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Abstract

SMOTE is an effective oversampling technique for a class imbalance problem due to its simplicity and relatively high
recall value. One drawback of SMOTE is a requirement of the number of nearest neighbors as a key parameter to synthesize
instances.  This  paper  introduces  a  new  adaptive  algorithm  called  Adaptive  neighbor  Synthetic  Minority  Oversampling
Technique (ANS) to dynamically adapt the number of neighbors needed for oversampling around different minority regions.
This technique also defines a minority outcast as a minority instance having no minority class neighbors. Minority outcasts are
neglected by most oversampling techniques but instead, an additional outcast handling method is proposed for the perfor-
mance improvement via a 1-nearest neighbor model. Based on our experiments in UCI and PROMISE datasets, generated
datasets from this technique have improved the accuracy performance of a classification, and the improvement can be verified
statistically by the Wilcoxon signed-rank test.

Keywords: class imbalance problem, oversampling, SMOTE, adaptive neighbors approach, minority outcast

Songklanakarin J. Sci. Technol.
39 (5), 565-576, Sep - Oct. 2017

1. Introduction

Class imbalance problem is a problem in classification
dealing with an imbalanced dataset, the dataset whose amount
of instances in one target class is far less than ones in another
class.  As  the  class  with  lesser  instances  is  a  target  class
(positive class), instances in the target class are called either
minority  instances  or  positive  instances.  This  problem
usually  appears  in  practice  and  is  discovered  in  various
situations  such  as  diagnosis  of  rare  medical  conditions
(Kousarrizi et al., 2012). The dataset in this problem has a
significant characteristic; instances in a positive class are in
the minority. Since most classifier algorithms aim to maximize
the accuracy performance of the classification, the positive
class appears to these algorithms as a less significant class
and the accuracy on predicting positive instances, which is a

real objective of the problem, would be neglected. It requires
extra  treatments  to  maximize  the  accuracy  on  predicting
positive instances exclusively.

Many  researches  have  introduced  effective  and
practical  strategies  (He  &  Garcia,  2009)  for  improving  the
prediction rate on a positive class. An approach widely used
and  studied  is  a  sampling  technique  during  the  data-pre-
processing process on an imbalance dataset. It transforms the
imbalanced dataset into a well-balanced distributed dataset
later used to train the classifier. This approach is favorable
due to its portability as a researcher is not restricted to any
specific classifiers. The simplest idea in this approach is to
duplicate  existing  positive  instances  until  equaling  the
number of negatives. However, it forces a classifier to learn
very specific instances not their general properties and often
leads to an overfitting issue. Therefore, the idea of synthesiz-
ing  positive  instances  surrounding  positive  instances  is
suggested and more widely applied.

This paper concentrates on improving and modifying
the so called ‘Synthetic Minority Oversampling Technique’
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or  SMOTE  (Chawla  et  al.,  2002)  to  overcome  some  of  its
drawbacks. One of them is the criterion for choosing a value
of parameter K. Researchers normally have a difficult time
identifying  the  appropriate  parameter  K  for  a  particular
dataset. Varying this K for various datasets sometimes does
not give the desired result. Most related publications about
SMOTE including the original SMOTE paper suggest using
K as 5 based on their repeated experiments. However, this
number may yield an unsatisfying result for some datasets
as shown in the Figure 1.

From the Figure 1, if synthetic instances are generated
between the positive instance p and its positive neighbor q,
then more positive synthetic instances are generated in the
negative  region.  This  circumstance  usually  happens  when
the group of positive instances is sparse. A robust idea is to
provide  different  numbers  of  neighbors  for  each  positive
instance according to its density. This would vary a possible
location of synthetic instances generated inside the dense
area of positives and avoid generating synthetic instances in
the sparse area of positive instances.

Moreover, this paper also handles how to deal with a
positive instance surrounded by negative instances in order
to utilize every positive instance for the accuracy improve-
ment.  This  positive  instance  is  identified  as  a  minority
outcast. SMOTE uses this single positive instance with its
positive  nearest  neighbor  to  synthesize  more  positive
instances. Figure 1 shows the outcast p and its neighbor q.
These  two  positive  instances  create  a  synthetic  point  s1.
It shows that s1 is created inside the negative region. Trying
to  connect  this  outcast  to  a  group  of  positive  instances
misleads a classifier to learn a spurious characteristic.

The  next  section  will  explain  several  oversampling
techniques and describe the motivation of this work. Then,
the  proposed  technique  is  introduced  in  Section  3.  The
empirical experiments on UCI and PROMISE datasets and
the analysis of our results are shown in Section 4. Finally,
the conclusions are drawn in Section 5.

2. Background

Among  sampling  techniques  for  class  imbalance
problems, one significant technique that is widely used and
referred is SMOTE (Chawla et al., 2002). It is an oversampling
technique that assumes the existence of similarities between
positive instances and generates synthetic instances accord-
ing to these similarities. In SMOTE, it starts with finding K-
positive nearest neighbors of each positive instance p, then
randomly selecting one of them as np to form a line segment.
Along  this  line  segment,  a  synthetic  positive  instance  p’
computed from p = p + gap × (np - p) where gap  [0, 1] is
added  into  the  dataset.  The  process  continues  on  other
positive instances and repeats until the number of positive
instances and negative instances are nearly equal. Caused by
these  synthesized  positive  instances,  a  decision  region
created  during  the  classification  process  becomes  denser
and  more  expanded.  This  effect  leads  some  tree-based

classifiers to recognize more instances as positive. Japkowicz
(2000) shows that SMOTE gives a higher true positive rate
which eventually leads to the superior recall value than other
techniques. However, it also causes many negative instances
to be misclassified. This increases a false positive error and
decreases the accuracy of overall classification.

Despite several defective traits of SMOTE, there are
many variances of SMOTE providing alternatives of generat-
ing  synthetic  positive  instances  in  order  to  either  further
improve the recall value or balance precision and recall Some
significant SMOTE variances are introduced here.

‘Adaptive  Synthetic  Sampling  Approach  for
Imbalanced Learning” (ADASYN) was introduced by He
(2008). ADASYN tries to generate more synthetic instances
on the region with less positive instances than one with more
positive  instances  to  increase  the  recognition  of  positive.
This algorithm uses the number of negative neighbors in C
nearest neighbors of each positive instance to form a distribu-
tion function. The distribution function determines how many
synthetic instances are generated from that positive instance.
Their paper claimed that the recall value is improved from
SMOTE. However, ADASYN further expands the region of
positive instances leading to the increasing value of recall
and higher false positive rate. The increasing false positive
rate may cause lower F-measure and accuracy values which
could be critical for some class imbalance problems.

