart performance based on the Average Run Lengths
(ARLs).

Average Run Length (ARL) is the expected number
of observations taken from an in-control process until the
control  chart  falsely  signals  out-of-control.  ARL,  as  a

common  characteristic,  is  widely  used  as  a  measure  of
performance  of  a  control  chart.  Ideally,  the  ARL  is  large
enough to keep the level of false alarms at an acceptable level.
ARL0 is the notation for the in-control Average Run Length.
The  out-of-control  Average  Run  Length  is  denoted  by
Average Delay for the out-of-control process (ARL1). It is
defined as the expectation of delay time for a true alarm. This
time should minimize the quantity as possible.

The ARLs have been widely applied to techniques
of  control  charts,  percentage  points  have  also  been
recommended,  for  example  (Barnard,  1954;  Bissell,  1969).
Evaluations of ARLs for the CUSUM control charts, for
example (Brook & Evans, 1972; Ewan & Kemp, 1960; Fellner,
1990; Gan, 1992; Goel & Wu, 1971; Hawkins, 1992; Luceno &
Puig-Pey, 2000, 2002; Page, 1954; Woodall, 1983) have been
conducted.

The  integral  equation  is  encountered  in  a  variety
of  applications  from  many  fields  including  continuum
mechanics,  mathematical  economics,  queuing  theory,
potential  theory,  geophysics,  electricity  and  magnetism,
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optimization, optimal control systems, communication theory,
population genetics, medicine etc. The integral equation was
provided by Page (1954) and was used to approximate the
ARLs  of  control  chart  by  assuming  a  small  shift  in  mean.
A  computation  program  based  on  the  integral  equation
procedure was given by Vance (1986). Goel and Wu (1971)
provided a nomogram for the determination of chart para-
meters of a CUSUM control chart. Lashkari and Rahim (1982)
and  Chung  (1992)  reported  economic  designs  of  CUSUM
control charts.

The model of autoregressive fractionally integrated
moving  average  (ARFIMA)  processes  have  a  fractional
differencing parameter (d) which are used to model a long
memory  (or  so-called  long  range)  and  stationary  and
invertible when values of d take between (-0.5, 0.5). These
processes  were  introduced  by  Granger  and  Joyeux  (1980)
and Hosking (1981); a detailed description of long memory
processes can be found in e.g. (Baillie, 1996; Baran, 1994;
Palma,  2007;  Proietti,  2014).  The  long  memory  process  is
involved in a number of applications including finance and
economics, environmental, science and engineering. Control
charts have been used to combine the long memory process
with  time  series.  The  control  chart  is  necessary  as  it  is  a
number of time series following the ARFIMA model. Papers
by Ramjee (2000) also analyzed the performance of Shewhart
and EWMA control charts for the presence of correlated data
which occurred from an ARFIMA model. The study result
showed that these charts cannot perform well when detecting
process shifts. Hence, a new type of control chart and Hyper-
bolic Weighted Moving Average (HWMA) control chart was
proposed. Two years later, Ramjee et al. (2002) introduced
a HWMA forecast-based control chart, specially designed
for non-stationary ARFIMA models. Caballero et al. (2002)
performed  a  number  of  tests  on  the  analysis  of  daily  time
series of mid-latitude near-surface air temperature by plotting
long-range dependent processes. Furthermore, Pan and Chen
(2008) studied control charts for autocorrelated data using
ARFIMA model to monitor the long memory air quality data
for comparison. The result showed that residual control charts
using ARFIMA models were more appropriate than using
ARIMA  models.  Recently,  Rabyk  and  Schmid  (2016)
introduced  EWMA  control  charts  to  detect  changes  in  the
mean of a long-memory process.

Exponential white noise coordinated with time series
has also been investigated. Jacob and Lewis (1977) analyzed
autoregressive moving average process order (1,1) denoted
by ARMA(1,1) when observations are exponentially distri-
buted with exponential white noise. The exponential white
noise was also used Bayesian methods to analyze the auto-
regressive  model  as  proposed  by  Mohamed  and  Hocine
(2010).

