

งานวิจัยนี้เป็นการศึกษาความเป็นไปได้ในการนำถ่านอยเส้นไปปั้นน้ำมันมาใช้เป็นวัสดุทดแทน โดยการนำมานำมาใช้เป็นมวลรวมแทนที่ทราย เนื่องจากเมื่อผลผลิตปาล์มผ่านกระบวนการสกัดน้ำมันแล้วจะทำให้เกิดของเสียที่เป็นของแข็ง และหลังจากผ่านการเผาแล้วก็จะเกิดถ่านอยเส้นไปปั้นน์เป็นจำนวนมาก โดยถ่านอยเส้นไปปั้นน์ที่เกิดขึ้นนี้อาจก่อให้เกิดปัญหาการฟุ่งกระจาย ในกรณีนี้ได้ทำการศึกษาเบริร์บเทียบกันระหว่างการใช้ถ่านอยเส้นไปปั้นน์ และถ่านอยลิกไนต์โดยนำมาระบุที่ทรายซึ่งจะช่วยให้ประยุกต์ค่าใช้จ่าย และช่วยลดปัญหาสิ่งแวดล้อม โดยจะทำการศึกษาสมบัติทางกายภาพ ได้แก่ ความคงอ่อนตัว ที่ผิวจำเพาะ ความถ่วงจำเพาะ สวยงามของหัวหิน ความคงทน และสวยงามของหัวหิน 50 มิลลิเมตรทำการหล่อขึ้นโดยมีส่วนผสมของปูนซีเมนต์ ทราย น้ำ ถ่านอยลิกไนต์ และถ่านอยเส้นไปปั้นน์ ใช้อัตราส่วนปูนซีเมนต์ต่อกำลังรับแรงอัด 1:2.75 และจะทำการเปลี่ยนเปลี่ยนปริมาณการแทนที่ทรายด้วยถ่านอยลิกไนต์ และถ่านอยเส้นไปปั้นน์จากร้อยละ 0 5 10 15 และ 20 โดยนำมานักตามลำดับ

ผลการศึกษาแสดงให้เห็นว่ามอร์ตาร์ผสมถ่านอยเส้นไปปั้นน์โดยการแทนที่ทรายนั้นจะมีกำลังรับแรงอัดต่ำลง และมีความหนาแน่นต่ำด้วย โดยเมื่อเพิ่มปริมาณถ่านอยเส้นไปปั้นน์ลงไปในส่วนผสมมอร์ตาร์มากขึ้นกำลังรับแรงอัดยังลดต่ำลง ความหนาแน่นแห้งก็ลดลง การใช้ถ่านอยเส้นไปปั้นน์แทนที่ทรายในปริมาณน้อย (ไม่เกินร้อยละ 20 โดยน้ำหนัก) นั้นจะไม่ทำให้เกิดผลเสียหายแก่มอร์ต้า สวยงามถ่านอยลิกไนต์นั้นเมื่อนำไปปั้นน์เพื่อหล่อมอร์ตาร์ช่วยให้ส่วนผสมมีการไหลลื่น และการทำงานที่ดี กำลังรับแรงอัดก็เพิ่มขึ้นตามปริมาณการแทนที่ทรายด้วยถ่านอยลิกไนต์ สวยงามหนาแน่นแห้งมีแนวโน้มเพิ่มขึ้น

This research was conducted to examine the feasibility of using oil palm fiber fly ash as aggregate replacement material. The production of oil palm creates large quantity of solid waste by product. After combustion, substantial amount of oil palm fiber fly ash is produced which could create problems of disposal. A comparative study has also been conducted on experimental mortar using lignite fly ash as sand replacement material. Lignite fly ash and oil palm fiber fly ash were used for economical and environmental concerns. The properties of lignite fly ash and oil palm fiber fly ash namely fineness, specific surface area, specific gravity, chemical composition and mineralogical composition were determined. This study investigated the compressive strength and dry density of 50×50×50 mm mortar cubes made from mixture containing ordinary Portland cement, sand, water, lignite fly ash and oil palm fiber fly ash. The cement to sand ratio was 1:2.75 varying sand replacement sand with fly ash or oil palm fiber fly ash to 0% 5% 10% 15% and 20% were used.

Experimental results showed that the mortars containing oil palm fiber fly ash possessed unsatisfactory compressive strengths and low densities. The compressive strengths of mortars decreased with the oil palm fiber fly ash content in the mortars. The results suggested that the oil palm fiber fly ash could possibly be used in small amount (less than 20%) with ordinary Portland cement for production of mortar without detrimental effect. Workability of mortar incorporating the fly ash was categorized as good. The compressive strengths of the mortar cubes increased with increasing replacement percentage of sand with lignite fly ash.