Another adaptation of SMOTE, Borderline-SMOTE
(Han et al., 2003) uses the number of negative neighbors in
a different approach from ADASYN. This technique names
a  positive  instance,  whose  C  nearest  neighbors  are  all
negative as “NOISE” and exclude it from generating instances
since it is inside the negative region. It also defines a positive
instance whose number of positive neighbors is high as
“SAFE” and also exclude it from generating instances since
its surrounding region is guaranteed to be positive. There-
fore,  Borderline-SMOTE  uses  only  “DANGER”,  positive

Figure 1.  Illustration on the definition of minority outcast.
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instances,  which  are  neither  “SAFE”  nor  “NOISE”,  in  the
synthetic generation process. Borderline-SMOTE provides
a less recall value than SMOTE but it has a higher precision
value in return.

Borderline-SMOTE  inspires  another  variation  of
SMOTE,  ‘Safe-Level  Synthetic  Minority  Oversampling
Technique’ or Safe-Level SMOTE (Bunkhumpornpat et al.,
2009). Safe-Level SMOTE defines a new parameter safe-level
for each positive instance. The parameter is calculated from
the number of positive instances in its C nearest neighbors.
It is used to determine which positive instances should be
used  to  create  synthetic  instances  and  the  interval  of  a
possible location of a synthetic instance. The ratio of safe-
level  of  paired  positive  instances  alters  and  shortens  the
interval that forms a line segment. For positive instances with
nonzero safe-level values, a synthetic process is performed
with  this  altered  interval.  As  a  result,  it  avoids  placing  a
synthetic instance close to the positive instance with a lower
safe-level. With this concept, Safe-level SMOTE indirectly
acknowledges the existence of negative instances located
around each positive instance which is different from SMOTE.
This  approach  leads  to  higher  precision  and  F-measure
values.  However,  since  some  positive  instances  with  all
negative neighbors are excluded, it causes a relatively lower
recall value compared to SMOTE or ADASYN.

Another  oversampling  technique,  density-based
synthetic minority over-sampling technique or DBSMOTE
(Bunkhumpornpat et al., 2012), suggests clustering positive
instances  into  groups  using  density-based  clustering  and
provides a technique to generate synthetic instances inside
each  cluster  despite  that  each  cluster  might  not  form  the
convex set. This algorithm applies DBSCAN (Ester, 1996) to
cluster  positive  instances.  Then,  a  synthetic  instance  is
created on the shortest path from each positive instance to
the pseudo-centroid of its cluster. This leads the resulting
synthetic dataset to be dense around the core of a group of
the  original  positive  instances.  DBSMOTE  is  reported  to
have a good performance on F-measure and AUC values in
some experimental settings.

These  oversampling  techniques  incorporate  some
concepts from SMOTE in order to further improve its perfor-
mance on a class imbalance problem. However, there are still
major drawbacks of SMOTE which are not addressed. These
motivated  us  to  tackle  drawbacks  concepts  in  this  paper
which are addressed next.

3. Motivation

Oversampling  techniques,  especially  ones  which
adopted a synthetic generating idea from SMOTE, are widely
accepted  as  the  effective  approach  for  a  class  imbalance
problem. However, our study finds some flaws in the original
concept which are not covered by other related works. These
flaws are brought up in this section.

The first one is how appropriate is the parameter K,
the number of positive neighbors that can be chosen to pair

and synthesize new positive instances. Depending with the
location of Kth nearest neighbor of each positive instance,
synthetic  instances  generated  from  the  instance  are  no
further away from it than that neighbor. The problem arises
when the region of these positive instances is too sparse so
their nearest neighbors are mostly surrounded by negative
instances. After generating synthetic instances from these
neighbors, the resulting balanced dataset could contain the
conflicting region with original negative instances and newly
added positive instances. On the other hand, if the region of
positive instances is very dense, the low K could limit the
number of neighbors. The distribution of synthetic instances
may not be spread uniformly since they have to stay on the
line between each positive instance. Our idea is to identify
the density of each area of positive instances and use it to
choose the appropriated value of K separately.

The second one is utilizing a minority outcast. These
outcasts can be found when original positive instances are
distributed  too  sparse  inside  the  vast  amount  of  negative
instances. They are considered as one type of the noise of
positive instances. However, the positive noises which are
outliers of the entire dataset are not minority outcasts, since
there  is  no  conflict  if  synthetic  instances  are  generated
between  these  noises  and  other  positive  instances,  see
Figure 2.

These minority outcasts are excluded from generating
synthetic  instances  by  various  synthetic  oversampling
techniques  to  avoid  the  case  that  synthetic  instances  are
generated inside a negative region. Due to the relatively low
number of positive instances in an imbalanced dataset, an
original  positive  instance  may  be  crucial  on  classifying  a
positive  class.  Therefore,  there  should  be  a  treatment  for
these  minority  outcasts  in  order  to  improve  the  accuracy
performance of predicting positive instances. Two remedies
of these two flaws are combined into our proposed method
in the next section.

Figure 2. Synthetic dataset generated by SMOTE algorithm with
K=5.
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4. Proposed Method

Adaptive neighbor Synthetic Minority Oversampling
TEchnique under 1NN outcast handling or ANS is introduced
based on two objectives. The first objective is to override the
decision on a single value of K from a user using Ki for each
positive  instance  pi. Ki  is  the  number  of  possible  positive
neighbors that is chosen to pair up with a positive instance pi
in order to create synthetic instances along the line segment
of between that pair. Chawla (2002) uses the value of K as 5
for  SMOTE.  This  setting  is  also  used  by  other  SMOTE-
related oversampling techniques as their default preference.
However, it could not be verified whether a single value of K
as 5 is actually optimal without performing multiple experi-
ments.  To  avoid  this  preference  or  exhaustedly  repeated
experimental  run,  adaptive  neighbor  process  in  ANS  will
automatically configures the value of Ki for a positive instance
pi based on the density of surrounding positive instances.
The  second  objective  is  to  exclusively  deal  with  minority
outcasts  in  order  to  preserve  their  significance  without
generating synthetic instance. The minority outcast handling
process in ANS will give an alternative way which provides
an acceptable accuracy performance.

The first step of ANS is to exclude minority outcasts
from  the  dataset.  To  identify  which  positive  instance  is  a
minority outcast, C-nearest neighbor algorithm is performed
on each positive instance. The positive instances which all of
C nearest neighbors are negative are identified as minority
outcasts  and  separated  from  the  set  of  positive  instances
while  other  positive  instances  are  used  for  generating
synthetic instances via SMOTE algorithm. Then, following
the process of SMOTE, each positive instance requires at
least  one  positive  neighbor  to  form  a  line  segment  that
generates a synthetic instance. The maximum distance value
between pairs of two closest positive neighbors is chosen as

the radius in order to guarantee at least one neighbor for each
positive  instance  pi.  Therefore,  every  positive  instance
contains at least one positive nearest neighbor under this
radius.  After  the  radius  is  found,  the  number  of  positive
nearest  neighbor  of  each  positive  instance  pi  under  this
radius is counted and defined as Ki for each pi. Then, SMOTE
is performed and each positive instance contains different
number  of  nearest  neighbors  it  can  generate  synthetic
instances with. This process and the minority outcast extract-
ing process are shown in algorithm 1. With different number
of Ki, the location of each synthetic instance becomes more
scatter inside the dense area of original positive instances
and does not form the skeleton-like line as appearing in
SMOTE. Moreover, fewer synthetic instances are generated
among  the  region  of  negative  instances  since  the  original
instances  which  locate  away  from  others  will  not  try  to
generate synthetic instances with neighbors that place too far
from them. The ideal resulting synthetic dataset is shown in
the Figure 3.

