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Numerical Simulation of Particle Trajectory inside Automation
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Abstract

In a hard disk drive (HDD) manufacturing process, it is necessary to produce HDDs
under a criterion of the lowest particle contamination. For this reason, fan filter units (FFUs)
is installed on top of an automation machine (AM) to generate airflow inside. It is expected
that the airflow can block particles from the outside and disperse particles inside the AM,
causing the reduction of particle contamination in the production. This research aims to
numerically investigate particle traces inside the automation and the use of airflow based on
computational fluid dynamics under a condition of HDD factory. It was found that FFUs gives
the optimum airflow pattern, which can reduce the particle contamination inside the AM.
The results of this research can be applied to develop related machines to improve their

efficiency in reducing particle contamination

Keywords: Computational Fluid Dynamics, Airflow, Particle Contamination, Automation
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[

AUINAINAUNTAUARLIIBYNA (particle force balance equation) [6] FaTeuledl

dup/dt = FD(ug - up) + g(pp - pg)/pp + £ €Y)
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a1n (Drag Force) Fs ﬁaLm?ﬁuqﬁmmzﬁwﬁuaumﬂLsu'u wsanIaLEiau (virtual mass force) wseen
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ilefvzdAnuisessesnsindouiiveseyma islseynaegiifndadunidusynaiing
vorlulssnu uasshliAnnisuudousnunsdanweynirogident gnausdlsdvunmduri
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dlevigreanininvesaiasinguds mslvavesemanigluagiineyniadenarioonnisdiusia 4 4
vnduwhtuiinnasuumenugidesiansuutoutu iensinneosazden lsfmuali
wyUdnamenuddssdivunn 1.0 cm uagiiindaueyniafivdeeidu 1,000 2,000 uag 3,000
aun1A Nn9nsaivaes 100 as wétfudruueynafinnasuuaenddes (trapped) wazoynia
fiffsanvagluin3osdng (undetermined) nanansiaguil 7 nuiteyniadrulngjgniinesnain
139383 BUAA 6.39%-6.67% ANAIUUANENIUAUABS YTl BYAA 3.23%-3.30% Ssaspatlu

o w o a

WW3899n5189lansanrualaINEaniIneanty ¥BANAIULAINIUA ALY AIANNARIALAZDY

Y

[

(error bar) vaeynUayasgluyig 0.21%-0.34% Tuviuesdetusdaladnasdlaganvuinveuy
Ushangnwliduuna 0.5 cm ilviwusnadeinanazidentiy Aslidruiulnuaiiiuyseann 8
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LH0INANYINATDIAUEIBINIAIN FFUs Aanisuuileuvetaunia 1513391a04lnans
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Abstract

In this academic article, we introduce a simulation of airflow inside an automation machine (AM) and
its application for reducing particle contamination using the computational fluid dynamics. In the
simulation, we used an actual ambient condition such as temperature, pressure and air velocity measured
from a factory. The result of simulation shows that airflow pattern inside the AM can act as a particle
blocker from outside and has more efficiency in reducing particle contamination inside the AM while it is
working. We briefly review a relevant theory, neglect complicated equations, and present a methodology
of simulation in order to easy to understand. The knowledge in this article can be applied as fundamental

information for designing the other automation to reduce particle contamination.

Keywords : Computational Fluid Dynamics, Airflow, Particle Contamination, Automation Machine
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Abstract. Today, the hard disk drive (HDD) industry is using assembly automation machine
(AAM) to construct head stack assembly (HSA) from smaller parts. AAM needs to operate in a
clean environment with very low particle counts. To achieve this end, fan filter Unit (FFU) is used
to supply purified air into the environment by filtering out airborne particles from recirculating air.
In this study, we investigated numerically the airflow induced by FFUs inside a microenvironment
that houses an AAM in an HDD factory. The boundary conditions chosen for simulation were
directly derived from the real ambient conditions in this HDD factory. We found that the FFUs not
only filter out airborne particles from the air supplied into the microenvironment but also act as a
particle blocker, pushing away the nearby particles in the air surrounding the openings of the
microenvironment. The findings from this study can be applied to cases where other kinds of
machinery need to be protected from airborne particles.