Several techniques to evaluate ARLs for the CUSUM
and EWMA control charts including Monte Carlo simulations
(MC),  Markov  Chain  approach  (MCA),  numerical  integral
equation  (NIE)  method  and  explicit  formulas  have  been
proposed in the previous literature. For example, The Markov

Chain approach (MCA) was introduced by Brook and Evans
(1972), and many researchers have studied this matter. In
particular, Champ and Woodall (1987), and Champ and Rigdon
(1991), Gan (1992) and Gan (1996) presented an accurate NIE
method based on an integral equation to compute the ARLs
of CUSUM charts under linear trends. Recently, Areepong
(2009) proposed analytical derivation to find explicit formulas
of ARLs for EWMA control charts when observations are
exponentially  distributed.  For  example,  problems  from
mathematical  explicit  formulas  of  ARLs  using  Fredholm
integral equation for one-sided EWMA control chart with
Laplace distribution and CUSUM control chart with hyper-
exponential distribution were presented by Mititelu et al.
(2010).

Busaba et al. (2012) analyzed the explicit formulas of
ARLs for CUSUM control chart in cases of stationary first
order autoregressive; AR(1), process with exponential white
noise. The numerical integral equation (NIE) method of ARLs
using the Gauss-Legendre numerical integral equations was
derived by Petcharat et al. (2012) when observations are the
first order of moving average process, MA(1), with exponen-
tial  white  noise.  Phanyaem  et  al.  (2014)  studied  analytical
exact formulas of ARL0 and ARL1 using integral equation and
NIE method for CUSUM control chart for ARMA(1,1) process
with exponential distribution white noise. Recently, Petcharat
et at. (2015) derived the explicit formulas of ARLs for CUSUM
control  chart  when  observations  are  the  q  order  moving
average,  MA(q),  with  exponential  white  noise  using  the
integral  equation.  The  integral  equation  was  based  on
Fredholm  integral  equations  of  the  second  kind.  Finally,
Peerajit et al. (2016) presented the numerical integral equation
(NIE) method of ARLs on CUSUM control chart for long
memory process with an ARFIMA model with exponential
white noise.

The aim of this paper is to present the explicit formulas
and numerical integral equation (NIE) method for ARFIMA
process. In section 2, the long memory process for ARFIMA
model on CUSUM control chart is presented. In section 3, the
uniqueness of solution by using Banach fixed point theorem
is described (Venkateshwara et al., 2001). In section 4, the
solutions of the integral equation for ARLs are presented and
the comparison of analytical results between explicit formulas
and NIE method is presented in section 5. Finally, section 6
summarizes  the  real  applications  in  this  paper  along  with
a few topics for further research.

2. The Long Memory Process for ARFIMA Model on CUSUM
Control Chart

The CUSUM control chart was the first introduced by
Page (1954) to detect small shifts in the mean of a process and
is now widely implemented in process control. Let t be
observations  of  a  stationary  autoregressive  fractionally
integrated  moving  average  (ARFIMA)  process  of  order
(p,d,q), denoted by ARFIMA(p,d,q) with exponential white
noise. The ARFIMA(p,d,q) process shows the characteristic
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of  long  memory  when  the  parameter  d  (the  degree  of
differencing) takes values between (0, 0.5) (Baillie, 1996;
Granger & Joyeux, 1980; Hosking, 1981).

The general form of the ARFIMA(p,d,q) process (Xt)
which is used on CUSUM control charts has the following
form:
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(1)
where t is a white noise process assumed with exponential
distribution ( ~ ( )t Exp  ). The initial value is normally the
process mean, 1i   is an autoregressive coefficient;

1, 2, ...,i p  and 1i  is a moving average coefficient;
1, 2, ..., .i q  It is assumed the initial value of (ARFIMA

(p,d,q) processes 1 2 1, , .., , .,, ..t t t q tX       1, ,...t p t pX X  
equal 1 and   is a constant.