Minority outcasts which are identified and removed
in the first step are utilized in the minority outcast handling
process first introduced by Siriseriwan and Sinapiromsaran
(2016).  The  additional  procedure  is  to  include  minority
outcasts into a set of negative instances as a sub-dataset and
build a 1-nearest neighbor model. This additional 1-nearest
neighbor model will provides a small positive region around
each outcast. If any unknown instances fall into this region,
they will be classified as positive regardless of the result from
the trained classifier. Only the 1-nearest neighbor is chosen
here due to the definition of outcast which stated that all of its
neighbors are negative. Therefore, if two or more neighbors
are  used  for  classifying  an  unknown  instance,  these
additional  neighbors  will  be  negative.  Then,  the  unknown
instance will never be classified as positive as intended. The
detail of this process is shown in algorithm 2.

Figure 3.  Synthetic dataset generated by ANS.
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Algorithm 1: Adaptive neighbor SMOTE algorithm
Data: Numerical-attribute binary class dataset D containing
a set of positive instances P and a set of negative instances N
and the value of C.
Result: Nearly balanced dataset which is a combination of D
and a set of synthetic instances S, a set of minority outcast
OC.

1. Initialization t = 1;
2. (Pused, OC, E) = OutcastExtraction(D, P, C)
3. Define   = max E
4. For pi in Pused do
5. Let Npi = {pj in Pused| d(pi, pj) <  }
6. End for
7. While t < the roundup value of  |N|/|Pused| do
8. For pi Pused do
9. Randomly select npi from Npi

10. gap = a random number between 0 and 1
11. p’ = pi + gap × (npi - pi )
12. Add p’ into S.
13. End for
14. t = t + 1
15. End while.
16. Function OutcastExtraction(D, P, C)
17. Define C_max as the roundup value of 0.25*|D|
18. Perform C_max-nearest neighbor of P in D
19. Mark the first positive nearest neighbor of pi in P as fpi
20. Determine the number of negative neighbors of pi with

smaller radius than d(fpi, pi) as out_borderi
21. For c = 1,…, C_max
22. For pi in P do
23. If out_borderi > c then pi is the outcast for this c. End for.
24. Count the number of outcast in this c as n_occ
25. If |n_occ - n_occ-1| = 0, set C = c. End for.
26. Let OC = {pi in P| out_borderi > C}
27. Let Pused = {pi in P| out_borderi < C}
28. Keep the distance between pi in Pused and its nearest

positive neighbor as i in EPused
29. Return {Pused , OC, EPused }

Algorithm 2: Minority outcast handling algorithm
Data: Numerical-attribute binary class dataset D containing a
set of negative instances N, a set of minority outcast instances
OC and a set of unknown instances U.
Result: Vector of assigned class CL (cl1, cl2, …, cli)  of U.

1. OutcastHandling(D, N, OC, U)
2. For ui in U do
3. Calculate the distance from ui to every instance in a set

N and OC
4. Let u* be argmin{d(ui, x)| x in N or x in OC}
5. If u* in OC then
6. cli = +
7. End if
8. Otherwise, cli = -
9. Return CL

Algorithm 1 or Adaptive neighbor process is operated
during the synthetic instance generation process to pass them
to  the  classifier.  Algorithm  2  or  minority  outcast  handling
process is a post-classification process. The result of classifi-
cation will be concluded after classified data pass through
both classifier and minority outcast handling process.

Parameter C in the outcast extraction process
Since the value of K for each positive instance is auto-

matically assigned, ANS does not need to set K. However,
C-nearest neighbor process which determines which positive
instance is a minority outcast requires the configuration of
parameter C. To identify a positive instance p as an outcast,
all  of  C  nearest  neighbors  of  p  has  to  be  negative.  It  is
obvious  to  see  that  the  larger  the  value  of  C  is,  the  less
number  of  outcasts  is.  We  expect  that  there  should  be  a
number  of  outcasts  to  improve  the  performance  but  the
number of outcasts should not be too much since the minority
outcast handling model may overwhelm the actual classifica-
tion model. Our work decides that the value of C should be
the lowest C that the number of outcasts is steady. To reduce
time,  this  C  can  be  identified  with  only  single  nearest
neighbor run on a training set as shown in algorithm 1. Since
the value of C depends on each training dataset not the user
preference, ANS becomes a parameter-free algorithm.

To  confirm  the  effectiveness  of  this  method,  we
conducted experimental evaluation over real-world datasets
with five standard classifiers. The next section provides the
details of our experimental settings and the result analysis.

5. Experimental Setting and Result Analysis

To  compare  the  effectiveness  of  ANS  and  other
oversampling techniques, the experiments are conducted on
nine datasets from UCI repository (Lichman, 2013); ecoli, glass,
letter recognition, haberman, LandSat(satimage), segmenta-
tion,  yeast,  optdigits,  and  vehicle,  and  five  datasets  from
PROMISE repository (Menzies, 2012); cm1, jm1, kc1, kc2, and
pc1. All datasets are pre-processed into a binary classification
problem by selecting one class as the intended positive class
and the rest as the negative class. The number of instances,
attributes,  positive  instances  and  percentage  of  positive
instances are presented in Table 1.

There  are  five  classifiers  using  in  the  experiment;
decision tree (C4.5), naïve Bayes classifier, multilayer per-
ceptron, support vector machine with the linear square kernel
and K-nearest neighbor (with K = 3). These classifiers are
well-known classification algorithms which are often included
in various data mining tools. The performance is evaluated
through 5-fold cross-validation scheme in R programming
environment. The average F-measure and area under ROC
curve (AUC) values of each method, dataset, and classifier
from validation are presented in Table 2 and 3. For ANS, both
ANS1, which stands for Adaptive neighbor SMOTE without
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minority  outcast  handling  and  ANS2,  which  stands  for
Adaptive neighbor SMOTE with minority outcast handling
are represented. The highest value in each case of classifier
and dataset is highlighted in the bold-face type.