Introduction

Production of electronics parts and components is an important industry in Thailand. In 2011, it
generated 12 billion US dollars income into the country which amounted to 30% of all Thailand’s
incomes from exports. This kind of production absolutely needs to be done in clean room or
environment with very low particle counts. The standards of clean environment vary among
different types of production. In general, the standard of clean room for production of electronics
parts is ‘class 100°; that is, only 100 particles per cubic feet bigger than 0.5 um are allowed.
However, class 100 clean room is very expensive to construct and maintain, so in a real mass
production facility, class 1,000 clean room is used instead, where only 1,000 particles per cubic feet
bigger than 0.5 pm are allowed. To ensure that this type of clean room provides sufficiently low
particle counts around the AAM, FFUs are installed on top of the AAM’s microenvironment. The
rationale behind using FFUs in this way is that when the ambient conditions around an AAM’s
microenvironment are tightly controlled—conditions such as temperature, pressure, and air
velocity—the air filtered through the FFUs into the microenvironment will have sufficiently low
particle counts.

From a literature search, we found that there was no direct computer fluid dynamics (CFD)
study of airflow in the microenvironment of an assembly automation machine reported before, but
there were several indirect studies such as studies of airflow in a clean room and other facilities [1-
5]. Those studies applied the same fluid dynamic principles that are relevant to our work. One of
those studies is by Liu et al [1]. They investigated the effect of medical lamps and thermal plume on
the airflow pattern in a hospital operating room. Noh et al. [2], using a CFD simulation of particle
counts, were able to successfully control the contamination inside a clean room. Naphon et al. [3]
studied the heat transfer and airflow inside an HDD tester. They found that air flowed unevenly
there. Recently, Liu et al. [4, 5] conducted a numerical study of the effect of HDD cover and
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circulating filter as well as of airflow pattern on the entrapment of loose particles inside an HDD.
Their findings are very useful for precise design of components for reducing particle contamination
inside an HDD while it is spinning. Recently, we applied a standard, an RNG and a realizable k-¢
turbulence model to predicting the airflow inside a 3.5 dual platter HDD [6]. The results from these
studies show that there were large differences among the reported velocities around the HGA.
These three k-¢ turbulence models also have several limitations when applied to practical
applications.

In this article, using the transition shear stress transport (transition SST) model in Fluent
simulation software, we conducted simulations to accomplish 2 objectives: first, to numerically
investigate the airflow pattern inside the microenvironment of an assembly automation machine
under real ambient conditions in a production line; and second, to determine the capability of fan
filter units for blocking out airborne particles in the surroundings of the microenvironment.

Methodology

Mathematical Modeling

The main mathematical equations used in this study were conservation equations and turbulence
equations. The conservation equations used, elaborated in reference [7], were the following
equations: mass conservation (1), momentum conservation (2), and energy conservation (3).

op/ot + V-(pv) = Sm, (1)
d(pv)/ot + V-(pvv) =-Vp + V(1) +pg+ F, 2)
O(pE)/ot + V-(v(pE+p)) = -V-(ZjhjJj) + Sh, 3)

where p is the fluid density and t is time. 7 is the stress tensor related to molecular viscosity. Sm and
Sh are user-defined source terms. pg and F are the gravitational force and external body forces,
respectively. p is the static pressure.

The turbulence equations used in this study were chosen from several available mathematical
models. These models are such as k-¢, k-w, transition SST, etc. Each of these and other models has
been reliably used for solving different types of engineering and physics problems. We specifically
chose the turbulence equations of the transition SST model because they suited the nature of our
problem perfectly and are widely accepted by HDD industrial research laboratories [8]. These
equations were the following equations: turbulence kinetic energy (k), specific dissipation rate (®),
intermittency (y), and transition momentum thickness Reynolds number (Réy). The full forms of
these equations are omitted because of limited space, but they can be found in reference [7]. To
obtain numerical results, all of the seven equations used in this study were solved with a finite
volume method (FVM) in Fluent software.