The CUSUM chart based on ARFIMA(p,d,q) process
is defined by the following recursion:

1 0max( , 0), 1, 2,. ,.. ,t t tY Y X a t Y u     (2)

where Yt  is the CUSUM statistic, Xt is a sequence of ARFIMA
(p,d,q) process, the starting value 0 ,Y u u  is an initial value
and a is a reference value of CUSUM chart.

The  corresponding  stopping  time  ( b )  for  (2)  is
defined as:

 inf 0; , ,b tt Y b u b     (3)
where  b  is  a  constant  on  known  parameter  as  the  Upper
Control Limit (UCL).

3. Uniqueness of Solution of Integral Equation for the ARLs

The ARLs of the CUSUM control chart are defined as
(( .) )u bC u     The notation y  denotes  the  probability

measure, the notation y  denotes the induced expectation
corresponding to the initial value 0 ,Y u  and ( )C u denotes
the ARLs of ARFIMA process on CUSUM chart. Then the
function of ( )C u  is initial value ; [0, ]u u b , which can be
shown by the ARLs (Mititelu et al., 2010; Venkateshwara
et al., 2001), defined as ,RL )A ( ()   u bC u   is the
unique of solution of integral equation for ARLs as follows:

1 1 1( ) 1 [ {0 } ( )] { 0} (0),y yC Cu I Y b Y Y C       (4)
where

  1
1 0 ;

1 ; 0
0

Y b

Otherw
Y

e
I b
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 
  





is the indicator function.
Let t  is continuous distribution i.i.d random variable

with exponential distributed given by ( ) 1 uF u e    and

( )( ) udF uf u e
du

    have been proposed in (Mititelu et al.,

2010; Mititelu et al., 2011). Hence, the integral equation of
ARFIMA(p,d,q) process on CUSUM control chart can be
written in the below form:

( )

0

( ) 1 ( )t

b
u a X zu e z eC dC z      

 ( )1 (0) , [0, ).t
a u Xe u aC       (5)

Obviously,  the  right-hand  side  of  the  equation  (5)
becomes  a  continuous  function,  so  the  solutions  of  the
integral equation (5) is also a continuous function.

Theorem 3.1 (Banach fixed point theorem)
Let ( )H I  be a non-empty and closed set in a Banach

space. Assume that ( ) ): (IT H H I  is a contraction mapping,
with contraction constant ),[0,1q  i.e.,

1 2 1 1 1 1 ( )( ) ( ) ; , . T C T C q C C HC IC    

Then there exists a unique (.)C I  such that  ( ) ( )T C u C u ,
i.e. T has a unique fixed point in  (Sofonea et al., 2006).

Now, consider the non-empty and closed set in a
Banach space  ( ),H I


, where ( )H I  is the space of all

continuous functions on a compact interval  ; 0,I I a  and


 is the sup norm defined as sup ( )u IC C u

 . This
norm is also called the supremum norm for all  0,u a  and

(.) ( )C H I  (Venkateshwara et al., 2001). In this case, let
T be an operator in the class of all continuous functions ( )H I
where I  is a compact interval  ; 0,I a  and define the
operators T  by

 ( )T C u 

   ( )

0

1 (1 ) (0).t t

b
u a X a u Xze C z e dz e C         (6)

Therefore, the operator T in (6) can be map ( )H I  into
( )H I . The following well-known of the Banach fixed point

theorem, if the operator T is a contraction, then the fixed
point  equations  ( ) ( )T C u C u  have  a  unique  solution
(Venkateshwara et al., 2001). To prove the uniqueness of the
solution of (6) the following theorem in 3.2 is considered.

Theorem 3.2 The operator T is the contraction on a metric
space  ( ),H I


  with the norm sup ( )u IC C u  .