The number of datasets in each classifier that each
oversampling technique provides the best F-measure value
is represented as a stacked bar chart in Figure 4. From the
chart, Adaptive neighbor SMOTE without minority outcast
handling  (ANS1)  has  27  cases  of  different  datasets  and
classifiers which it provides the best F-measure value over
other  oversampling  techniques  (excluding  ANS2).  This
number is almost twice than DBSMOTE (15) which has the
second most number. For ANS with minority outcast handling
(ANS2), the number of cases has increased to 35 which equals
to a half of the total number of cases in this experiment. ANS1
and  ANS2  still  achieve  the  largest  number  of  cases  they
provide the best AUC values against other five oversampling
techniques.  Shown  in  the  stacked  bar  charts  in  Figure  5,
ANS1 has 36 cases and ANS2 has 44 cases which both are

more than half of the total number of cases.
The  Wilcoxon  signed-rank  test  is  applied  per

suggestion by Demsar (2006) in order to investigate whether
the difference of F-measure and AUC values caused by ANS
with minority outcast handling (ANS2) against other over-
sampling techniques is significant.  The difference between
each  pair  of  samples  is  ranked  from  the  smallest  absolute
value to the largest absolute value and its sign are collected.
The  ranks  of  positive  sign  difference  and  the  ranks  of
negative sign difference are summed separately; then the
smaller value of these two sums becomes the t-score of the
test. This t-score is compared with the critical t-score with
a significance level of 0.05 for 14 samples which equals to
22. The result from tests ANS2 against other oversampling
techniques in each classifier is shown in the Table 4. The
ones whose calculated t-score is lower is highlighted with
bold-face type. From Table 4, the positive difference between
ANS2  and  other  oversampling  techniques  is  verified  as
significant in most classifiers. ANS2 overcomes SMOTE and

Table 1. Description of datasets used in the experiments.

      Name Instances Attributes Positive % of
instances positive instances

cm1 498 21 49 10.91
Ecoli 336 8 20 5.95
Glass 214 11 76 35.51
Haberman 306 4 81 26.47
jm1 10,880 21 2,103 23.96
kc1 2,109 21 326 18.28
kc2 522 21 107 25.78
Letter (H) 20,000 17 734 3.67
Optdigits (0) 5,620 64 554 10.94
pc1 1,109 21 77 7.46
Satimage (4) 6,435 37 626 9.73
Segment (WIN) 2,310 20 330 14.29
vehicle 846 18 218 34.71
Yeast (ME3) 1,484 9 163 10.98

Figure 4. Number of datasets which each oversampling techniques achieve the best F-measure; ANS without outcast handling (ANS1) vs.
others (left) and ANS with outcast handling (ANS2) vs. others (right).
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Table 2. Performance in the F-measure of the original imbalanced dataset, and generated datasets from SMOTE, ADASYN,
Safe-level SMOTE (SLS), DBSMOTE, ANS without minority outcast handling (ANS1) and ANS with minority outcast
handling (ANS2).

Dataset method Decision Tree  Bayes Multilayer Support vector K-nearest
Perceptron machine neighbor

cm1 Original 0.5497±0.1050 0.4967±0.0696 0.3886±0.1248 0.8088±0.1260 0.6771±0.0693
SMOTE 0.6249±0.1050 0.5798±0.0453 0.6875±0.0563 0.7923±0.0693 0.7610±0.0638
ADASYN 0.6000±0.0652 0.5727±0.0469 0.5577±0.1058 0.7558±0.0581 0.7339±0.0529
SLS 0.6504±0.0590 0.5773±0.0360 0.6982±0.0480 0.8065±0.0698 0.7834±0.0596
DBSMOTE 0.6387±0.0694 0.5772±0.0344 0.7138±0.0634 0.8273±0.0730 0.7929±0.0621
ANS1 0.6971±0.0720 0.5781±0.0426 0.7195±0.0547 0.8083±0.0710 0.7806±0.0568
ANS2 0.6952±0.0729 0.5926±0.0424 0.7208±0.0555 0.8006±0.0708 0.7795±0.0561

ecoli Original 0.1026±0.0308 0.2474±0.0182 0.0000±0.0000 0.0000±0.0000 0.1647±0.0132
SMOTE 0.2594±0.0189 0.2545±0.0173 0.3682±0.0283 0.3139±0.0169 0.2931±0.0204
ADASYN 0.2600±0.0287 0.2580±0.0248 0.3639±0.0237 0.3197±0.0121 0.2974±0.0160
SLS 0.1897±0.0565 0.2340±0.0228 0.3737±0.0156 0.3078±0.0251 0.2529±0.0232
DBSMOTE 0.2303±0.0523 0.2360±0.0168 0.3174±0.0255 0.2605±0.0243 0.2784±0.0292
ANS1 0.2428±0.0136 0.2693±0.0197 0.3832±0.0148 0.3515±0.0055 0.3047±0.0195
ANS2 0.2710±0.0175 0.3017±0.0304 0.3971±0.0230 0.3684±0.0215 0.3190±0.0163

glass Original 0.5810±0.0920 0.5438±0.0263 0.0000±0.0000 0.7048±0.0192 0.7881±0.0407
SMOTE 0.6521±0.0686 0.6163±0.0173 0.7779±0.0211 0.8033±0.0230 0.8025±0.0181
ADASYN 0.6764±0.0520 0.5131±0.0179 0.7467±0.0247 0.7443±0.0281 0.8025±0.0205
SLS 0.7431±0.0190 0.8044±0.0234 0.8123±0.0172 0.8211±0.0183 0.8429±0.0244
DBSMOTE 0.6633±0.0603 0.6888±0.0126 0.7916±0.0190 0.8211±0.0168 0.8714±0.0473
ANS1 0.7754±0.0456 0.8222±0.0191 0.7947±0.0126 0.8306±0.0099 0.8635±0.0055
ANS2 0.8269±0.0435 0.8222±0.0364 0.7947±0.0201 0.8306±0.0137 0.8635±0.0269

haberman Original 0.6687±0.0396 0.6140±0.0061 0.2132±0.0471 0.6400±0.0156 0.6988±0.0285
SMOTE 0.7057±0.0175 0.6145±0.0051 0.5894±0.0085 0.6284±0.0060 0.7184±0.0212
ADASYN 0.6607±0.0041 0.6298±0.0087 0.5548±0.0340 0.6682±0.0239 0.7164±0.0204
SLS 0.7069±0.0249 0.6209±0.0051 0.5704±0.0329 0.6782±0.0230 0.7316±0.0104
DBSMOTE 0.6851±0.0154 0.5899±0.0121 0.5958±0.0172 0.6724±0.0077 0.7041±0.0219
ANS1 0.6701±0.0242 0.6135±0.0109 0.6132±0.0143 0.6487±0.0096 0.7230±0.0129
ANS2 0.6853±0.0250 0.6230±0.0144 0.6197±0.0150 0.6608±0.0120 0.7351±0.0155