Assembly Automation Model

The assembly automation machine (AAM) pertaining to this study is an industrial machinery for
assembling smaller parts into head stack assembly (HSA), a major component of hard disk drive
(HDD). In an HDD factory, an assembly automation machine is housed in a class 1,000 clean room
and composed of 3 functional parts. The first part is a fan filter unit (FFU) which gently blows
laminar-flow air which is filtered to very low particle counts over the other 2 parts in the
microenvironment. The second part is a machinery that assembles parts into an HSA. The third part
is a conveyor that transports the HSA assembly to various positions inside the microenvironment.
Fig. 1 illustrates a simplified solid model of an AAM. It can also be seen in this figure that the air
flows downward from the top of the FFUs and flows out through the outlets along all 4 sides of the
AAM. Air flow directions are one of the conditions that need to be set before running the Fluent
simulation software.

Fluid and Mesh Models

Fig. 2 illustrates a fluid model of the AAM based on the previously mentioned solid model. The
model was constructed with Ansys 14.5 software. To find an optimum mesh model, five different
mesh models were constructed. These 5 models differed only in the resolutions of the meshes
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around the conveyor and the outlets on 4 sides of the AAM. The number of nodes and elements
varied in the ranges of 1.25-1.44 million and 6.54-7.65 million respectively. All of these 5 models
went through a mesh independent analysis. The optimum model found had 1.28 million nodes and
6.84 million elements. It was optimum in accuracy and computation time. Below in Fig. 3 is an
illustration of this mesh model.

----- Machinery
Outlet
1200 cm} AR

outlet | o NI el | Conveyer

Figure. 1 Schematic diagram of assembly automation and its
airflow direction

e

Figure. 2 Fluid Model Figure. 3 Mesh Model

Fluent Setup

Before a Fluent simulation can start, the boundary conditions and other parameters must be set
first. In this study, these values were obtained from real ambient conditions around an AAM in an
HDD factory. The boundary conditions were set as follows: air velocity at the inlet at 0.45+0.05
m/s, room pressure at 106,300+300 Pa, room temperature at 297.5+0.1 K and pressure gauge 0 Pa
as a pressure outlet condition. Other settings were as follows: pressure-velocity coupling was set to
couple; spatial discretization of pressure, momentum, turbulent kinetic energy, and turbulent
dissipation rate was set to be second order upwind. With the settings above, steady state solutions
were computed. After these solutions were found, they were input into a transient solver module to
compute the final transient solutions. This time, the settings for the transient module were as
follows: a time step of 2x10™ s was set for 500 steps with 10 iterations per time step; absolute
convergence criterion was set at 10°. In the final step, the transient solutions found were used to
determine the airflow pattern inside the AAM.

Results and Discussion

In this section, we discuss the accuracy of our simulation and the particle-blocking capability of
the FFUs. First, to check the accuracy of our simulation, we compared the simulated air velocities
with the measured air velocities taken at the factory site. These measured velocities were taken at 3
different places with an anemometer that was accurate to +£0.03 m/s. The first place was at the front
side of the AAM along the lines F1 and F2 at the z-positions of 49, 68, and 90 cm, as shown in Fig.
4. The second place was at the back side of the AAM along the lines B1 and B2 at the same z-
positions, as shown in Fig. 5. It can be clearly seen in these two figures that the simulated velocities
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matched the measured velocities closely. The small discrepancies between the two might be due to
the inconstant air velocity coming out from the FFUs. The measured velocities were varying in the
range of 0.40-0.50 m/s, but we used the average value of 0.45 m/s in our simulation. The third place
that air velocities were measured at was a region around the conveyor. The conveyor was operating
normally when measurements were taken, so its smaller parts were moving constantly, causing the
measured air velocities around them to swing in the range of 0.08-0.22 m/s. Our simulated air
velocities in this region were in the range of 0.09-0.21 m/s, matching the measured ones very
closely again. All of these results suggested that our simulation was accurate.
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Figure. 4 Comparison between the measured air velocity with the simulated results at
front side of the assembly automation
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Figure. S Comparison between the measured air velocity with the simulated results at
back side of the assembly automation

Second, to determine the particle-blocking capability of the FFUs, we compared the speed of
simulated air velocity vectors inside the AAM’s microenvironment with the measured air speed
immediately outside it. An illustration of the air velocity vectors in an XZ plane is shown in Fig. 6,
and another one but in a YZ plane in Fig. 7. The speed of the vector velocities in these planes and
several other similar planes were many times higher than the speed of the outside air which was
around 0.00-0.01 m/s, so we can infer that air comes out of the FFUs, flows into the
microenvironment, and flows out of it along its four sides continuously. In effect, the outflow air
blocks the surrounding airborne particles from getting into the microenvironment.

