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Undrained lateral capacity of I-shaped concrete piles
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Abstract

This paper presents a new numerical solution for undrained lateral capacity of I-shaped concrete piles in accordance
with the Thailand Industrial Standards. Two-dimensional finite element limit analysis with a plane strain condition in the
direction of pile depth was employed to determine the stability of this problem. Six sections of I-piles were analyzed while
parametric studies of each section were performed for a complete range of adhesion factors at the soil-pile interface, from
smooth to rough piles, and two loading directions, where the I-pile was loaded normal to its major and minor axes. Failure
mechanisms of the I-pile and its lateral capacity are discussed between different loading directions and compared with those
of square piles. Design charts of all I-pile sections following Thailand Industrial Standards are proposed for an accurate and
convenient prediction of undrained lateral capacity of I-shaped concrete piles in practice.
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1. Introduction

A driven pile is commonly used as a single pile or as
part of a pile group to support various structures such as
buildings,  bridges,  retaining  walls,  etc.  In  engineering
practice,  driven  piles  are  generally  prefabricated  steel  or
reinforced concrete. Steel driven piles are either pipe piles or
some form of beam section such as an H-pile. Concrete driven
piles are available in square, octagonal, and built-in cross-
sections,  like I-piles.  They  are  generally  reinforced  with
prestressed tendons and may be precast for a required size
and length specifically designed for a structure in certain soil
conditions. One of the major advantages of driven concrete
piles is that  they make it possible to complete a construction
project more quickly. In addition, they can be conveniently
employed in places where it is not advisable to drill holes for
bored piles during construction, for example at a site that has
soft soil or high water pressure. Moreover, driven piles are
much  more  favored  for  works  in  water  such  as  wharf
structures or jetties.

Analysis and design of the vertical capacity of piles
can be commonly found in the literature (Bowles, 2001; Das,
2014;  Federal  Highway  Administration  [FHWA],  1998;
Poulos & Davis, 1980). In addition to the vertical capacity of a
pile, the lateral capacity is another major concern, since piles
are  generally  subjected  to  lateral  loadings  that  arise  from
earth pressure, wave forces in the sea, wind loading or forces
caused by earthquakes (Reese Van & Impe, 2007). Therefore,
the calculation for a pile’s ultimate lateral load is important
in order to evaluate its stability or safety factor against an
applied lateral load in practice.

Like  in  many  parts  around  the  world,  I-shaped
concrete  driven  piles  have  become  increasing  popular  in
Thailand for housing projects and retaining walls because of
their cost-effectiveness and equivalent performance when
compared to steel driven piles. In Thailand, prefabricated
I-shaped  concrete  driven  piles  must  meet  the  Thailand
Industrial  Standards  (TIS  396-2549,  2007)  that  controls
specifications (e.g. dimensions, concrete, reinforcement, etc.)
and other quality requirements. Typical sections of I-shaped
concrete piles following TIS 396-2549 (2007) are listed in
Table 1. The ultimate vertical capacity of those piles can be
calculated by a conventional static method; however, there
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is no available solution for the lateral resistance of an I-pile.
Thus, a simplification for an I-shaped section has to be made
by approximating it to be a circular pile (Martin & Randolph,
2006;  Randolph  &  Houlsby,  1984)  or  a  rectangular  pile
(Keawsawasvong & Ukritchon, 2016; Ukritchon & Keaw-
sawasvong,  2017)  with  which  available  solutions  can  be
utilized.  However,  the  validity  of  such  simplification  is
questionable,  and  the  accuracy  of  prediction  cannot  be
assessed.

This paper considers a determination of undrained
lateral capacity of I-shaped concrete piles in cohesive soils,
where exact dimensions of I-shaped geometry of TIS 396-2549
(2007) in Table 1 are considered in the analysis. A general
layout of the problem definition is shown in Figure 1. For the
I-shaped concrete pile with an equal dimension of web and
flange,  B  is  embedded  in  a  homogenous  clay  layer  with
constant undrained shear strength (su). The clay obeys the
rigid-perfectly  plastic  Tresca  material  with  the  associated
flow rule.

