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APPENDIX A

The RNA codons

/ Seconed Position

u S G
Amino Acid | code | Amino Acid | code | Amino Acid | code | Amino Acid
ucu uGu
phe tyr cys
ucc ser UGC
oy uca STOP UGA STOP
ucG sSTOP UGG trp
ccu . CGU
his
lou CcCC pro CGC arg
CCA CGA
gin
CCG CGG
ACU AGU
asn ser
lie ACC the AAC AGC
ACA AAA AGA
lys arg
mel | ACG AAG AGG
GUU GCU GAV GGU
o asp
i GuC val GCC ala GAC GGC gly
- | GUA GCA GAA glu GGA
GUG GCG GAG GGG

uolisod paylL




APPENDIX B

Amino acid abbreviations

Full name of amino acid Abbreviation (3 letters)  Abbreviation (1 letter)

Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Cysteine Cys C
Glutamine Gln Q
Glutamic acid Glu E
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val \%
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1. Nucleotide sequence of the IS4 - IS6 domains of the Ae. aegypti voltage-gated

sodium channel gene from PMD-R strain
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J\TGCTLTTC‘YT‘ATTGTG..MTC’ TCTTGGGT“CG"TC"M‘_CT”'G”AA.‘.':"I‘:‘GA?:'I"’GG'J""’G"LGCCA"C‘“&.G‘A&GA.GAAC}"EAGAAGAGGu’:"GAAG.-GGE\AGAGGC’GC\_GAGGAA
480 490 Q 519 $29 839 S 55 S€T 570 580 S0 €00

M il lm

GARGC GCTTT GGGAAGCG G&GMGQUCTGQG&GAI\M\-GGL CARACT:! GCAG CGGCGGCCGCAGT CAASC CGGAGATC ;g"c:mc A&CCGTC"GAEITW»G
610 20 €30 €490 [ 3¢ €930 ¢ 710

720

B
€50 660 €7
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2. Nucleotide sequence of the IS4 - IS6 domains of the Ae. aegypti voltage-gated

sodium channel gene from PMD strain

Model 3100 15-6-49_C09_RS1#1S4-6_F_05.ab1 Signal G:173 A112 T:100 C:82 Page 103
A Version 3.7 DT3100POP4{BDV3}v1 mob Frl, Jun 16, 2006 921 AM
ABIE,  gacecater-3100aP0Ps_RS1#1S46_F 8SU_3100 Thu, Jun 15, 2006 8:37 PM
BC 1.5.0.0 Cap5 Points 1200 to 15000 Pk 1 Loc: 1200 Spacing: 15.28{15.28}

TC TNCC TCICAAN A TG GCTATCG TTCCIGG TCTCAMG ACCATCG TCGG CCCTG TCATAG AGGTCCG T TAAG ART CTCAGIAG ATG TG ATAATT TTANCAA TG
10 29 30 4C 50 €0 70 80 50 1090

[T TICGTTATCGGTGTT IGCTI TTAATGGGGCTGCAGATC TACATGG GG TGCTGACGCAG AAGTGCAT CC GGG AG TTCCC G ATGG ACGG T ICG TG GGG CAACCTG TCGGACGAGARCT GG
110 12¢ 13¢ 140 189 1e% 170 8 190 200 210 220

| g | e, AY f= el bl
W Ulthm Mt _LU,HU 1) hhmhu meu i

:GAACG GT TAACAATAACGACTCCAATTGG TACT TCT CGGAAACTGG AGACACGCCTCTTTGTGGEAACTCGTCGEETGCTEGCTAATGC GARG ARGGATATATTTGT TTACAAGGT TATGGAG AT
230 240 256 280 270 280 258¢C 300 310 320 330 340

R e

MCCAAAII%(OZGGGTMWGITICGATI\CTTTCGGI\IGGGCAITC"'hCTGCC"‘itI%TC‘IM_GAEO:MGANTA’IGGGAGA&“CTITAIG\A"TG\:'GIIRCGRICA CIGGAC‘.GTG;QC}

429
Model 3100 15-6-49_C09_RS1#1S4-6_F_05.ab1 Signal G:173 A:112 T:100 C:82 Page20f3
A Version 3.7 DT3100POP4({BDV3)vi.mod Fri, Jun 16, 2006 9:21 AM
ABI . Basecaller-3100APOP4_RS1#1S4-6_F BSU_3100 Thu, Jun 15, 2006 8:37 PM
B8C 1.5.00 Cap § Points 1200 to 15000 Pk 1 Loc. 1200 ‘Spacing: 15.28{15.28}

\TGCTCI'I‘.TTCATIGTGAITA‘IC‘IIC"’GGGI’\:GIIC’IXZCTIC MAIT"GAIC TGGCCATT GTCECCATGTCGTACGACGARCTCCAGARGAGGGCCGARGAGGARGAGGCCGLCCAGG ARG
150 490 500 40 550 S€o 570 580 590 890
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3. Nucleotide sequence of the IIS1-IIS6 domains of the Ae. aegypti voltage-gated

sodium channel gene from PMD-R strain

Model 3100

30-5-49(8)_DO8_RR#IS1-6_F_08.ab1 Signal G145 A.71 T:88 C:65 Page 10f3
A Version 3.7 DT3100POP4{BOV3jv1.mob Wed. May 31,2006 9:23 AM
égSN[ Basecalier-3100APOP4_RR#IS1-6_F BSU_3100 Wed. May 31, 2006 1:14 AM
BC 1.5.0.0 Cap 8 Poinls 1200 to 15000 Pk 1 Loc: 1200 Spacing: 15.52(15.52)