jm1 Original 0.2144±0.0620 0.2918±0.0053 0.0467±0.0259 0.2354±0.0420 0.3391±0.0283
SMOTE 0.4903±0.0197 0.4182±0.0150 0.4655±0.0164 0.4445±0.0151 0.3863±0.0263
ADASYN 0.4841±0.0262 0.4192±0.0227 0.4741±0.0188 0.4467±0.0157 0.3601±0.0369
SLS 0.4464±0.0384 0.4276±0.0137 0.4864±0.0274 0.4393±0.0198 0.3758±0.0237
DBSMOTE 0.4999±0.0331 0.3912±0.0197 0.4882±0.0166 0.4063±0.0372 0.3776±0.0076
ANS1 0.5038±0.0184 0.4388±0.0233 0.4928±0.0360 0.4878±0.0181 0.4078±0.0223
ANS2 0.5209±0.0156 0.4592±0.0289 0.4926±0.0388 0.4977±0.0305 0.4204±0.0161

kc1 Original 0.2455±0.0141 0.2864±0.0012 0.1787±0.0111 0.1742±0.0029 0.3470±0.0037
SMOTE 0.3798±0.0053 0.3024±0.0008 0.4069±0.0084 0.4320±0.0013 0.4065±0.0047
ADASYN 0.3711±0.0045 0.3294±0.0018 0.4148±0.0086 0.4330±0.0014 0.4011±0.0048
SLS 0.4167±0.0078 0.2926±0.0018 0.4170±0.0047 0.4399±0.0013 0.4032±0.0017
DBSMOTE 0.3564±0.0122 0.3324±0.0053 0.3861±0.0067 0.3913±0.0019 0.3881±0.0022
ANS1 0.3587±0.0182 0.3091±0.0011 0.4278±0.0061 0.4333±0.0010 0.4276±0.0035
ANS2 0.3600±0.0184 0.3132±0.0029 0.4279±0.0067 0.4336±0.0010 0.4263±0.0042

kc2 Original 0.3182±0.0170 0.3992±0.0032 0.3193±0.0209 0.2443±0.0126 0.4022±0.0201
SMOTE 0.4406±0.0099 0.4163±0.0051 0.4272±0.0059 0.4121±0.0038 0.4511±0.0078
ADASYN 0.4511±0.0162 0.4325±0.0048 0.4232±0.0079 0.4059±0.0044 0.4472±0.0127
SLS 0.4457±0.0089 0.4083±0.0021 0.4400±0.0048 0.4474±0.0086 0.4521±0.0104
DBSMOTE 0.3838±0.0187 0.4451±0.0072 0.4148±0.0084 0.4056±0.0051 0.4358±0.0096
ANS1 0.4342±0.0090 0.4169±0.0026 0.4400±0.0067 0.4385±0.0015 0.4813±0.0051
ANS2 0.4479±0.0135 0.4323±0.0102 0.4324±0.0073 0.4479±0.0057 0.4672±0.0031



W. Siriseriwan & K. Sinapiromsaran / Songklanakarin J. Sci. Technol. 39 (5), 565-576, 2017572

Table 2. Continued

Dataset method Decision Tree  Bayes Multilayer Support vector K-nearest
Perceptron machine neighbor

letter Original 0.5020±0.0113 0.5073±0.0092 0.5085±0.0135 0.4680±0.0051 0.5491±0.0235
SMOTE 0.5049±0.0354 0.5472±0.0163 0.5434±0.0151 0.5741±0.0027 0.5351±0.0174
ADASYN 0.5628±0.0176 0.5472±0.0130 0.5598±0.0142 0.5694±0.0097 0.5421±0.0202
SLS 0.5394±0.0128 0.5511±0.0170 0.5816±0.0148 0.5927±0.0051 0.5626±0.0188
DBSMOTE 0.5514±0.0109 0.5575±0.0053 0.5688±0.0107 0.5848±0.0094 0.5540±0.0110
ANS1 0.5832±0.0230 0.5409±0.0111 0.5918±0.0079 0.5984±0.0050 0.5618±0.0108
ANS2 0.5790±0.0233 0.5386±0.0114 0.5938±0.0052 0.5925±0.0064 0.5563±0.0079

optdigits Original 0.7771±0.0169 0.3431±0.0024 0.4192±0.0102 0.4864±0.0044 0.8961±0.0069
SMOTE 0.7642±0.0049 0.1821±0.0006 0.5685±0.0172 0.7662±0.0036 0.8227±0.0032
ADASYN 0.7618±0.0091 0.1258±0.0009 0.4912±0.0175 0.7858±0.0036 0.8140±0.0034
SLS 0.7453±0.0099 0.1829±0.0005 0.5858±0.0260 0.7876±0.0069 0.8561±0.0069
DBSMOTE 0.7312±0.0063 0.2144±0.0024 0.5820±0.0388 0.7877±0.0042 0.8508±0.0034
ANS1 0.7605±0.0040 0.1880±0.0009 0.5814±0.0264 0.7643±0.0024 0.8033±0.0061
ANS2 0.7660±0.0044 0.1920±0.0015 0.5831±0.0263 0.7650±0.0020 0.8046±0.0064

pc1 Original 0.9667±0.0049 0.8767±0.0024 0.9878±0.0014 0.9936±0.0006 0.9982±0.0000
SMOTE 0.9687±0.0063 0.9484±0.0067 0.9835±0.0020 0.9945±0.0009 0.9973±0.0004
ADASYN 0.9632±0.0044 0.5210±0.0111 0.9809±0.0021 0.9945±0.0006 0.9982±0.0007
SLS 0.9694±0.0045 0.9486±0.0043 0.9869±0.0010 0.9945±0.0006 0.9973±0.0004
DBSMOTE 0.9765±0.0040 .9551±0.0036 0.9870±0.0013 0.9955±0.0005 0.9982±0.0004
ANS1 0.9756±0.0024 00.9592±0.0021 0.9866±0.0023 0.9964±0.0017 0.9991±0.0006
ANS2 0.9756±0.0024 0.9592±0.0021 0.9866±0.0023 0.9964±0.0017 0.9991±0.0006

satimage Original 0.3438±0.0511 0.2893±0.0095 0.0500±0.0081 0.1292±0.0139 0.3113±0.0194
SMOTE 0.4063±0.0245 0.2508±0.0097 0.3001±0.0164 0.3175±0.0081 0.3814±0.0197
ADASYN 0.3583±0.0224 0.2477±0.0108 0.2929±0.0139 0.2990±0.0088 0.3674±0.0233
SLS 0.3993±0.0271 0.2601±0.0147 0.2920±0.0111 0.3172±0.0190 0.3809±0.0174
DBSMOTE 0.3332±0.0428 0.2352±0.0102 0.2518±0.0192 0.2410±0.0167 0.3391±0.0397
ANS1 0.3959±0.0184 0.2662±0.0087 0.2893±0.0117 0.3172±0.0149 0.3711±0.0073
ANS2 0.4174±0.0207 0.3198±0.0184 0.3109±0.0129 0.3386±0.0142 0.3892±0.0070