Summary

In this study, we numerically investigated the airflow inside the microenvironment of an
assembly automation machine for assembling head stack assembly of hard disk drive (HDD). Fluent
simulation software was used to simulate the airflow. Specifically, the airflow was computed with
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Fluent’s transition SST model along with real ambient conditions measured in an established HDD
factory. We found that our simulated airflow matched the real air flow closely. We also found that
the air flowing out of fan filter units can block outside airborne particles from getting into the
microenvironment. Our findings can be used to devise a way to reduce airborne particle
contamination in the environment of other production-line machines in the HDD industry and other
related industries. Our next study will use the same methodology used in this study but adding an
additional discrete phase model to simulate traces of small particles released by movements of
machine parts. We are interested in finding ways to get rid of these particles from an AAM’s
microenvironment.
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Welding automation machine (WAM), used for welding minute components to the head gimbal assembly (HGA) of a hard disk drive
(HDD), needs to operate in a strictly clean environment. In today’s HDD factories, to prevent airborne particle contamination to the
WAM, Fan Filter Units (FFUs) are installed on top of it to supply clean air and blow away outside airborne micro particles, keeping
the microenvironment clean. Furthermore, the mass of the clean air should also carry away harmful particles generated inside the
microenvironment. In this research, numerical simulation of airflow inside a WAM was performed in order to verify these cleaning
functions of the airflow. A transition shear stress transport turbulence model was employed to simulate airflow from the FFUs through
and out of the microenvironment. The simulation results showed that the airflow from the FFUs truly performs the two cleaning
functions as intended. Moreover, they also revealed that the optimum air speed, the speed resulting in the lowest particle counts, is
in the range of 0.35-0.55 m/s. Our findings can be useful for developers who may use FFUs to reduce particle counts in the

environment of other types of industrial machinery.

NOMENCLATURE

i, j = 1, 2, 3 correspond to the components of x, y and z,
respectively

p = fluid density

u = velocity

P = pressure

t=time

F = external force

k = thermal conductivity

E = internal energy

0y = stress tensor

T = temperature

S = user-defined source term
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1. Introduction

Production of electronic parts and components is an important
industry in Thailand. In 2011, it generated several billions US dollars
which amounted to 30% of all Thailand’s incomes from exports. This
kind of production absolutely needs to be done in a clean room or a
clean environment with very low particle counts. Contaminating
particles are generated by various human activities.! Some activities
may generate up to 30 million particles per minute.> Movement of
machine parts also generates a lot of micro particles. The standards of
a clean environment vary among different types of industrial production.
In general, the standard of a clean room for production of electronic
parts is ‘class 100’, referring to the US FED STD 209E criterion; that
is, only 100 particles per cubic feet bigger than 0.5 pm are allowed.
However, class 100 clean room is prohibitively costly to construct and
maintain; therefore, in a real mass production facility, class 1,000 clean
room is used instead, in which only 1,000 particles per cubic feet
bigger than 0.5 pm are allowed. In order to achieve even lower particle
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counts, particularly around a welding automation machine (WAM) in a
hard disk drive production line, fan filter units (FFUs) are installed on
top of the WAM’s microenvironment, under the assumption that when
temperature, pressure, and air velocity around the WAM are tightly
controlled, the air coming through the FFUs into the microenvironment
should be sufficiently free of contaminating particles.”* Another two
tacit assumptions are that the clean air from the FFUs should block
outside airborne micro particles from coming through the openings of
the microenvironment and purge out particles generated inside it.

However, direct verification of these two latter functions is not
practical. It is not only next to impossible to set up an experiment that
can accurately measure particle counts and air speeds inside the
microenvironment of an operating WAM without introducing
confounding elements that will render the obtained data useless, but it
is also too costly to stop a production line to perform an experiment-
a blackout of only 10 minutes at a hard disk drive factory has cost the
manufacturer many thousands US dollars. Therefore, we have resorted
to reliable computer simulation of the actual event. We have successfully
used computational fluid dynamics (CFD) before to predict the airflow
behavior inside a hard disk drive and inside a microenvironment of a
production line machinery.*” The simulated results were empirically
verified to be sufficiently accurate.