GCGGAN TG AT GGA‘Z;A. Gm.- TCIGSE TCATIGT
10 30

TG IGEG ATGC TG C TEG 56 TG TG G STCARG TT S eGGfG'Y“G TT TGITCGAC GT ﬁ"\.Gm»TG
40 50 €0 0 100 19

el mmmm h hM U, i adMu Nﬂh “ MtﬂmkuhM

uMMUMM&M lmh MM MM Wu M uh l MﬂuW nmm

Y

PCF-GTA"TALGX‘T(.ATN G"T GCT TCGAGTG""LMG N: A.\A G GGC CGAC G TGAACT TA Cn""”‘ CaT JTGSG'\.4AALG vGGqG%GTTAGGTh CTTGACGTT TG GCITT

e b e

Model 3100 30-5-49(B)_D08_RR#11S1-6_F_08.ab1
Version 3.7
. Basecaller-3100APOP4_RR#IS1-6_F

BC 15.00 Cap 8

ABI.
PRISM

B8SU_3100

Signal G:145 A71 T:88 C:65
DT3100POP4{BDV3)v1.mob

Points 1200 to 15000 Pk 1 Loc: 1200

Page 203
Wed, May 31, 2006 9:23 AM
Wed, May 31, 2006 1:14 AM

Spacing: 15.52{15.52)

GCATTATCATCTTCATCTTTGE CGTGATG GG AATGCAGCTG T TCG&-\AG ACTACATCGACAATGTIGGATCEC TTCCC
4390 00 510 520 330 340 55¢ $€Q

uw’hG"h"‘C"’G"CA“GG'GCaAC TCACCGACTTCATGCACTCAT
570 S8 530 &0 610

TCATGATCGIGTTCC GGG TATTETGCGG CGAGTGG ATCGAR TCLATE
820 €3¢ €40 &so €

TGGGATTGTATEC TTG TEGG TGACGTS TCC TETATT COGTTC ITTTT GGCCACCE TAGTG ATAGGAARTE TAGTAGTA!
€0 €70 €80 €90 730 718 720 730

"TIA-C"T'PTS""A&C;.;G TIT G’I\IAA IECH‘\TYR;JNW
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4. Nucleotide sequence of the IIS1-IIS6 domains of the Ae. aegypti voltage-gated

sodium channel gene from PMD strain

Model 3100 15.6-49_D09_RS 1#11S1-6_F_07.ap1 Signal G:144 A:74 T:89 C:65 Page 103

A Version 3.7 DT3100POP4{BOV3)v1.mob Fi, Jun 16, 2006 924 AM
ABILL  giecater3100aPOPs RS1#IST6_F BSU_3100 Thu, Jun 15, 2006 8:37 PM
BC 1.5.0.0 Cap7 Points 1200 to 15000 Pk 1 Loc: 1200 Spacing: 15.06{15.06}
CGNINGICNAINC TCA X6 XCGACG TCTTCTGCG T6 TG GG A TG C IGC TG GG TG TC NCTCARG TTCCAG GARKG TGGG6 TTGCTT TCAT TG TGT TCG ACCCNNTCG T CG A¢

10 (c] 30 10 50 €3¢ 7¢ 80 0 100 11¢

:CTGTTQTMCCI"‘G aGTn’."CGTGG"’J\Au\CGC"G T T CA‘GCCCCIG u AL :MCA;G A’A""GGAC 'CGGM.ATGG AELGGGCCC-CN AGT‘GuH\ACTAT" T"TTCRCGG‘.GX.C’"“CGC
30

T Ty

.GATAGMGU\ACGATGAA&.TGX"T GC GATGAG"‘ ‘CCAAGTA_""A-. T"'FCAAGAGGGC'!GCAA“ALA; T..GA“‘I‘TLAT QTCG 155\.GCIG TCET IG\. "‘CGAGCTGG GTCTGGA)GG“‘GT’I\J\GG(

Ty

:ATTCTC.nG TATTMGTTCATECGTT"‘GC’TCGAGTG!‘TGMGF;AGu.GhATCGICGC"GZL‘G"‘"GMCT%CTC&‘“TT".ATCATQGGTL.GAACG&TGGCTC“G"TAGq%MTCTGACG’%TTGT&
380

Model 3100 15-6-49_D09_RS1#11S1-6_F_07.ab1 Signal G:144 A:74 T:89 C:65 Page20f3

A Version 3.7 DT3100POP4{BDV3)v1.mob Fri, Jun 16, 2006 9:24 AM
ABILL.  5icecaner3100aPOP4_RS1#1IS16_F BSU_3100 Thu, Jun 15, 2006 8:37 PM
BC 15.0.0 Cap7 Points 1200 to 15000 Pk 1 Loc: 1200 Spacing: 15.06{15.06}