segment Original 0.5447±0.0128 0.4862±0.0014 0.5357±0.0510 0.5517±0.0044 0.6895±0.0027
SMOTE 0.5662±0.0096 0.4839±0.0017 0.5693±0.0103 0.5939±0.0040 0.6179±0.0020
ADASYN 0.5653±0.0080 0.4204±0.0022 0.5187±0.0186 0.5398±0.0027 0.6008±0.0028
SLS 0.5741±0.0068 0.4957±0.0019 0.5946±0.0110 0.6192±0.0012 0.6390±0.0027
DBSMOTE 0.5574±0.0140 0.5721±0.0027 0.6002±0.0096 0.6391±0.0020 0.6436±0.0047
ANS1 0.5768±0.0077 0.5088±0.0050 0.5908±0.0132 0.6203±0.0050 0.6024±0.0058
ANS2 0.5875±0.0089 0.5153±0.0049 0.5940±0.0121 0.6244±0.0030 0.6034±0.0053

vehicle Original 0.8649±0.0085 0.4944±0.0054 0.6931±0.0099 0.1532±0.0182 0.8839±0.0089
SMOTE 0.8898±0.0083 0.4938±0.0027 0.7999±0.0071 0.5842±0.0007 0.8780±0.0018
ADASYN 0.8749±0.0073 0.4699±0.0102 0.7925±0.0073 0.6035±0.0042 0.8712±0.0011
SLS 0.8855±0.0052 0.4937±0.0033 0.8047±0.0147 0.5898±0.0013 0.8749±0.0107
DBSMOTE 0.8957±0.0114 0.5004±0.0022 0.7371±0.0158 0.6127±0.0084 0.8821±0.0089
ANS1 0.8853±0.0102 0.4901±0.0020 0.8083±0.0120 0.5964±0.0017 0.8830±0.0052
ANS2 0.8844±0.0109 0.4988±0.0039 0.8122±0.0122 0.5970±0.0012 0.8847±0.0062

yeast Original 0.9199±0.0065 0.5823±0.0093 0.8947±0.0081 0.9504±0.0024 0.9233±0.0130
SMOTE 0.9225±0.0051 0.6200±0.0081 0.9039±0.0067 0.9463±0.0032 0.8937±0.0111
ADASYN 0.9383±0.0030 0.6258±0.0101 0.8956±0.0133 0.9554±0.0024 0.8897±0.0061
SLS 0.9319±0.0045 0.6280±0.0092 0.8965±0.0085 0.9505±0.0046 0.8957±0.0184
DBSMOTE 0.9056±0.0070 0.5674±0.0087 0.9005±0.0095 0.9593±0.0030 0.8961±0.0090
ANS1 0.9252±0.0049 0.6194±0.0079 0.9016±0.0186 0.9503±0.0026 0.8788±0.0115
ANS2 0.9314±0.0053 0.6227±0.0081 0.8998±0.0185 0.9530±0.0025 0.8788±0.0122
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Table 3. Performance in the AUC value of the original imbalanced dataset, and generated datasets from SMOTE, ADASYN,
Safe-level SMOTE, DBSMOTE, ANS without minority outcast handling (ANS1) and ANS with minority outcast
handling (ANS2).

Dataset method Decision Tree  Bayes Multilayer Support vector K-nearest
Perceptron machine neighbor

cm1 Original 0.9008±0.0362 0.7851±0.0670 0.5842±0.0288 0.9449±0.0290 0.9007±0.0296
SMOTE 0.9201±0.0250 0.7852±0.0665 0.9241±0.0363 0.9488±0.0193 0.9037±0.0287
ADASYN 0.9118±0.0323 0.8195±0.0466 0.7603±0.0977 0.9453±0.0185 0.8979±0.0311
SLS 0.9140±0.0216 0.7818±0.0678 0.9263±0.0309 0.9466±0.0189 0.8961±0.0318
DBSMOTE 0.9144±0.0265 0.7817±0.0648 0.9222±0.0281 0.9438±0.0209 0.9075±0.0294
ANS1 0.9223±0.0239 0.8124±0.0682 0.9239±0.0271 0.9547±0.0191 0.9069±0.0295
ANS2 0.9156±0.0249 0.8149±0.0687 0.9273±0.0301 0.9544±0.0205 0.9138±0.0299

ecoli Original 0.5227±0.0178 0.7377±0.0180 0.5000±0.0000 0.5000±0.0000 0.6312±0.0170
SMOTE 0.6842±0.0109 0.7437±0.0242 0.7844±0.0188 0.7569±0.0170 0.6881±0.0210
ADASYN 0.6916±0.0122 0.7441±0.0334 0.7818±0.0176 0.7597±0.0166 0.6940±0.0144
SLS 0.6657±0.0367 0.7323±0.0061 0.7711±0.0192 0.7572±0.0174 0.6433±0.0160
DBSMOTE 0.6622±0.0406 0.6039±0.0267 0.7491±0.0131 0.7202±0.0149 0.6656±0.0202
ANS1 0.6523±0.0181 0.7472±0.0117 0.7707±0.0118 0.7713±0.0140 0.7289±0.0217
ANS2 0.6761±0.0141 0.7748±0.0200 0.7788±0.0154 0.7839±0.0139 0.7342±0.0206

glass Original 0.8651±0.0413 0.9819±0.0018 0.5000±0.0000 0.8960±0.0015 0.9250±0.0115
SMOTE 0.8803±0.0298 0.9931±0.0028 0.9905±0.0020 0.9889±0.0025 0.9175±0.0114
ADASYN 0.8537±0.0468 0.9774±0.0025 0.9889±0.0020 0.9857±0.0018 0.9175±0.0011
SLS 0.9147±0.0053 0.9965±0.0025 0.9897±0.0025 0.9905±0.0028 0.9230±0.0006
DBSMOTE 0.9271±0.0074 0.9914±0.0032 0.9897±0.0024 0.9897±0.0025 0.9198±0.0015
ANS1 0.9183±0.0020 0.9966±0.0006 0.9929±0.0034 0.9929±0.0029 0.9449±0.0145
ANS2 0.9437±0.0111 0.9936±0.0035 0.9929±0.0043 0.9929±0.0057 0.9437±0.0161

haberman Original 0.7447±0.0432 0.7001±0.0121 0.5868±0.0249 0.8247±0.0073 0.8177±0.0154
SMOTE 0.7911±0.0154 0.6947±0.0220 0.6494±0.0090 0.8050±0.0092 0.8345±0.0245
ADASYN 0.7716±0.0091 0.6751±0.0179 0.6335±0.0176 0.8198±0.0066 0.8387±0.0120
SLS 0.7841±0.0329 0.7001±0.0248 0.6515±0.0135 0.8075±0.0058 0.8315±0.0198
DBSMOTE 0.7737±0.0087 0.6772±0.0061 0.6886±0.0073 0.8046±0.0048 0.8264±0.0165
ANS1 0.7944±0.0290 0.7006±0.0195 0.6529±0.0122 0.8132±0.0103 0.8378±0.0146
ANS2 0.7912±0.0350 0.7330±0.0271 0.6666±0.0140 0.8167±0.0141 0.8407±0.0160

