Thesis Title	Production of Red Pigment from Agro-Industrial Wastewaters by
	Monascus fungi.
Thesis Credits	12
Candidate	Mr. Smakern Bacdyanenda
Supervisors	Dr. Sivawan Phoonlphundh
	Assoc. Prof. Dr. Aporn Wongwichan
Degree of Study	Master of Science
Department	Microbiology
Academic Year	2001

Abstract

The aim of this thesis was to use agro-industrial wastewater as nutrient sources for red pigment production by *Monascus* fungi. Wastewaters from 4 types of agro-industrial factories were used, namely sticky-rice flour manufactory (steeped liquor and filtrated water), pincapple cannery (peel squeezed juice), tapioca starch factory (decanter, separator and combined wastewater), and tofu-skin manufactory (processing wastewater).

Seventy one isolates of *Monasci* were introduced to primary screening on Yeast-malt extract medium. Thirteen isolates which produced high red pigment were selected, then were further cultivated in those wastewaters. The results showed that *Monascus* sp. KT 066 was the highest red pigment producer in all kinds of wastewaters. The highest amount of red pigment (23.67 units) was observed when *Monascus* sp. KT 066 was cultivated in the tapioca decanter wastewater. Moreover, tapioca decanter wastewater also showed to be the best nutrient source for red pigment production for other selected *Monasci*.

Red pigment which was obtained from cultivated *Monascus* sp. KT 066 in tapioca decanter wastewater, had maximal optical densities at 422 and 500 nanometers. At the neutral to slightly alkali condition, the pigment had quite good stability (> 90% remaining) when treated under pasteurization, boiling at 100°C for 1 hour, sterilization at 110°C 10 psi 10 minutes and UV exposure for 4 hours. In addition, red pigment solution stored at 4°C in the dark was the most stable.