"Tl.TCCATTA.L&ATC’KAT\.TTTGC’GT&A""C\:RFJG. AGC TGT TCGGCAAGARCTACATCGACAATG TG GATCGC TTCCCGEACARA GACCT GOCACGE TGGAACT TCACCGACTTCATGCAC T
°0 St0 Sid s20 338 540 550 580 57 580 Se0 €00 €10

v |
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5. Nucleotide sequence of the IIIS4-IVS2 domains of the Ae. aegypti voltage-

gated sodium channel gene from PMD-R strain

Model 3100 30-5-49(B)_E08_RR#IIIS4-6_F_10.ab1 Signal G:77 A:48 T:40 C:34 Page 1013

A Version 3.7 DT3100POP4{BOV3}v1.mob Wed, May 31, 2006 9:26 AM
ABILL.  gacecaner-3100aPOP4_RRAIISES_F BSU_3100 Wed, May 31,2006 1:14 AM
BC 15.0.0 Cap 10 Points 1200 to 15000 Pk 1 Loc: 1200 Spacing: 15.06(15.06}

N“m,c G.‘-ER:‘L:"',-CG'G .AT Py TAT Gw"" 'A’qnGGG'I’G LN_:AO\ GC mTGG"'AuGG‘_ A'n\ \-G—C\.A"‘TM uIvT‘M’GG GTGI'-

_mmm&\mmmmww MMWMMWWMMW

X'GLLTTTTGG'ITGATTI"'CG TATTRTGGGT\:'GC.-GCIC“'G‘ aG‘.J.AG A"T"'IMGTGLG \.uannAu\AGACGRCf'C"‘GT»GCPCG..G).I" ""L’.’CGGA’IGTGAALGCGIGC\:T

e

CG«.GG)\GAAI.‘L’A")‘-CGNGGKGAI‘CT"GCC\"‘TG"ACT CGALT n&.G”CGGGAAGG.GTAC”'CTG C'u’T&.O\GuTCG\.AACGTT-ARGGGC GGATCCRGA"'CATGJ-ACG%LGCCA"CGACTL

Ml WLM( 1 h Wl

GCGGGAGGTGGGMAG?LC&CGATTCCCGAGAN_AAM";TA\.AAGTACC CIA-.I'E"“"““TTL" A“‘\.&I m‘GG{‘; T"G"’“C“TLACGL.'“GMI\.TGTTC&TCwTG*«.ATCA""' GAC?\ACI‘TL,

Model 3100 30-5-49(B)_E08_RR#IIIS4-6_F_10.ab1 Signal G:77 A:48 T:40 C:34 Page20f3

A Version 3.7 DT3100POP4{BDV3)v1.mob Wed, May 31,2006 9:26 AM
ABILL  gacecaner-3100APOP4_RRHIISAS_F BSU_3100 Wed, May 31,2006 1:14 AM
BC 1.5.0.0 Cap 10 Points 1200 to 15000 Pk 1 Loc: 1200 Spacing: 15.06{15.06}

AACGAGCAGAAGAAGAAAGCCGGTGGCTCACT GGMI\ GTTC ATGMGG&GGL—MMMG‘A‘- m..m\\.c »A.GMAAGA‘G"GC"CGAAGAAG\.CGC"GAA“G TATTCCACGGCCTANGT
450 500 510 S2 53 549 sso $7 380 590 600 €10
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6. Nucleotide sequence of the IIIS4-IVS2 domains of the Ae. aegypti voltage-

gated sodium channel gene from PMD strain

Model 3100 15-6-49_E09_RS1#1lIS4-6_F_09.ab1 Signal G:49 A'33 T:29 C21 Page 103

ABlA Version 3.7 DT3100POP4{BOV3)v1.mob Fri, Jun 16, 2006 9:27 AM
_ Basecaller-3100APOP4_RS1#11iS4-6_F BSU_3100 Thu, Jun 15, 2006 8:37 PM
PRISM' gc 1500 Cap 9 Points 1200 to 15000 Pk 1 Loc: 1200 Spacing: 15.28{15.26)

40

u
o
&

CACTGOGNGTGICTGATGAC TACG TG CCATGAN SCC6 TAIGTAGGS TA "‘.v AGGNG"'T"T»C“\'NCMLG CAT 'IGEA‘AC-GG CTATACCG TCCATC TTCN\CG TG!"I'UJ"‘ [cld
10 29 3¢

M”G’GTGCG.CGCGGAGW"‘ACA"G TGGGAT MCT .u.u.GaTGML ¢ ’SA":J&C\ G:MGG‘CTACVTGTG-\.’CT?:C&GGTGG .Iuc"G"Tm@aGfTGuﬁT\.CuG)lICLGMACLAMF
290 €0

Al My g oM Wt el

Ct.&TL.@\CTCGCGGGACGIGGGAAAG\J\GCCuts""\_G\,Cn(:.»CAAC..T-”‘M C'ACCIC"‘A.“T”’G"‘G "‘TCT""'-...AI'CA’ZC'"CGGGTDGTTCTX'C,'CGCTGAATCTGT‘PCI\TCGGIGTG\ICATCGI
370 320 400 42 430 440 430 460 470 480 454