Even though a specific CFD study of the airflow inside the
microenvironment of a WAM has not been reported in the literature,
there were several similar studies of airflow in a clean room and other
facilities.®'> One of these studies was done by Srebric et al..® They used
CFD to predict contaminant dispersion around human occupants,
yielding valuable data that can be used to resolve poor indoor air
quality. Rouaud and Havet’ used CFD to find a method for solving a
contamination problem in a food-processing clean room. Liu et al.'
investigated how medical lamps and thermal plume affected the airflow
pattern in a hospital operating room. More closely related to our study,
Noh et al.'' simulated particles inside the microenvironment of an
LCD-manufacturing clean room and were able to use their results to
formulate a way to control particle contamination in the room. As for
hard disk drive (HDD) related CFD studies, two are particularly
relevant: Naphon et al.'? found that air flowed unevenly inside an HDD

tester; and Liu et al.'>!*

investigated how the HDD cover and circulating
filter affected the airflow pattern and entrapment of particles generated
inside a spinning HDD. Another example of related CFD studies comes
from a medical research study. Inthavong et al.'* simulated the manner
of particle deposition in human nasal cavity after a nasal spray device
was applied. All of these studies are evidence of widespread and reliable
uses of CFD to simulate airflow and particles in an environment. CFD
is a viable tool for discovering ways to reduce particle contamination.

In an ongoing cooperative research with a hard disk drive
manufacturer, the authors have come to know of a problem in the
manufacturer’s FFU-equipped hard disk drive production line; a
production reliability technician has reported that when the air speed
blowing out of the FFUs was too low or too high, the finished products
did not meet their reliability standard. There was an excessive
contamination of particles such as polystyrene, aluminum, stainless
steel, etc. Hence, we decided to investigate the nature of this problem
by using CFD. We set out to find the answers to 3 particular questions,
namely: (1) Can the FFUs actually blow away the particles in the

surrounding air and the machine-generated particles inside the WAM
microenvironment? (2) How many of each kind of particles-polystyrene,
aluminum, and stainless steel-get blown away or trapped on the convey
or of the WAM? and (3) What is the optimum FFUs’ air speed that
reduces particle contamination most effectively?

2. Theoretical Backgrounds

2.1 Conservation equations

Airflow pattern was determined by solving a set of partial
differential equations: conservation equations and turbulence equations.
The conservation equations are given by Egs. (1)~(3).'° Similarly,
particle tracking, finding the position of a contaminating particle at
each point in time as it is carried away by the mass of the flowing air,
was determined by solving a particle force balance equation.'” This
capability is featured in the discrete phase model (DPM) of the Fluent
CFD software.

dpldt+d(pu;)/ox; = 0 (1)
d(pu)/ot+d(pusu;)/ox, =
. — )
—0P/0x+ F;+08[7;1/0x;+ O(~puiai) | 0x;+ O(—pu;)/0x,+8,,

O(PE)/0t+0[u(pE+P)]/ox;=

O((R) OTI0x) + u(Ty), )/ 0, + S, ®)

2.2 Turbulence equations

Several mathematical models incorporate turbulence equations for
solving various types of engineering and physics problems-models
such as k-¢ family, k-o family, transition -k, and transition SST. We
chose the transition SST model for this study because of its perfect
match to the nature of our problem and its wide acceptance by several
HDD and other industrial research laboratories.'® The transition SST
has 4 adjustable parameters: turbulence kinetic energy (k), specific
dissipation rate (w), intermittency (), and transition momentum
thickness Reynolds number (R). The full forms of the 4 equations
containing these parameters can be found in reference.'® To find an
airflow pattern, the Fluent CFD software solves Eqs. (1)~(3) together
with the 4 equations mentioned above, making up a total of 7 equations
to be solved.

2.3 Discrete phase model

To determine the number of contaminating particles trapped on the
conveyor of a WAM, the discrete phase model (DPM) featured in the
Fluent CFD software was used. Since the particles were very small, 0.5
pm, it was assumed that the coupling between the fluid phase and the
particle phase was one way only; that is, only the fluid phase affected
the particle phase through drag and turbulence. Particle tracking was
achieved by solving the particle force balance equation,'” shown below.

dup/dt:FD(ug_up)+g(pp_pg)/pp+E§' (4)

where subscripts p and g represent the particle and the fluid, respectively.