jm1 Original 0.5412±0.0195 0.6219±0.0189 0.5528±0.0482 0.6790±0.0171 0.6090±0.0234
SMOTE 0.6596±0.0180 0.6318±0.0110 0.6822±0.0070 0.6561±0.0171 0.6032±0.0172
ADASYN 0.6647±0.0120 0.6251±0.0121 0.6912±0.0077 0.6737±0.0128 0.6257±0.0296
SLS 0.6380±0.0316 0.6541±0.0125 0.6828±0.0066 0.6535±0.0112 0.5979±0.0174
DBSMOTE 0.6382±0.0105 0.6050±0.0186 0.6859±0.0105 0.6649±0.0171 0.6233±0.0130
ANS1 0.6561±0.0285 0.6279±0.0180 0.6971±0.0137 0.7029±0.0124 0.6370±0.0165
ANS2 0.6510±0.0144 0.6428±0.0066 0.7069±0.0165 0.7137±0.0244 0.6446±0.0235

kc1 Original 0.6685±0.0117 0.6892±0.0003 0.7084±0.0003 0.6207±0.0022 0.6597±0.0029
SMOTE 0.6838±0.0084 0.6907±0.0003 0.7124±0.0005 0.7152±0.0003 0.6688±0.0043
ADASYN 0.6850±0.0018 0.6928±0.0006 0.7100±0.0003 0.7123±0.0005 0.6627±0.0042
SLS 0.6881±0.0046 0.6915±0.0003 0.7147±0.0008 0.7184±0.0002 0.6665±0.0034
DBSMOTE 0.6888±0.0023 0.6934±0.0011 0.6652±0.0041 0.6740±0.0024 0.6600±0.0019
ANS1 0.6988±0.0035 0.6939±0.0004 0.7113±0.0010 0.7124±0.0009 0.6934±0.0024
ANS2 0.7003±0.0040 0.6929±0.0015 0.7071±0.0018 0.7089±0.0013 0.6908±0.0028

kc2 Original 0.6820±0.0234 0.7924±0.0004 0.7985±0.0012 0.6678±0.0069 0.7042±0.0079
SMOTE 0.7567±0.0083 0.7960±0.0004 0.7972±0.0028 0.7819±0.0031 0.7328±0.0076
ADASYN 0.7543±0.0054 0.7980±0.0010 0.7989±0.0034 0.7701±0.0032 0.7275±0.0132
SLS 0.7652±0.0078 0.7905±0.0007 0.7998±0.0020 0.7847±0.0030 0.7168±0.0109
DBSMOTE 0.7566±0.0075 0.7841±0.0031 0.7658±0.0041 0.7577±0.0038 0.7314±0.0104
ANS1 0.7774±0.0043 0.7934±0.0016 0.8016±0.0016 0.7851±0.0023 0.7730±0.0049
ANS2 0.7646±0.0053 0.7827±0.0045 0.8027±0.0053 0.7840±0.0041 0.7710±0.0042
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Table 3. Continued

Dataset method Decision Tree  Bayes Multilayer Support vector K-nearest
Perceptron machine neighbor

letter Original 0.7331±0.0206 0.8287±0.0036 0.8416±0.0019 0.7737±0.0114 0.7718±0.0131
SMOTE 0.7718±0.0175 0.8296±0.0020 0.8421±0.0042 0.8171±0.0040 0.7708±0.0136
ADASYN 0.7682±0.0325 0.8314±0.0029 0.8425±0.0049 0.7995±0.0066 0.7638±0.0138
SLS 0.7823±0.0149 0.8276±0.0027 0.8445±0.0046 0.8185±0.0082 0.7644±0.0145
DBSMOTE 0.7952±0.0157 0.8292±0.0032 0.8370±0.0065 0.8026±0.0099 0.7844±0.0117
ANS1 0.8021±0.0190 0.8291±0.0024 0.8403±0.0015 0.8274±0.0045 0.8043±0.0099
ANS2 0.8149±0.0217 0.8274±0.0066 0.8371±0.0074 0.8219±0.0058 0.8019±0.0111

optdigits Original 0.9677±0.0032 0.8644±0.0005 0.8252±0.0231 0.9870±0.0003 0.9789±0.0026
SMOTE 0.9681±0.0025 0.8604±0.0005 0.9791±0.0034 0.9949±0.0003 0.9865±0.0019
ADASYN 0.9684±0.0008 0.6981±0.0017 0.9690±0.0040 0.9953±0.0004 0.9854±0.0015
SLS 0.9618±0.0019 0.8595±0.0005 0.9790±0.0017 0.9927±0.0012 0.9822±0.0026
DBSMOTE 0.9568±0.0024 0.8277±0.0009 0.9596±0.0069 0.9888±0.0003 0.9801±0.0020
ANS1 0.9664±0.0017 0.8557±0.0005 0.9762±0.0025 0.9935±0.0003 0.9928±0.0015
ANS2 0.9689±0.0019 0.8663±0.0014 0.9775±0.0023 0.9948±0.0003 0.9928±0.0015

pc1 Original 0.9885±0.0012 0.9934±0.0006 0.9995±0.0002 0.999981±0.0000 0.9988±0.0005
SMOTE 0.9929±0.0015 0.9958±0.0006 0.9994±0.0001 0.999983±0.0000 0.9989±0.0004
ADASYN 0.9923±0.0014 0.9207±0.0029 0.9994±0.0001 0.999989±0.0000 0.9989±0.0004
SLS 0.9943±0.0007 0.9957±0.0006 0.9995±0.0001 0.999986±0.0000 0.9990±0.0000
DBSMOTE 0.9936±0.0004 0.9941±0.0006 0.9995±0.0001 0.999994±0.0000 0.9988±0.0005
ANS1 0.9948±0.0010 0.9965±0.0004 0.9996±0.0001 0.999992±0.0000 0.9992±0.0004
ANS2 0.9948±0.0010 0.9965±0.0004 0.9996±0.0001 0.999992±0.0000 0.9992±0.0004

satimage Original 0.6478±0.0312 0.6991±0.0064 0.5929±0.0117 0.6572±0.0304 0.7441±0.0153
SMOTE 0.8247±0.0224 0.7004±0.0100 0.8345±0.0079 0.8279±0.0050 0.8031±0.0192
ADASYN 0.8202±0.0128 0.6643±0.0060 0.8281±0.0124 0.8107±0.0043 0.7976±0.0152
SLS 0.7957±0.0166 0.6808±0.0165 0.8241±0.0053 0.8177±0.0082 0.7492±0.0131
DBSMOTE 0.7490±0.0431 0.6995±0.0087 0.7638±0.0243 0.7733±0.0086 0.7667±0.0172
ANS1 0.8248±0.0101 0.6765±0.0120 0.8261±0.0070 0.8214±0.0095 0.8288±0.0140
ANS2 0.8487±0.0122 0.7301±0.0059 0.8511±0.0040 0.8304±0.0047 0.8349±0.0157