Model 3100 15-6-49_E09_RS1#111S4-6_F_09.ab1 Signal G:49 A'33 T:29 C:21 Page2o0f3
ABlA Version 3.7 DT3100POP4{BOV3)v1.mob Fri, Jun 16,2006 9:27 AM
_ Basecaller-3100APOP4_RS1#111S4-6_F BSU_3100 Thu, Jun 15, 2006 8:37 PM
PRISM' sc 1500 Cap 9 Points 1200 t0 15000 Pk 1 Loc: 1200 Spacing: 15.28(15.28)

\C.ﬁkC"TCAAyGAGCﬁGA?;é—AG«AAG»C Gg"‘b GC"VFC"GGAAA"“"'“" "CP»GFAGG A"CAGAWAG" Agl‘ﬂ.AAvGCCA‘G RABAAGATGG GCTE GAAGARGCS G\.TGAANUNTATT‘;CA».G(
S$2 57 5890 580 800

340 580

:CCA‘RGCTGG&.G£CACAAGCAATAGTRLT CGMI}.GT‘“ACJ&I‘AA&:MC'TCGA\,AT GATCATCATGTIGTTCATLGGG TTCAACATGTTGACGATGAC GCTCGATCACT ACAA GCAGACK
€20 €30 840 €50 €60 (334 [3:0 700 710 720 730 744

3G ACACGT TTAGCGL GG TG CTAGACTAT CTGARCATGATS TT AT CIGCATCTTCAGT AZLA TC TGANGZAN NIBRRNA CCNNN'C NN A A NNCNNCCNINA NNGNXNC RIC&. m
750 7€0 kb 730 790 300 810 820 330 240 8s¢ 860
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7. Nucleotide sequence of the IIIS4-IVS2 domains of the Ae. aegypti voltage-
gated sodium channel gene from field collected strain, MSR-R2S. The nucleotide

chromatogram of homozygous for wild type F/F1534 was shown.

MACROJGEN
Fite: Ae_MSR_R25_B-Ge-IlIS6_F.ab1 Run Ended: 20097/11 20:53:21 Signal G:1945 A:2372 C: 1653 T 2919 Addwoncing rosigh Geomicr
Sample: Ae_MSR_R25_B_Ge-IlIS6_F Lane: 31 Base spacing: 16.003092 950 bases in 11570 scans Page 1af2
10 L N a (] 'E(l 100
GSMININGN G X5 TOGCG G0 ATTACACE TR QG A0 LT CACCTAT 3 =0T ‘C“.-"GTGGGG AGfX:(Z’\C("(‘x’<?"C"\‘:‘l”"€l‘1» GCAACGTT "ﬂA‘}GG‘TOGrT”\‘G ATCH IG saC

o

300 219 X0 240
TRCGTICTCGSTOCT {‘(“U\}’GGG‘\‘ AGCAGCCEATTCGLGAGACTAACATT

@) a0

4N 420 430 440
ZATGACGGAGG A “N‘AG‘A‘*PGT“- ST ACAACQCCATG AAAS aBATEGBLTLC A ~G A 2GCCHCTG AR K
1 i) i :
VA A A A “.fﬂ‘;f*:»-’ J}l\,“ Sttt AT sk
AN AT A il

il
ka 50

T 52 %55
TOCTAATCTOOCTATTCTCLATTTCAGTGRLG ACCACHAGCARTAGTATTLG AAAT

& @ Loy N0 80 500
TAT TOCACGRCCTARGETAMGCAT TTCLATCOCACAT CAACTE TG ~CATATTCCT

”mf\&fff.q}\ﬂf{iﬂhx

f

WAAY ﬁ"-ﬁ"ﬂ'\(\‘ VWYY

§ i
L G R L,
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8. Nucleotide sequence of the IIIS4-IVS2 domains of the Ae. aegypti voltage-
gated sodium channel gene from field collected strain, Ae-LP-DelR4. The

nucleotide chromatogram of heterozygous F/C1534 was shown.

MACROJGEN
File: Ae_LP_DeIR4-1[IS4_F.abl Run Ended: 2009/57 18:12:23  Signal G:516 A:394 C:470 T:468 Adnencing throvgh Gewwrics
Sample: Ae_LP_DelR4_IIISI_F Lane: 83 Base spacing: 16.584824 769 bases in 9174 scans Page 1of2
10 20 kY « 50 % N %X 9 100 Lo 12
MINNGD sATTAAT GO TAT TATCTT TOCRACT ST OTT TCOCGCT TR CGTCCTT CT TTTATTT A GOTT GTCITCAATAC ST TGGTACAGGLTATACCETCCATS TTCAACGTSTTAT

. -f*ft N M. 'N! &JM

v irtqy/)ﬁ:f"f>f>:‘ﬂi’“""€" '“.W ‘ M” \iim\’

ikt

'I

f!’U‘ At
g

o ’fi
22
3

] 2 20 w0 60 %0 5™ 20
A‘""Fr"f‘c"r‘crru STGCGTNG -—\Lt- BAACA AT ACG ACSCTHTCRE AC GG AT LA TTCCGGATAT G AL BCGTGLI TCHCEGAG -2 T C-CET GG G A6 2ACTCBCCAATG A CTTCGACCACG