Fp is the drag force acting on the particle. F represents other forces
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such as virtual mass force, Basset force, pressure gradient force, lift + —Fan Filter Units
force, thermoelectric force, Brownian force, etc. that are not applicable (FFUs)

to the micron-sized particle in which p,>>p,. Therefore, only drag force
is considered to act on the particles in the model.

3. Methodology

3.1 Welding automation machine

A welding automation machine (WAM) is a type of industrial
machinery employed in hard disk drive (HDD) factories for welding
together smaller components of an HDD. It operates in a class 1,000
clean room in order to protect the assembled HDDs from damaging
particle contamination. The microenvironment of a WAM is further
protected from airborne particles by fan filter units (FFUs) which blow
filtered air into it. Inside the microenvironment, there are 2 kinds of
machines: a welder and a conveyor that carries the components to be
welded in and out. A solid model of a WAM is shown in Fig. 1. The
illustration also shows the primary directions of airflow-downward
from the FFUs and outward through the openings on all 4 sides of the
microenvironment. It was necessary to set up these conditions properly

in the Fluent CFD software before a simulation run.

3.2 Fluid and mesh models

Based on the solid model in Fig. 1, a fluid model, shown in Fig. 2(a),
and several mesh models were constructed with Ansys 14.5 software.
Specifically, six different mesh models differing only in their mesh
resolution around the areas of the conveyor and the openings on all 4
sides of the WAM microenvironment were constructed. The number of
nodes and elements of these 6 models were in the ranges of 0.81-0.96
millions and 4.03-4.96 millions, respectively. All of these 6 models were
then tested for the best balance between accuracy and computation time
by a mesh independent analysis. The optimum model, shown in Fig.
2(b), was found to be the one with 0.85 million nodes and 4.37 million

elements.

3.3 Fluent setup

To start a simulation, boundary conditions and other parameters
need to be set first. The conditions and parameters that we used were
obtained from real ambient characteristics around an actual WAM in an
HDD factory. They were as follows: air velocity at the inlet at 0.45+
0.07 m/s, air pressure in the room at 106,300+300 Pa, room temperature
at 24.5+0.1°C, and air pressure difference at the outlets at 0 Pa. Other
settings were set as follows: pressure-velocity coupling was set to couple;
spatial discretization of pressure, momentum, turbulent kinetic energy,
and turbulent dissipation rate were set to be second order upwind. With
these settings, steady state solutions were computed until the solution
converged. The converged solution depicted the airflow pattern inside
the WAM. This pattern was used, together with the discrete phase model,
to determine particle tracks.

3.4 Validation

This section discusses the accuracy of our simulation. The accuracy
was checked by comparing the simulated air velocities to the actual air
velocities measured on site at an HDD factory. The actual air velocities
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Fig. 1 Solid model of the welding automation machine and the airflow
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directions in its microenvironment

Fig. 2 (a) Fluid Model and (b) Mesh model

were measured at 3 different areas in the WAM microenvironment with
a hot-wire anemometer that was accurate to 0.03 m/s. In 2 areas, 1) and
2) below, air velocities were measured perpendicular to the outlet
surfaces, no such specified direction for area 3). They were the
following: 1) at the front side of the WAM along the line F1 at the
positions 50, 70, and 90 cm on the z-axis, as shown in Fig. 3(a); 2) at
the back side of the WAM along the line B1 at the same 3 z-positions,
as shown in Fig. 3(b); and 3) at an area around the conveyor. We found
that, at the first 2 areas, 1) and 2), the simulated and the measured air
velocities matched closely at all positions, as can be seen in Fig. 3. The
small discrepancies might be because we used a single average value
of 0.45 m/s for the air velocity coming out from the FFUs in our
simulation instead of the actual unsteady air velocities of 0.38-0.52 m/
s. At the area around the conveyor, since small parts were moving
constantly, the actual air velocities there swung from 0.05-0.23 m/s.
Again, this range matched closely with the range of our simulated air
velocities around that area at 0.08-0.23 m/s. Shown in Fig. 4, the air
leaving the FFUs flowed into the WAM and out from its four sides.
These simulated airflow directions were similar to those observed in
the factory as mentioned in section 3.1. Please note that we also
measured additional air velocities along 4 other different lines that were
also in good agreement with the simulated ones, but they are not
presented here due to limited space.