segment Original 0.8672±0.0049 0.9197±0.0004 0.9310±0.0028 0.9353±0.0005 0.9130±0.0028
SMOTE 0.9146±0.0036 0.9192±0.0004 0.9383±0.0019 0.9520±0.0006 0.9290±0.0030
ADASYN 0.9133±0.0012 0.9091±0.0002 0.9291±0.0095 0.9467±0.0006 0.9277±0.0025
SLS 0.9128±0.0036 0.9195±0.0005 0.9350±0.0035 0.9502±0.0009 0.9140±0.0034
DBSMOTE 0.9051±0.0014 0.9164±0.0005 0.9230±0.0026 0.9456±0.0010 0.9205±0.0051
ANS1 0.9135±0.0043 0.9196±0.0004 0.9388±0.0031 0.9510±0.0013 0.9309±0.0021
ANS2 0.9175±0.0042 0.9238±0.0009 0.9407±0.0026 0.9529±0.0008 0.9316±0.0019

vehicle Original 0.9737±0.0043 0.8361±0.0012 0.9553±0.0026 0.9052±0.0545 0.9702±0.0032
SMOTE 0.9830±0.0032 0.8347±0.0018 0.9777±0.0010 0.9111±0.0011 0.9753±0.0034
ADASYN 0.9797±0.0023 0.8205±0.0015 0.9773±0.0021 0.8721±0.0022 0.9758±0.0017
SLS 0.9828±0.0020 0.8348±0.0020 0.9776±0.0013 0.9149±0.0014 0.9701±0.0034
DBSMOTE 0.9842±0.0018 0.8294±0.0029 0.9657±0.0040 0.9225±0.0030 0.9727±0.0041
ANS1 0.9825±0.0011 0.8372±0.0010 0.9773±0.0007 0.9242±0.0018 0.9766±0.0015
ANS2 0.9822±0.0015 0.8498±0.0052 0.9784±0.0011 0.9283±0.0022 0.9767±0.0015

yeast Original 0.9796±0.0038 0.8604±0.0046 0.9858±0.0016 0.9956±0.0005 0.9868±0.0026
SMOTE 0.9697±0.0052 0.8506±0.0057 0.9795±0.0014 0.9955±0.0009 0.9784±0.0030
ADASYN 0.9753±0.0026 0.8264±0.0021 0.9773±0.0016 0.9951±0.0008 0.9791±0.0023
SLS 0.9700±0.0022 0.8516±0.0069 0.9808±0.0010 0.9954±0.0008 0.9807±0.0031
DBSMOTE 0.9682±0.0025 0.7729±0.0069 0.9822±0.0015 0.9958±0.0005 0.9800±0.0024
ANS1 0.9750±0.0040 0.8450±0.0042 0.9797±0.0006 0.9949±0.0006 0.9807±0.0024
ANS2 0.9788±0.0042 0.8535±0.0079 0.9782±0.0005 0.9933±0.0011 0.9800±0.0027
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ADASYN significantly in every classifier and defeats statisti-
cally SLS and DBSMOTE in the decision tree and multilayer
perceptron and insignificant for rest of the classifiers.

Moreover,  the  Wilcoxon  signed-rank  test  is  also
performed on the average AUC values. The result from these
tests is shown on Table 5. The same analysis is achieved in
most  tests.  There  are  only  differences  between  ANS2  vs.
SMOTE on decision tree and multilayer perceptron and ANS2
vs. SLS on naive Bayes classifier and multilayer perceptron
which are not statistically significant.

6. Conclusions

This  work  introduces  a  new  variation  of  SMOTE
called Adaptive neighbor Synthetic Minority Oversampling
Technique under 1NN outcast handling (ANS). It eliminates
the parameter K of SMOTE for a dataset and assigns different

number of neighbors for each positive instance. Simulta-
neously, this technique extracts minority outcasts out of the
training data and uses them to build an exclusive 1NN model.
Every parameter for this technique is automatically set within
the algorithm making it become parameter-free. The effective-
ness of this technique is shown by comparing with other
oversampling  techniques  in  a  number  of  datasets  and
classifiers. We found that ANS has the highest number of
cases  it  provides  the  best  F-measure  and  AUC  values.
Wilcoxon sign-rank tests are applied to verify that ANS is
statistically better than other techniques. However, the exact
condition to determine which kind of dataset ANS performs
well is still inconclusive. Based on experimental results and
their  statistical  test,  ANS  is  worth  to  use  for  remedy  the
imbalance of dataset if the good F-measure or AUC value is
preferred.

Figure 5. Number of datasets which each oversampling techniques achieve the best AUC; ANS without outcast handling (ANS1) vs.
others (left) and ANS with outcast handling (ANS2) vs. others (right).

Table 4. t-score of each test between the F-value of ANS2 against ones of other oversampling techniques in each
classifier. For the number of sample equals to 14, the T-critical value is 22.

            Classifier ANS2 vs. SMOTE ANS2 vs. ADASYN   ANS2 vs. SLS ANS2 vs. DBSMOTE

Decision Tree min{86, 19} = 19 min{95, 10} = 10 min{83, 22} = 22 min{99, 6} = 6
Na¨ýve Bayes min{101, 4} = 4 min{90, 15} = 15 min{96, 9} = 9 min{73, 32} = 32
Multilayer Perceptron min{103, 2} = 2 min{105, 0} = 0 min{83, 22} = 22 min{96, 9} = 9
Support vector machine min{104, 1} = 1 min{87, 18} = 18 min{69, 36} = 36 min{68, 37} = 37
K nearest neighbor min{88, 17} = 17 min{98, 7} = 7 min{66, 39} = 39 min{67, 38} = 38

Table 5. t-score of each test between the AUC value of ANS2 against ones of other oversampling techniques in each
classifier. For the number of sample equals to 14, the T-critical value is 22.

            Classifier ANS2 vs. SMOTE ANS2 vs. ADASYN   ANS2 vs. SLS ANS2 vs. DBSMOTE

Decision Tree min{80, 25} = 25 min{87, 18} = 18 min{100, 5} = 5 min{102, 3} = 3
Na¨ýve Bayes min{93, 12} = 12 min{95, 10} = 10 min{82, 23} = 23 min{99, 6} = 6
Multilayer Perceptron min{70, 35} = 35 min{88, 17} = 17 min{77, 28} = 28 min{91, 14} = 14
Support vector machine min{88, 17} = 17 min{91, 14} = 14 min{90, 15} = 15 min{102, 3} = 3
K nearest neighbor min{105, 0} = 0 min{105, 0} = 0 min{103, 2} = 2 min{105, 0} = 0
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