ﬁ b ; | » ) ,‘ :
fh’MM Wl %ﬁmm;’: i a ! |l MJ\MH L ’\?"J%iﬁf@ﬁﬁ{ﬁ\i A féﬁ("ﬁﬁ Wil Wffi i

0 K H 460 17 430 480
uOuQAxGGCGTrL.f‘TGTGT’ GTTCCA 0(. (l(l\‘n COTTC A4 CG\%’I\;G-—T(" A ATCATGAACHANGCCATC G A0 TOGCOGGAGOTAAGTTAT TETGAALTCGAACT TGIT;(‘L(‘P)"GATL TGC

J\M u J\ﬂm f Bl M 1%\ fi',l-;"!\;ffﬂ\{i'#‘%’%ﬁﬁf@f’l

i‘ Nﬂf kﬁ» fJ\
FIC1534C
GW %0 80 R

wo 530 B0 €19 820 €0
AGCAGOCGATTOGOGAGACTAACATCTACAT GTACC T TACTTTOTGT TCT TCATC ATC TGCGGATCOT TCTTCACGC TG ASTCTGTT

—

T'Iﬁ('-xﬁ TITTA f‘GTLC ’Ki»Tf‘L.TTf'L-(a" TG

Wil ) v\ﬂv.W gt P ey e e

Fite: Ae_LP_DelR{4-IIIS4_Fabl Run Ended: 2009/5/7 18:12:23 Signal G:516 A:394 C:AT0 T:468
Sample: Ae_LP._DelR4_IIS{_F Lane: 83 Base spacing: 16.584824 769 bases in 9174 scans PageZof2

. LY 750 @o 8% (9 5% o 7 72 ) 0 ™
CATCGOTGTCATCATCE ACAACT T CAACGAICAGAAGH A4 A4 QUOGETIGOTCACTAGAAATAT TCATGACAGAZE ATCAG -2 4AT SCTACAACGCCATEAAAA ~GATGOSTTCR2AGAATC

b e vl et it el

w0
GG 4 2 AACTRAR
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9. Nucleotide sequence of the IIIS4-IVS2 domains of the Ae. aegypti voltage-

gated sodium channel gene from field collected strain, Ae-LP-DelS2. The
nucleotide chromatogram of homozygous C/C1534 was shown.

MACROJGEN
Sigat G:5064 A: 4254 C:5065 T:5203 i i Canemic

File: Ae_LP_DelS2-IIIS4_F.ab! Run Ended: 2009'5/7 18:12:23
807 bases in 9666 scans Page 1of2

Sample: Ae_LP._DelS2_11IS4_F Lane: 87 Base spacing: 16.586983

©

i) 100 e 10
TTTaBGTT BT CGT CAnTGCAT TGATACAGGCT ATACCETOCATOT TCAACETGT

10 rg &
NNNATHN TG 452 TT A T GCTH# T TanT AT TT R4

150
HT"O\.T“TG'I LThﬂL"‘f"l(:('“';-sA giigelc o l I’T TGG

I'jlu N GA‘W“L

280 2m 20 290 3
QG2TOTTGCCTCCCT TCAGT GCGTCG ACAAG A RCAAGACACECTETIGE AT GAG A

o 50
COTRBAGANGECGT K ATOTAT I ATTE:G0TS

! j q,\ﬁ! ' ‘m'

510 520 55 5 ;
TOCTTACAAT TTTACGTCCTCRATCOTTOCHOGTAAA . 4 <60 ~ 30T T

s,'u"quF‘!t; Wt Aﬁl A

L0 FSY ﬁ
4 2GTTCAAGEGITEGATICAGAT: "G—\.«”G nCGLCATC G ACTCGE GG.‘—wf"‘ ~G"" TT G"tﬁ—-T\G-—“TGT”«CGim q—TC
fw

B0
‘ECTG(‘uJu [CGTT “‘T( CACGCTGHATCTG

\,,n

U:H&Jl‘il"ﬂ’ﬁ'{f“"“ﬂ{\ T

hobaan afianen afanlt Taahsts N
i sty

Signal G:5064 A: 4254 C:5065 T.5203

File: Ae_LP_DelSZ-IlIS4_F.ab1 Run Ended: 20095/7 18:12:23
807 bases in 9666 scans Page2of2

Sample: Ae_LP_DelS2 IIS4_F Lane: 87 Base spacing: 16.586983

630 840 y &0 860 5% 630 Rm - e "10 70 730 gy 0
TTCATCOBTGTCATCAT CRACA ACTTCAA( G AGCAGA G A-’:—-‘«’} CEBTHROCTCACTE GRALT OTTCATGACGGABTAT CAGA ALRAGT ACT AC220GCC T GAALAAGAT GGG TCGAAGANY.
K A & "!;
LAA / 1y ok A0y in ,!'j':‘ i {“: \ .\ e 3R %
ﬁ@x\‘w‘/\\(\ﬂj L N R d ”h ‘v :{\(‘ LG Vel Ol T TG i Mm A)\k
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10. Nucleotide sequence of the IIP-IIS6 domains of the Ae. aegypti voltage-gated
sodium channel gene from field collected strain, Ae-MSR-R4. The nucleotide

chromatogram of homozygous for mutant V/V1016 and S/S989 were shown.