In a real problem of laterally loaded piles, the ultimate
lateral capacity of piles increases with depth from an initial
low value at the ground surface to a maximum value at a
certain depth, after which it remains constant throughout
the deeper length of the pile. Thus, in this study, the pile is
assumed to be very long, such that a lateral translation at
depths located far from the ground surface essentially takes
place under plane strain conditions. The limiting pressure at
the  deeper  depth  of  the  pile  corresponds  to  the  full-flow

failure mechanism around the pile (Murff & Hamilton, 1993).
Because of the long pile assumption, the two-dimensional
(2D) plane strain condition in the direction of pile depth is
applicable. This paper aims to determine the ultimate lateral
capacity of I-shaped concrete piles, where the full-flow failure
mechanism develops.

The undrained lateral capacity of an I-shaped concrete
pile is presented in terms of the dimensionless lateral load
factor,  N  using  the  concept  of  dimensional  analysis  by
Butterfield (2009) as:
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where  N  is  the  undrained  lateral  capacity  of  pile  per  unit
length, P is the lateral limit load of pile per unit length, and
 is the adhesion factor.

Adhesion factor () at the soil-pile interface is also
considered in this study for the complete range from 0 (smooth)
to 1 (rough) and defined as:

/ui us s  (2)
where sui is the undrained shear strength at soil-pile interface
and su is the undrained shear strength of surrounding soil.

Laterally loaded piles were first studied by Broms
(1964) based on the assumed slip line pattern. Ultimate lateral
load  per  unit  length,  or  ultimate  lateral  resistance,  was
proposed for several sections. The geometrical section of
piles in Broms’s works included circular piles, rotated square
piles, and plate sections. Previous works of ultimate lateral
load mostly focused on the circular section of piles. Randolph
and Houlsby (1984) employed two-dimensional lower bound
and upper bound plastic calculations based on the method of
characteristics for circular piles in clay to derive an analytical
closed-form solution for this problem. However, the exact
lateral limit load of piles could only be found for rough piles
while  their  upper  and  lower  bound  solutions  were  not
accurate for other values of adhesion factor. Later, Martin
and Randolph (2006) presented an improved upper bound
solution,  which  enables  accurate  bracketing  of  the  exact
solutions  of  laterally  loaded  circular  piles,  when  utilizing
the lower bound solution of Randolph and Houlsby (1984).
Ukritchon (1998) studied a numerical solution for the ultimate

Table 1. Geometrical parameters of I-piles (after TIS 396-2549, 2007).

Section Dimension (mm) Area (mm2)

I-B x B B K L O U A

I-180x180 180 60 75 30 70 27,450
I-220x220 220 65 85 50 80 38,600
I-260x260 260 65 85 90 90 48,900
I-300x300 300 75 105 90 100 66,000
I-350x350 350 85 115 120 120 88,000
I-400x400 400 110 140 120 160 124,000
I-450x450 450 120 160 130 170 154,900

Figure 1.  Problem geometry of an I-pile.
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lateral load of a circular pile by finite element limit analysis
that considered the effect of undrained strength anisotropy.
Finite element limit analysis was also employed to solve the
ultimate lateral load for problems encountered with two side-
by-side circular piles with a symmetrical load (Georgiadis et
al., 2013a), a row of circular piles (Georgiadis et al., 2013b),
and  two  side-by-side  circular  piles  with  load  inclination
(Georgiadis et al., 2013c).

At present, numerical tools are more advanced than
those in the past. Thus, the finite element method has become
popular in analyzing the ultimate load resistance of a pile.
For example, Chaudry (1994), Klar (2008), and Zhang (2013)
employed  finite  element  analyses  in  calculations  for  piles
under  lateral  load.  However,  their  results  were  related  to
circular piles, while their applications are still questionable
for a prediction of lateral capacity for I-shaped concrete piles
under  a  full-flow  failure  mechanism.  Even  though  various
studies on the undrained lateral capacity of circular piles have
been conducted in the past, there is no numerical solution of
lateral limit load of I-shaped concrete piles available in the
literature.

This paper presents a new plasticity solution for the
undrained lateral capacity of I-shaped concrete piles in clay
by finite element limit analyses (FELA). In this study, the
dimensions  of  I-pile  sections  were  based  on  Thailand
Industrial  Standards,  TIS  396-2549  (2007),  as  shown  in
Table 1. Plasticity solutions of undrained lateral capacity of
I-shaped piles are determined for a pile that is loaded either
normal to its major or minor axes corresponding to the largest
and smallest moments of inertia of their axes of symmetry. The
adhesion factor,  is studied in the complete range from 0
(smooth) – 1 (rough). Plasticity solutions of various sections
of I-piles are compared with the solutions of square piles,
while FELA solutions of circular piles are validated by existing
solutions of Randolph and Houlsby (1984), and Martin and
Randolph (2006). Failure mechanisms associated with each
loading direction are discussed and postulated.