Proof: To show that T is the contraction and to prove that
for all ,u I  and two arbitrary function  1 2,C C H I  in
According to (6) one should achieve the following
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1 2( ) ( )T C T C 

sup ( )
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C u
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0
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b
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By Triangular inequality
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
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  

  1 21 .tX be C C 
  

Thus, 1 2( ) ( )T C T C  1 2 ,q C C  

where  1 [0,1),tX bq e    
    and  q  is  a  positive

constant.
Therefore, T is the contraction mapping in the non-

empty and closed set in a Banach space, with contraction
constant [0,1),q  then there exist a unique of solution such
that  ( ) ( )T C u C u . By Theorem 3.2 and Banach fixed
point theorem which was used to guarantee the existence and
uniqueness of the solution for ARL.

4. The Solutions of Integral Equation for ARLs

4.1 The explicit formulas

The derived explicit formulas from the solution of
integral equation (5) for ARLs are presented as follows:

Theorem 4.1  The solutions of  ( )T C u ( )C u is

 ( ) (1 ) , [0, ].t
a Xb uC u e e b e u a      (7)

Proof:  According to (5), we have that
( )C u 

( ) ( )

0

1 ( ) (1 ) (0) ,t t

b
u a X a u Xze C z e dz e C        

[0, ].u a

Let   
0

.
b

zs C z e dz   The function ( )C u  can be rewritten
as

 ( )( ) 1 (1 ) (0).t t
u a X a u XC u e s e C          (8)

In particular 0u  , if , then
 ( )(0) 1 (1 ) (0),t t

u a X a u XC e s e C           Thus

 (0) .t
a XC e s   (9)

Substituting (9) into (8) then ( )C u  as formed

( )C u 

   ( )1 (1 )( ).t t t
u a X a u X a Xe s e e s           

Consequently,
 ( ) 1 .t

a x uC u s e e      (10)
Finding a constant s from (10) as formed

 

0

(1 )t

b
a X y ys s e e e dy       

    
 

0 0

(1 ) .t

b b
a X y y ys e e dy e e dy          

Here, a constant s can be rewritten

 (1 )(1 ) .t

b
a Xb be

s e e be


 


    (11)

Finally, substituting a constant s into (10)
( )C u

   1 (1 )(1 e ) e et t

b
a X a Xb b ue

e be


   


       
 
 
 

   1 (1 )(1 )t t
a X a Xb b b ue e e be e e           

 (1 ) ; 0.t
a Xb ue e b e u     

Therefore,  the  explicit  formulas  for  ARL0  and  ARL1  on
CUSUM chart can be written:

ARL0 
 

0 0 0

01 t
b a X ue ( e b ) e ,        (12)

and

ARL1 =  
11 1

11 t
a Xb ue ( e b ) e .      (13)

4.2 Numerical Integral Equation (NIE) Method

This  section  the  authors  presents  the  numerical
integral  equation  (NIE)  method  to  compute  the  solutions

(( )) u bC u     of integral equations (5) to extend the
function ( )C u  into the Fredholm integral equations of the
second kind (Wieringa, 1999) as the following form:

0
= 1 ( ) ( ) (0) ( )) ,(

b

t tC z f z a u X dz C F a uC Xu       

(14)

where ( ) 1 uF u e    and 
( )

( ) .udF u
f u e

du
  
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Let ( )C u  denote the approximated numerical integral
equation (14) using the Gauss-Legendre quadrature rule as
follows:

1

1( ) ( ) (( ) ( ),0)i j

m

j j i t i t
j

w f a a a X F a aC a XC a C


         

(15)
where
 = 1, 2,..., ,i m wj is a weight define different quadrature rules

with  = 0,j
b

w
m



 aj is a set of point with 
1

 = ;  = 1, 2, ..., .
2j

b
a j j m

m
 

  
The  previous  equation  is  a  system  of  m  linear

equations in the m unknowns 1 2( ), ( ), ..., ( )mC a C a C a   , which
can be rearranged as:

11
2

( ) (1 )) (
m

j jj t
j

C a Cw f a a a Xa


    