Another positive check of the accuracy of our simulation was that
the observed trend of more simulated particles got trapped on the
conveyor at higher FFUs” air speed settings was the same as the trend
reported by a technician at the factory that the level of contamination
in their finished products also became unacceptably high at higher
speed settings. More detailed description of the observed trend is in the
results and discussion section.
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4. Results and Discussion

In this section, simulation results are described and their implications
discussed. The discussion is organized into 4 topics: first, the blocking
capability of the airflow from fan filter units (FFUs) that prevented
WAM’s
microenvironment; second, the purging capability of the airflow from

outside airborne particles from intruding into the
FFUs that carried away particles generated inside the microenvironment;
third, the different extents of contamination on the conveyor by 3 kinds
of particles of different densities-polystyrene, aluminum, and stainless
steel; and fourth, the optimum air speed of the FFUs that provided the
best prevention of contamination on the conveyor.

The first topic of discussion is the outside-particle blocking capability
of the airflow from the FFUs. Our premise regarding this capability
was that if the mass of air from the FFUs blowing out of the
microenvironment through its outlets was at a speed much higher than
that of the air outside blowing in, airborne particles in the mass of the
outside air would not be able to get carried into the microenvironment.
A comparison between the simulated air velocity vectors at the outlets
and the actual air velocities measured immediately outside the
microenvironment was made, and it was found that, at every outlet, the
speed and direction of the air blowing out were much higher than those
of the surrounding air blowing in, which is around 0.00-0.03 m/s. Fig.
4 shows these simulated air velocity vectors. Hence, it was concluded
that the airflow from the FFUs was truly able to block outside airborne
particles from intruding into the microenvironment of the WAM.

The second topic is the purging capability of the airflow from the
FFUs that carried away particles generated inside the microenvironment.
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Fig. 4 Air velocity vectors inside the WAM at an inlet velocity of 0.45
m/s
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Fig. 5 Percentages of polystyrene particles trapped on the conveyor

To determine this capability, we used the discrete phase model of the
Fluent CFD software to simulate particles released from various places
inside the microenvironment. Specifically, 0.5 gm polystyrene particles
numbering in 1,000, 2,000, and 3,000 were simulated to detach from
randomly selected places. Their motion was constrained by the airflow
from the FFUs at the speed of 0.45 m/s. The simulation was repeated
50 times. At the end of each run, the number of particles trapped on the
conveyor was counted. It can be seen in the histogram in Fig. 5 that
most of the particles were purged from the microenvironment. For the
release of 2,000 particles, after 20,000 iterations, only 6.02% were
trapped on the conveyor and 2.47% were still undetermined whether
they would eventually be trapped or purged-undetermined meaning that
the particles were still floating inside the WAM. It should be noted that,
in a real situation, only the moving parts or the scraping parts of the
WAM generate particles, not all of its parts. Therefore, the actual number
of trapped particles should be lower than this. Fig. 6 illustrates the
tracks of 500 particles colored according to their velocity magnitude. It
shows that most particles got blown out of the microenvironment; only
a few got trapped on the conveyor.

According to a report from the factory, finished products processed
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in the WAM microenvironment were contaminated by many types of
particle. Therefore, the third topic is the different extents of contamination
on the conveyor by 3 kinds of particles of different densities-polystyrene,
aluminum, and stainless steel. Simulation runs were conducted to find
out whether these particles, found frequently in the clean room housing
an actual WAM in an HDD factory, contaminated the conveyor to the
same extent or not. Releases of the following types of particles were
simulated: 0.5 um particles of polystyrene (p=1,050 kg/m?, C,=1,300 J/
kg-K), aluminum (0=2,719 kg/m?, C,=871 J/kg-K), and stainless Steel
(0=8,000 kg/m?, C,=500 J/kg-K). For each kind of particles, their
simulation was run repeatedly for 50 times. Our finding was that the
three types of particles did not contaminate the conveyor to a much
different extent. As shown in Fig. 7, around 6% of them got trapped on
the conveyor. Even though more of the stainless steel particles got
trapped, the difference was minimal, indicating that the effect of density
on the level of contamination was negligible for our simulation
settings.