2. Numerical Methods

A  commercial  finite  element  limit  analysis  (FELA)
software, OptumG2 (Krabbenhoft et al., 2015), was employed
to  analyze  the  ultimate  lateral  load  of  I-piles  in  clay.  This
powerful numerical technique has been successfully applied
to solve various stability problems in geotechnical engineer-
ing as demonstrated by Sloan (2013). The following summa-
rizes  aspects  of  numerical  modeling  of  FELA  in  OptumG2,
specifically related to the current study of a full-flow failure
mechanism of I-shaped concrete piles. Full details of the
numerical  procedures  in  OptumG2  can  be  found  in
(Krabbenhoft et al., 2015).

In finite element limit analysis, clay with constant
undrained shear strength (su) is modeled as a solid element
with Tresca material and the associated flow rule. Because of
the full-flow failure mechanism employing the plane strain
condition in the direction of pile depth, clay is defined as a

weightless material with zero unit weight (i.e.,  = 0). Exact
dimensions of an I-pile according to TIS 396-2549 (2007) in
Table 1 are accurately modeled without any approximation.
Six sections of an I-pile that range from the smallest size,
180×180 mm, to the largest size, 450×450 mm, are considered
in  the  analysis.  Each  I-pile  is  modeled  as  the  rigid  solid
element with a shear strength that is automatically defined by
the software using a high value to ensure this behavior. The
lateral load applied normally to either the major or minor axis
of I-pile causes the full-flow failure mechanism around the
pile. The major and minor axes of a pile correspond to the
largest  and  smallest  moments  of  inertia  of  their  axes  of
symmetry. Numerical models of an I-pile loaded normally along
these axes are illustrated in Figures 2(a) and 2(b), respectively.
Interface elements between the clay and pile are used around
the perimeter of I-pile. The adhesion factor at the soil-pile
interface defined in equation (1) is studied in the range of
0 (smooth) – 1 (rough) with an increment of 0.25. For the full-
flow failure mechanism, the study of Martin and White (2012)
indicated that there was no difference in the solutions for
modeling the soil-pile interface between the full tension and
tension cut-off cases, which resulted in the same solution for
undrained capacity of very deep pipelines in weightless soil.
Thus, the soil-pile interfaces are modeled as the full tension
case in this study. Owing to the symmetry of the I-pile geo-
metry and loading, only half of the problem is considered as
a numerical model. The external boundaries of the model are
fixed  in  the  normal  direction  of  the  planes  while  their
tangential  movements  are  free.  Such  boundary  conditions
satisfy the centerline of the models with both loading direc-
tions. The boundary size of the domain must be sufficiently
large such that it the plastic shear zone does not intersect the
external boundaries (except at the centerline of the problem)
and is contained within the domain. Therefore, the upper and
lower bound limit loads are not altered by an extension of the
domain size, and there is no influence of the domain size on
the computed solutions.

OptumG2 is used to perform a separate calculation of
rigorous upper and lower bound limit analyses of a laterally
loaded I-pile. Soil and I-shaped concrete piles are discretized
into triangular elements in both analyses. For upper bound
analysis, the best upper bound limit load is optimized by find-
ing the minimum collapse load that satisfies a kinematically
velocity field defined by the compatibility and associated
flow  rule  equations  at  triangular  elements  and  velocity
discontinuities at soil-pile interfaces and velocity boundary
conditions. For lower bound analysis, the best lower bound
limit load is optimized by finding the maximum collapse load
that  satisfies  a  statically  admissible  stress  field  defined  by
the stress equilibrium equations at triangular elements and
stress discontinuities of all shared edges of adjacent elements
(including soil-pile interfaces), stress boundary conditions,
and  no  stress  violation  of  yield  criterion.  Both  numerical
upper  and  lower  bound  problems  are  formulated  into  a
second-order conic programming (SOCP) (Krabbenhoft et al.,
2007) where the upper and lower bound loads are optimized
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by an interior point optimizer (Krabbenhoft et al., 2006) to
obtain the minimum and maximum lateral limit load of I-piles,
respectively.