   1 11( ) ( ) ( )t tF a a X w a XC a f    

22
2

( ) (1 )) (
m

j jj t
j

C a Cw f a a a Xa


    

    1 2 1 1 2( ) (( ) )t tF a a X w f a a a XC a      

   

2

( ) (( )1 )
m

j j m t
j

m jC a Cw f a a a Xa


    
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It can be written in matrix form as:
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and (1,1, ,1)mI diag   is identity matrix order m.
Therefore,  1 1 1 ,m m m m m   

 C 1 R C   or  similarly
1 1( ) .m m m m m  

 1 R C 1  If (1 )m m R  is invertible and exists,

then the unique solution of matrix equation (16) is achieved
as follows:

1

1 1( ) .m m m m



  
 C 1 R 1 (17)

Consequently, the numerical integral equation (NIE)
method for ARL on CUSUM chart can be written

1

( ) ( ) (01 ( ) () ),
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with j

b
w

m
  and 
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5. Comparison of Analytical Results

This section derives the explicit formulas and NIE
method values for ARL0 and ARL1 from equation (12), (13),
and (18) with parameters a and b for ARL0 which fixes at
370 and 500. Also, the explicit formulas values are compared
with values obtained from the NIE method under these same
parameters.

The comparison of efficiency based on percentage of
absolute difference (Diff (%)) is defined as:

| ( ) ( ) |
(%) 100%.

( )

C u C u
Diff

C u


 


(19)

where ( )C u  is ARLs of the explicit formulas values,
and ( )C u is ARLs of the NIE method values.

Criteria for consideration; If the Diff (%) is less than
2%, then ARL values from the explicit formulas and the NIE
method are similar and in good agreement.

From the results in Tables 1-4, the authors applied
equation (12), (13), and (18) to evaluate the ARLs for the long
memory process on ARFIMA (2,0.2,1) model. The comparison
of efficiency between the explicit formulas and NIE method
with given a = 3, 3.5,  1 = 0.10, -0.10,  2 = 0.20, and 1 = 0.10
for ARL0 = 370 and 500 are shown.

The process in control parameter value (0) with shift
size ( = 0) had a fixed ARL0 = 370 and 500. The first row in
Tables 1-4 shows that the values of ARL0 in explicit formulas
were close to the NIE method and also approached 370 and
500. The computational CPU time of ARLs by NIE method
was computed. The values in parentheses represent the
CPU time for calculation with division points, m = 800 nodes.
The CPU time with the NIE method was about 1.8-1.9 hours,
this was very high compared to the explicit formulas which
equaled less than 1 second.

On the other hand, the process out-of-control was
presented with parameter values, 1 0 (1 )     where  =
0.01, 0.03, 0.05, 0.10, 0.20, and 0.40. According to the results
from Tables 1-4, the percentage of absolute difference of
the explicit formulas and NIE method was less than 0.23%
calculated using equation (19). In summary, the CPU time
of  the explicit formulas was less than one second, while the
NIE method was approximately at 1.8-1.9 hours.
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Table 1. Comparison of ARL values for ARFIMA(2, 0.2, 1) process using explicit formulas against NIE method
when given a = 3, 1 = 0.10, 2 =  0.20 and 1= 0.10, b = 3.56928 for ARL0 = 370 and b = 3.900538 for ARL0
= 500.

ARL0 = 370 ARL0 = 500
Shift size ()

explicit formulas NIE Diff (%) explicit formulas NIE Diff (%)

0.00 370.0004 369.2444 (1.97) 0.2043 500.0004 498.8793 (1.83) 0.2242
0.01 347.0438 346.3443 (1.98) 0.2016 467.1991 466.1663 (1.85) 0.2211
0.03 306.4437 305.8424 (1.84) 0.1962 409.5039 408.6236 (1.86) 0.2150
0.05 271.8672 271.3478 (1.84) 0.1910 360.7195 359.9651 (1.86) 0.2091
0.10 205.4008 205.0331 (1.83) 0.1790 268.0102 267.4862 (1.86) 0.1955
0.20 125.7785 125.5799 (1.85) 0.1579 159.3739 159.1001 (1.85) 0.1718
0.40 58.4003 58.3274 (1.82) 0.1248 70.6982 70.6029 (1.86) 0.1348