MACROJGEN
File: Ae_MSR_R4-1IP_F.ab1 Run Ended: 20099/16 12:38:48 Signal G:2121 A:2293 C:1918 T:2333 Advorscmig Irongh Gessomscs
Sample: Ae MSR_R{_IIP_F Lane: 67 Base spacing: 15.754582 738 bases in 8662 scans Page 1of2
8/5989
20 o @ \y 50 1) Yy €@ 9 )
NDNH'CANN MICG TG TTC GOBTTTOTGLGAIG BTG5 L LG A-I0C-TGTSEGAT J*I\Y‘"'G'GG: GAGTGTCCTGTATICCGT TOTTIT T{‘&P-CCG iG’rG" AGGAASTCTAGTA

fb\’ﬁ A ,‘,n i @L

o 1% 1% W
f‘T»-f'fi' GECTGAAGTwm 2 TT @GOG

o5 25 250
AGACGTTASTCTTGATAGCATC
i

1% 19 EO 213 26
GT 24GT AT“Q(-’I TTGGAAGTTCATCT TTCOTGATTCASCTAGTTACAAS

AATATTAGAGON GTACTAGC 23CEABCG #AGGGOIT Ol a 1T

.

380 59 4 410 Ery &0 80
AGCCTTGCTTTTGTCCAATTTICGGTTCAT SCTCEI TET DG 3LACTIGATGS ‘CG #C2ACGAA —\,Gﬂr"' A u-T“GCC"‘ #GGCETTC »A’“CGG*T{\ GCG““:CTFC!‘\"TGGA“CF~UTCG AACA

it

510 520 0 540 =
POGOCAAGRCTCAAITTCGTGAAARACE AGTT £ ACH AGIRGAT T GOGTE

Mo Sl ﬂé\ﬁNuv\M vy ’ugw Wy \JV‘ W

"’) ot ) 800 610 520 &30
S TTOCAARAAG A THG G0 TATGGT TCTG L GXCG CFTTICC CTGOCA TS TCTMOL AATTTT2G

‘5\&\\1 f{\f&f\m'}(\“f”ﬂ AN il ~l {‘V F&ﬂ’\ s
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11. Nucleotide sequence of the IIP-IIS6 domains of the Ae. aegypti voltage-gated
sodium channel gene from field collected strain, Ae-MSR-R3. The nucleotide

chromatogram of homozygous for mutant V/G1016 and S/P989 were shown.

MACROJGEN

File: Ae_MSR_R3-IIP_F.abl Run Ended: 2009916 16:15:52 Signal G:3883 A: 1050 C:3336 T.4074 Adwinciug throvgh Gemanrics

Sample: Ae_MSR_R3_IIP_F Lane: 69 Base spacing: 14.9367695 798 bases in 9623 scans Page 1af2

SP9e9
v 3 12

@ )] [ 100
Q‘aI‘N‘!‘NH NICG NG TTC "GG"'«TT lGL."G‘ G AGTGG T CGAICCT u"\a G AITET "’kT‘G"‘f‘G'T"-f STGTLCTGTATTA T‘G"TLT"TT"'"GJ‘«ICvTr‘u“f‘~T«GG AAATCTEG

b | o ]'A i
.:fva;fa, o

.
f 4
m
il Wf!
15¢ 140 15 Dﬂ i lﬁ‘- b "\) 210 29 2% 240 &
TAGTARGT ATTCOGTTTGGG AGTTCTTCT. 3GC T 2T TIT G0 4al A0 CTGTT AT G TG TAAGTT OCAGCACTARATTTCTOAGOTTGAS ATTQCAGTAGTTCAAT

tfﬂem\fi‘ " JNW I | a M Mﬁ!‘h\ﬂ"\h

80 el 280
CGAAATCTCGAACTTTCATTTTAATAACAGCART &0 TG

Wl

VIG1016

.
HE

%

20 b)) 0 -llf
GEACTTAACCTTTTCTTAGCCTTGCTTTTOTCCATTICAGT

\wﬂi‘.WaW i wa oAb S et u"s\’;\*’m mf\x e e

610 %0 30 530 Y <l am 2l 590 €00 816 80
ACTGG ATCALGTOGAC ATOGLCAACGCTCTCARGT TEGTG A2 ACAAGT TAALAAGCHATTEANGTCCC AL A T GTCCCATTE TIXCGTCTTTTTTGITCTTATC ACG G AT ATGGS

ﬁ%@ﬂh’\ rof e el 1 'f'!‘a"ﬁ“fjme- et N
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12. Nucleotide sequence of the IIP-IIS6 domains of the Ae. aegypti voltage-gated
sodium channel gene from field collected strain, Ae-MSR-R25. The nucleotide

chromatogram of homozygous for mutant G/G1016 and P/P989 were shown.
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Sodium channel mutations were investigated through nucleotide sequencing of three cDNA fragments
amplified from permethrin resistant and susceptible Aedes aegypti from northern Thailand. There was
anovel nudeotide substitution (T — G} at the second position of codon 1552 resulting in the replacement
of Phenylalanine by Cysteine in segment 6 domain lil. This amino acid was indicated by another study to
involve an aromatic-aromatic contact between the sodium channel protein and the first aromatic ring of