In addition, mesh adaptivity (e.g., Lyamin et al., 2005;
Martin, 2011), a powerful feature in OptumG2, was employed
in both the upper and lower bound analyses to determine
the tight upper and lower bound solutions. In this study, the
models of I-piles are analyzed by OptumG2 using the feature
of mesh adaptivity starting at 5,000 elements and increasing
to 10,000 elements in five adaptive iterations.

Note  that  analyses  of  two  sections  of  circular  and
square piles are also performed as shown in Figures 2(c) and
2(d).  The  former  is  used  for  a  validation  with  previous
analytical solutions of undrained lateral capacity of circular
piles,  while  the  latter  is  used  to  compare  with  the  lateral
capacity  of  I-piles  and  to  check  if  the  lateral  capacity  of
I-piles can be normalized to those of square piles.

3. Results and Discussion

Figure  3(a)  shows  a  validation  of  undrained  lateral
capacity  of  circular  piles,  P/suB (i.e.,  B  =  pile  diameter)
between  FELA  solutions  and  analytical  upper  and  lower
bound  solutions  by  Randolph  and  Houlsby  (1984),  and
Martin and Randolph (2006), respectively. Bound solutions
of square piles are also shown in this plot. For circular and
square piles with all adhesion factors, the exact lateral limit
load of pile can be accurately bracketed by computed upper
and lower bound solutions within 0.7% and 2.3%, respec-
tively. Excellent agreement between the lateral capacity of
circular  piles  of  the  present  study  and  that  of  previous
solutions could be observed. The lateral capacity of a circular
pile is generally smaller than that of square pile by about 30-
35%. Figures 3(b) and 3(c) show the incremental displacement
vector  predicted  by  FELA  for  circular  piles  with  a  smooth
surface (= 0) and rough surface (= 1), respectively. It
should be noted that predicted failure mechanisms of FELA

Figure 2. Numerical models in OptumG2: (a) I-pile loaded normal to the major axis, (b) I-pile loaded normal to the minor axis,
(c) square pile, and (d) circular pile.

Figure 3. (a) Comparison of undrained lateral capacity of circular
and square piles between the present study and previous
solutions; Failure mechanism of circular piles: (b) smooth
pile ( = 0) and (c) rough pile ( = 1).

correspond very well with the slip line solutions of Martin
and Randolph (2006) for smooth and rough circular piles,
where the results of the latter are omitted.

Figures 4(a) to 4(c) show the failure mode of rough
square  piles  predicted  by  FELA.  The  failure  mechanisms
include the final adaptive mesh, Figure 4(a), vector of incre-

(a)
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Figure 4. Failure mechanism of rough square piles: (a) Final adap-
tive mesh, (b) Incremental displacement vector, and (c)
Incremental shear strain; Failure mechanism of rough I-
pile section I-220×220 loaded normal to the major axis:
(d) Final adaptive mesh, (e) Incremental displacement
vector, and (f) Incremental shear strain; Failure mecha-
nism of rough I-pile section I-400×400 loaded normal to
the major axis: (g) Final adaptive mesh, (h) Incremental
displacement  vector,  and  (i)  Incremental  shear  strain ;
Failure  mechanism  of  rough  I-pile  section  I-220×220
loaded normal to the minor axis: (j) Final adaptive mesh,
(k) Incremental displacement vector, and (l) Incremental
shear strain; Failure mechanisms of I-pile section I-400×
400 loaded normal to the minor axis: (m) Final adaptive
mesh, (n) Incremental displacement vector ,and (o) Incre-
mental shear strain.

mental  displacement,  Figure  4(b),  and  shear  dissipation
contour, Figure 4(c). It can be observed that the plastic flow of
a square pile consists of two rigid triangular zones located on
the front and back sides of the pile and radial shear zone on
the sides of the pile starting from the front rigid triangular
zone and ending at the back one. The radial shear zone joining
corners of two triangular rigid zones appears like an ellipse.
There is also a concentration elements found where there is
a high degree of shearing around the edges of the square pile
as well as inclined edges of the triangular zones and, peri-
meter of the radial and elliptical shear zones, which indicates
the development of shear bands.

Figures 4(d) to 4(f) and 4(g) to 4(i) compare the failure
mechanisms of rough I-piles with two sections I-220×220 and
I-400×400  loaded  normal  to  the  major  axis,  respectively.
Basically, the pattern of failure mechanism of I-220×220 is
comparable to that of I-400×400, except that the latter has
a larger plastic zone. Results of the rough I-pile sections I-
220×220 and I-400×400 loaded normal to the minor axis are
illustrated in Figures 4(j) to 4(l) and 4(m) to 4(o), respectively.
In general, there are a number of similarities in failure mecha-
nisms between I-piles loaded normal in both directions (i.e.
major and minor axes) and square piles.