The values in parentheses are CPU times in numerical integration Equation methods (Hours)

Table 2. Comparison of ARL values for ARFIMA(2, 0.2, 1) process using explicit formulas against NIE method
when given a = 3.5,  1 = 0.10,  2 =  0.20 and 1= 0.10, b = 2.9450131 for ARL0 = 370 and b = 3.2604379
for ARL0 = 500.

ARL0 = 370 ARL0 = 500
Shift size ()

explicit formulas NIE Diff (%) explicit formulas NIE Diff (%)

0.00 370.0003 369.3511 (1.83) 0.1755 499.9996 499.0261 (1.82) 0.1947
0.01 347.9397 347.3364 (1.86) 0.1734 468.5892 467.6878 (1.85) 0.1924
0.03 308.7699 308.2471 (1.92) 0.1693 413.0919 412.3162 (1.85) 0.1878
0.05 275.2379 274.7825 (1.83) 0.1655 365.8878 365.2167 (1.85) 0.1834
0.10 210.2388 209.9102 (1.84) 0.1563 275.3254 274.8488 (1.85) 0.1731
0.20 131.1087 130.9250 (1.85) 0.1401 167.2381 166.9789 (1.85) 0.1550
0.40 62.3716 62.3003 (1.82) 0.1143 76.3363 76.2399 (1.86) 0.1263

The values in parentheses are CPU times in numerical integration Equation methods (Hours)

Table 3. Comparison of ARL values for ARFIMA(2, 0.2, 1) process using explicit formulas against NIE method
when given a = 3,  1 = -0.10, 2 =  0.20 and 1= 0.10, b = 3.390216 for ARL0 = 370 and b = 3.715676 for
ARL0 = 500.

ARL0 = 370 ARL0 = 500
Shift size ()

explicit formulas NIE Diff (%) explicit formulas NIE Diff (%)

0.00 369.9995 369.2712 (1.83) 0.1968 499.9999 498.9174 (1.84) 0.2165
0.01 347.3501 346.6752 (1.83) 0.1943 467.6790 466.6798 (1.84) 0.2137
0.03 307.2381 306.6563 (1.82) 0.1894 410.7392 409.8846 (1.85) 0.2081
0.05 273.0155 272.5115 (1.85) 0.1846 362.4938 361.7591 (1.85) 0.2027
0.10 207.0386 206.6794 (1.85) 0.1735 270.5047 269.9903 (1.86) 0.1902
0.20 127.5615 127.3651 (1.84) 0.1540 162.0226 161.7499 (1.87) 0.1683
0.40 59.7016 59.6281 (1.85) 0.1231 72.5572 72.4600 (1.85) 0.1340

The values in parentheses are CPU times in numerical integration Equation methods (Hours)
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6. Conclusions

This  paper  presented  the  investigation  of  explicit
formulas for the average run lengths of long memory process
with the ARFIMA(p,d,q) on CUSUM control charts with
exponential  white  noise.  The  accuracy  of  the  proposed
explicit formulas in terms of percentage of absolute difference
of the explicit formulas and NIE method were checked and
compared.  The  results  showed  that  both  methods  were
similar and in good agreement with the percentage of absolute
difference at less than 0.23%. But, the computational CPU
time of the explicit formula was less than one second, while
the NIE method was approximately 1.8-1.9 hours. Therefore,
the  explicit  formulas  are  a  preferred  alternative  to  the
NIE  method  because  ARL  values  use  a  drastically  lower
computational CPU time.

In conclusion, from the above results, one can see that
the explicit formulas and numerical integral equation (NIE)
method of ARFIMA(p,d,q) process with exponential white
noise on CUSUM control chart can be successfully applied
to real world applications for different processes of data, for
example in economics, agriculture.
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