:(eywor ':: the pyrethroid alcohol moiety. Reciprocal crosses between the homozygous parental susceptible and
’:;';‘gm:‘ resistant strains indicated that resistance was autosomal and incompletely recessive, and highly associ-
Aedes aegypti ated with the homozygous mutation. The bioassay of the F, progeny. formed by backcrossing the Fy with

kdr the resistant parental strain, did not show a clear plateau curve across the range of doses, suggesting that
Sodium channel resistance to permethrin was controlled by more than one gene locus. Other possible resistance mecha-
nisms involved are discussed.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Voltage-gated sodium channels are integral trans-membrane
proteins responsible for the depolarization phase of action poten-
tials in the membranes of neurons and most electrically excitable
cells [1]. The overall organization of sodium channel proteins con-
sists of four homologous domains {1-1V), each containing six x-heli-
cal trans-membrane segments (S1-S6)[2]. The protein is conserved
among both invertebrates and vertebrates. Pyrethroid insecticides
and DDT are known to deliver theirinsecticidal effects by disrupting
the function of the insect’s voltage-gated sodium channels and pre-
venting the re-polarization phase of action potentials [3.4]. Muta-
tions in the voltage-gated sodium channel can reduce pyrethroid
binding. A substitution of Leucine to Phenylalanine (Leu to Phe)
resulting from a single nucleotide mutation in domain Il segment 6
of the sodium channel [5.6] has been clearly demonstrated to be
associated with resistance to pyrethroid and DDT in many insect
species [7-9]. In addition, more than 20 mutations in insect sodium
channels have been identified that reduce channel sensitivity to
insecticides or neurotoxins [10,11].

In northern Thailand, a study on insecticide susceptibility in
Aedes aegypti indicated resistance to DDT and permethrin [12]).

* Corresponding author. Fax: +66 53 221849.
E-mail address: inhso00 1@chi iacth {L-a. Prapanthadara).

0048-3575/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.pestbp.2009.10.005

ADDT/permethrin resistant strain of Ae. aegypti, PMD-R, was estab-
lished from the selection of field caughtinsects in 1997. Biochemical
and molecular studies demonstrated that elevated DDTase activity
was the major mechanism involved with DDT resistance in this
strain and pyrethroid resistance was not observed to occur through
metabolism [13.14]. Pyrethroid resistance appeared to mainly in-
volve knockdown resistance. In this study, we report a novel single
nucleotide mutation in the voltage-gated sodium channel gene that
correlates with DDT/permethrin resistance. We also investigated the
genetic inheritance of permethrin resistance and the mutant allele,
based on reciprocal crosses between susceptible and resistant mos-
quito strains and backcrosses between F, hybrid and resistant
parental strains.

2. Materials and methods
2.1. Mosquito strains

Two strains of Ae. aegypti used in this study. the PMD and PMD-
R strains, were established from field caught mosquitoes from Pang
Mai Daeng. Mae Taeng District, Chiang Mai since 1997 [12] and
were previously named RS and RR strains, respectively [13]. PMD
is resistant to DDT whereas PMD-R is resistant to both DDT and
permethrin. The colonies were maintained under insecticide selec-
tion pressure by exposure to standard WHO permethrin (0.5% and
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0.75%) papers for at least 10 generations before the resistance ra-
tios were determined. The eggs from these mosquitoes were har-
vested and stored prior to use in a dry cool place. Under such
conditions, the eggs can survive for a long period of time.

2.2. Bioassay for mosquito larvae and statistical analysis

The larval susceptibility test was conducted according to the
WHO standard method [15]. Stock and serial dilutions of permeth-
rin (Supelco. Belefonte, PA, USA) were prepared in ethanol. The bio-
assays were conducted in 400 ml beakers each containing 250 m|
of distilled water with one of 5-7 different concentrations of insec-
ticide (0.1-500 pg 17'), 4 replicates per concentration. The ethanol
content in each assay solution was limited to 0.4%. For both mos-
quito strains, batches of 25 early 4th instar larvae were tested
per beaker. In the control experiments, 0.4% ethanol was included
in 250 ml of water, Larval mortality was recorded after 24 h expo-
sure. Data were analyzed by standard probit analysis [16].