Figure 5 compares the failure mechanisms of square
piles for three different adhesion factors. The failure mecha-
nisms include the final adaptive mesh, Figures 5(a) to 5(c),
the vector of incremental displacement, Figures 5(d) to 5(f),
and the incremental shear strain contour, Figures 5(g) to 5(i).
It can be observed that the size of radial shear zone depends
on the adhesion factor, where a rough square pile produces
a plastic zone that is larger than that of a smooth pile. In addi-
tion, the size of the rigid triangular zone in the front and back
sides of square piles is affected by the adhesion factor. Lastly,
the rigid zone that is adjacent to the side of pile is bigger and
clearly seen in the case of rough piles. Figures 6(a) to 6(r)
compare the failure mechanisms of I-pile section I-220×220
loaded normal to the major and minor axes. The influence of
the  adhesion  factor  on  the  predicted  failure  mechanism  is
presented in those figures. Note that results of I-pile section
I-200×200 are similar to those of I-400×400, and thus the latter
results are omitted. Apparently, the effects of adhesion on
the failure mechanisms of I-piles loaded normal at both axes
are similar to those of square piles, as described earlier. It can
be observed that there are some differences in the predicted
failure mechanism of a smooth I-pile between loading normal
to  the  major  and  minor  axes.  For  rough  piles,  there  is  no
difference  in  the  predicted  failure  mechanisms  for  the  two
loading directions.

Ultimate lateral load of an I-pile is represented as the
dimensionless lateral capacity factor, N = P/suB, where P =
ultimate load, su = undrained shear strength of clay and, B =
size of I-pile. Design charts of the undrained lateral capacity
of  I-piles  loaded  normal  to  the  major  and  minor  axes  are
presented in Figures 7 and 8, respectively. For all cases, the
difference between the upper and lower bound solutions of
I-piles loaded normal to the major and the minor axes are
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within 4.3% to 2.4%, respectively. Figure 7 shows the relation-
ship between the lateral capacity factor of an I-pile loaded
normal to the minor axis and adhesion factor, . Since the
computed  plasticity  solutions  are  accurate,  the  average
solutions  between  the  upper  bound  and  lower  bound
solutions are used to plot the curve of each I-pile. Note that
the curve of square piles is shown in this plot. Very clearly,
the lateral capacity factors of I-piles loaded normal to the
minor axis are practically identical to those of square piles for
all values of adhesion factors. This result indicates that the
soil  plug  within  each  flange  of  an  I-pile  behaves  as  a  rigid
body once it is loaded normal to its minor axis at the limit
state.

Figure 8 shows the relationship between the lateral
capacity factor of an I-pile loaded normal to the major axis
and adhesion factor, . Like the results in Figure 7, the curve
of each I-pile corresponds to the average of the upper bound
and lower bound solutions. In this figure, each line corres-

Figure 5. Final adaptive mesh of square piles: (a)  = 0, (b)  = 0.4,
and (c)  = 1, Incremental displacement vector of square
piles: (d)  = 0, (e)  = 0.4, and (f)  = 1, and Incremental
shear strain of square piles: (g)  = 0, (h)  = 0.4, and
(i)  = 1.

Figure 6. Final adaptive mesh of I-pile section I-220×220 loaded
normal to the minor axis: (a)  = 0, (b)  = 0.4, and (c)
 = 1, and loaded normal to the major axis: (d)  = 0, (e)
 = 0.4, and (f)  = 1; Incremental displacement vector of
I-pile section I-220×220 loaded normal to the major axis:
(g)  = 0, (h)  = 0.4, and (i)  = 1, and loaded normal
to the major axis: (j)  = 0, (k)  = 0.4, and (l)  = 1;
Incremental  shear  strain  of  I-pile  section  I-220×220
loaded normal to the major axis: (m)  = 0, (n)  = 0.4,
and (o)  = 1, and loaded normal to the major axis: (p)
 = 0, (q)  = 0.4, and (r)  = 1.
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ponds to a different size I-pile loaded normal to the major axis,
but the bottom line corresponds to the results of square piles.
In general, expected trends of the curves are observed, where
the  lateral  capacity  factor  of  an  I-pile  increases  with  an
increase of the adhesion factor. Note that for a smooth surface
( = 0), the lateral capacity of all sections of I-piles loaded
normal to the major axis fall in the range of 13.5-13.9, which is
higher than that of a square pile with the lateral capacity of
12.5. For an I-pile loaded normal to the major axis, the largest
and smallest lateral capacities correspond to I-pile sections
I-350×350 and I-180×180, respectively. Generally, the N value
increases  non-linearly  with  an  increase  of   When 
approaches 1 (rough pile), the N value for all sections of I-
piles loaded normal to the major axis and that of square piles
converges to a value of 14.7.