Our last topic of discussion is the optimum air speed of the FFUs
for providing the least amount of contamination on the conveyor. Particle
contamination comes from 2 sources: they are either carried into the

microenvironment by the mass of air surrounding it or generated inside

[ [m 1]

Fig. 8 Air velocity contour in two given planes of the WAM at the
FFUs’ air speed of 0.35 m/s

the microenvironment itself. We determined the optimum air speed for
preventing contamination from each source and suggested the overall
optimum air speed that yields the least amount of contamination from
both sources.

For the purpose of finding the optimum FFUs’ air speed for blocking
outside particles, we simulated airflow with speeds ranging from 0.03-
0.65 m/s. It was found that any air speeds coming out of the FFUs in
the range of 0.25-0.65 m/s resulted in an air speed at the outlets that
was many times higher than the speed of the air surrounding the
microenvironment which is typically 0.00-0.03 m/s and, hence, should
be able to block out particles coming in from the surrounding air. For
example, the simulated outlet air velocity at position 50 on the z-axis
at the front side of the microenvironment was about 0.44 m/s, much
higher than 0.03 m/s, when the FFUs’ air speed was 0.45 m/s. In an
extreme case where people are breathing and talking near a WAM, the
air velocities produced by these activities are still lower than this outlet
velocity. To verify this estimation, our students measured for 100 times
the air velocities 10 cm away from their faces while they were talking
and they found that the air velocities were in the range of 0.190.07 m/
s, still much lower than the outlet velocity, shown in Fig. 8. Since the
air velocities blowing out from inside the microenvironment were
much higher than the air velocities blowing in from the activity of the
technicians, outside particles could not be carried by the outside air
mass deeply into the conveyor.

To find the optimum air speed for purging internally generated
particles, we released 3,000 polystyrene particles into the air inside the
microenvironment in runs at 6 specified FFUs” air speeds. The particles
were released 50 times in each run and the numbers of particles trapped
on the conveyor were observed. The results are shown as a histogram
in Fig. 9. The standard deviation of each result ranged from 0.13-0.36%.
It can be seen that, at the FFUs’ air speed of 0.03 m/s (the same as the
typical air speed in a clean room), only 0.69% of all of the particles got
trapped on the conveyor while 37.40% were still undetermined whether
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they would drop onto it or get purged out of the microenvironment. At
the FFUs’ air speeds in the range of 0.35-0.55 m/s, the percentages of
trapped particles were higher, in the range of 5.37-6.82%. However, at
a higher air speed of 0.65 m/s, the percentage of trapped particles jumped
to 7.73%. These results implied that higher speed air pushed more
particles onto the conveyor. This finding is in agreement with the report
from a technician at the HDD factory that when their FFUs’ air speed
was set too low or too high, the finished products were contaminated
to an unacceptable level.

The results in Fig. 9 also reveal that FFUs’ air speed within the
range of 0.25-0.35 can reduce particle contamination most effectively.
This agrees with the minimum FFU's air speed of class 100 clean room
suggested in references'®?° of 0.26-0.36 m/s. Based on these results, we
concluded that the overall optimum FFUs’ air speed for both blocking
and purging should be in the range of 0.35-0.55 m/s to allow for higher
surrounding air speeds from activities of on-site operators, technicians
and engineers. This piece of information was forwarded to the HDD
factory and accepted as valid data for further development of their clean
production line.

5. Conclusions

In this study, Fluent CFD software was utilized to simulate the airflow
from fan filter units (FFUs) into and out of the microenvironment of a
welding automation machine of a hard disk drive production line in
order to investigate the FFUs’ airborne particle blocking and purging
capabilities. It was found that the airflow from the FFUs was able to
block out particles effectively when the FFUs’ air speed was in the range
of 0.25-0.65 m/s. The airflow was also able to purge out internally
generated particles effectively. However, at a higher air speed setting,
the airflow pushed more particles onto the conveyor, contaminating it
more instead. Also, an investigation of whether 3 kinds of particles
with different densities-polystyrene, aluminum, and stainless steel-
contaminated the conveyor to significantly different extents, revealed
that the contaminations were roughly to the same extent, about 6%.
Lastly, the overall optimum FFUs’ air speed, for both the particle
blocking and purging purposes, was found to be in the range of 0.35-
0.55 m/s. These findings can be applied to other cases where FFUs are
used to reduce particle contamination.
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