Figure 9 shows the ratio of undrained lateral capacity
of an I-pile loaded normal to the major axis to that loaded
normal to the minor axis, (P/suB)major/(P/suB)minor . It can be
seen that for the same I-pile section, its lateral capacity of
the major axis is larger than that of the minor axis by approxi-
mately 7-12%. A larger difference in lateral capacity between
two loading directions can be seen for smooth piles, while

a  smaller  difference  in  lateral  capacity  among  two  loading
directions becomes smaller once the adhesion factor of the
I-pile  is  increased.  This  result  implies  that  the  soil  plugs
adjacent to each flange of an I-pile have some influence on
the lateral pile capacity of the major axis provided that the
adhesion factor is less than 1. Once the pile is fully rough (
=1), there is no difference in lateral capacity of I-piles among
different loading directions, which is practically identical to
that of square piles.

4. Conclusions

This paper studied the undrained lateral capacity of I-
piles with sections that followed Thailand Industrial Standards
(TIS 396-2549, 2007). A full-flow failure mechanism around a
pile is assumed, and thus the plane strain condition is applied
in the direction of pile depth. Two-dimensional plane strain
finite element limit analysis was employed to determine the
undrained  lateral  capacity  of  I-piles  as  well  as  circular
and  square  piles.  Two  loading  directions  of  I-piles  were
considered, including loading normal to the major and minor
axes  of  pile.  Due  to  the  assumption  of  a  full-flow  failure
mechanism, computed plasticity solutions are applicable for
the piles in a deep zone that is not influenced by the ground
surface. Six sections of I-piles, ranging from 180x180 mm to
450 x 450mm, were analyzed. For each section, a parametric
study was carried out for a complete range of adhesion factor
at the soil-pile interface for  = 0 (smooth)-1 (rough).

For all cases, the exact lateral limit load of circular
piles, square piles, and I-piles can be accurately bracketed by
computed upper and lower bound solutions within 0.7%,
2.3%  and  4.3%,  respectively.  For  all  sections  of  piles,  an
influence  of  adhesion  factor  at  the  soil-pile  interface  on
the lateral capacity of the piles is such that a higher lateral
capacity  of  a  pile  is  related  to  a  higher  adhesion  factor.
Predicted lateral capacity of circular piles can be validated
very closely with previous solutions. It was found that the
lateral capacity of square piles is generally larger than that of
circular piles by about 30-35%. For an I-pile section, the lateral

Figure 7. Relationship  between  undrained  lateral  capacity  and
adhesion factor of I-piles loaded normal to the minor axis.

Figure 8. Relationship  between  undrained  lateral  capacity  and
adhesion factor of I-piles loaded normal to the major axis.

Figure 9. Ratio  of  undrained  lateral  capacity  of  I-piles  loaded
normal  to  the  major  axis  to  that  loaded  normal  to  the
minor axis.
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capacity of the minor axis is practically equal to that of a square
pile of the same size and is generally smaller than that of the
major axis by about 7-12%. A large difference in the lateral
capacity of an I-pile between the major and the minor axes is
observed for the case of a smooth I-pile. This result indicates
that  the  lateral  capacity  of  an  I-pile  loaded  normal  to  the
major axis is affected by the soil plug adjacent to the flange of
the I-pile. However, this effect disappears when the I-pile is
rough and the lateral capacity of both axes becomes equal to
that of a square pile. Therefore, for a conservative design, the
undrained lateral capacity of a square pile can be employed
for a prediction of an I-pile with the same size axes for loading.
For a more accurate design, the undrained lateral capacity
of all I-pile sections following TIS 396-2549 (2007) can be
conveniently  and  accurately  predicted  using  proposed
design charts when considering different loading directions.
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