2.3. Partial sequencing of Ae. aegypti voltage-gated sodium channel
gene

To determine the mutations in the voltage-gated sodium chan-
nel gene in Ae. aegypti, three fragments of cDNA were amplified
and sequenced. Primers to amplify these fragments were designed
using sequences from the Ae. aegypti Liverpool and China suscepti-
ble strains (Liverpool cDNAs are from GenBank Accession Nos.:
XM_001657308-XM_001657311 inclusive: China cDNAs are from
GenBank Accession No.: AY663385). Nucleotide sequences of the
3 primer pairs, the product sizes and the regions amplified are indi-
cated in Table 1. Total RNA was isolated from 30 mg of 4th instar
larvae using the RNeasy Mini Kit (QIAGEN, Hilden, Germany)
according to the manufacturer’s instruction manual. The RNA
was reversed transcribed from 5 pg of total RNA using an oli-
go(dT);2-1s primer (lnvitrogen, Carlsbad, CA, USA) and Super-
Script™ 1l RNase H™ (Invitrogen, Carisbad, CA, USA) according to
the supplier's recommended protocol. First strand cDNA was then
used as a template for PCR amplification of the Ae. aegypti putative
knockdown resistance (kdr) region in the voltage-gated sodium
channel gene.

PCR was carried out in a 50 p reaction volume containing 1.25 U
of HotstarTaq DNA polymerase (QIAGEN, Hilden, Germany).0.1 mM
dNTPs (New England Biolabs, Ipswich, MA, USA), 1.5 mM MgCl, and
0.5 uM each of the forward and reverse primers (Operon, Cologne,
Germany). The amplification consisted of an initial heat activation
step at 95 °C for 15 min, followed by 35 cycles of 95 °C for 30s,
59 °C for 1 min and 72 °C for 30 s with a final extension step at
72 °C for 7 min. The amplified fragments were analyzed by electro-
phoresis on a 1.0% agarose gel and visualized under UV light by ethi-
dium bromide staining. The sodium channel gene PCR fragments
were then purified using the QIAquick PCR purification Kit (QIAGEN,
Hilden, Germany). The purified PCR products were sequenced using
the ABI Prism Big Dye terminator cycle sequencing kit on an ABI-

Table 1

PRISM 3100 automated DNA sequencer (PE Applied Biosystems, Fos-
ter City, CA, USA). Sequence data were analyzed using CLUSTAL W
multiple sequence alignment program [17] and Six Frame Transla-
tion program (Sequence Launcher, BCM) [18].

2.4. Genetic inheritance of the F1552 and C1552 alleles in permethrin
susceptible and resistant Ae. aegypti

A dose-response bioassay was applied to determine the genetic
characteristics of resistance [19,20]. About 250 virgin adults (sep-
arated at the pupal stage) of the susceptible and the resistant
strains were reciprocally crossed (PMDgmate X PMD-Riie: PMD-
Reemale X PMDnate) to produce Fy hybrids. F; progeny from both
crosses were backcrossed to the resistant strain. The larval suscep-
tibility of the parents, crosses and backcrosses was determined by
exposure to various concentrations of permethrin. The dose-re-
sponse curves were plotted and LCsos calculated. Both the parental
mosquitoes and the F, hybrids were examined for the presence of
the F1552 and C1552 mutated alleles by DNA sequencing of the
PCR products.

The degree of dominance (D) was calculated [21] on a continu-
ous scale using the equation:

D = (2F, — Py = P,)/(P; — Py)

where F, is the resistance of the F;, P; and P, are the resistance of
the susceptible and resistant parental strains, respectively (repre-
sented as log LCsp). Values of D range from —1 for completely reces-
sive resistance to +1 for completely dominant resistance. On this
scale, intermediate resistance has a dominance of 0 (zero).

3. Results

3.1. Partial sequencing of the Ae. aegypti voltage-gated sodium
channel gene

Three DNA fragments encompassing 29 putative amino acid
mutations [11] were amplified from cDNA templates prepared
from PMD and PMD-R mosquitoes. The nucleotide sequences of
these fragments cover a total of 2410 nucleotides of the voltage-
gated sodium channel gene. The amplified region is indicated in
Table 1 and Fig. 1. These nucleotide sequences are reported in Gen-
Bank (GenBank Accession Nos.: EU259807-EU259812 inclusive).
Alignment of the amplified sequences show identical sequences
for PMD and PMD-R except at codon 1552, which encodes Phenyl-
alanine, where the second base “t” of PMD is substituted by “g” for
PMD-R giving “tgc” which codes for Cysteine. Fig. 1 presents the
deduced amino acid sequence of the sodium channel from the Liv-
erpool strain to indicate the regions where PCR amplification was
performed. In comparison with other strains, the PMD and PMD-
R strains both differ from the Liverpool susceptible strain at amino
acid position 436, in having an Arginine (R) rather than a Lysine
(K). However a susceptible strain from China (GenBank Accession
No.: AAT69681) also has an Arginine (R) at amino acid position

Sequences of primers for amplifying sodium channel gene fragments.

* Primer sequence (5/-3) Product size (bp) Region in sodium channel Exon®.

- ATCTCGCTGCATTGAGAACA 768 154-156 : 16

" GGTCCAACGTTCAAGGACAA 812 11S1-1156 13417

TTCAAGCATTCAAAACAATG 830 11S5-1vs2 22-26
CATCAGACACTCGCTACTGA : >

* Exon from the Aedes aegypti voltage-gated sodium channel gene. This transcript corresponds to VectorBase Transcript ID AAELO06019 and appears in supercont1.186

from nudeotide 18,685 to 163,945.
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Fig. 1. The deduced amino acid sequences of the sodium channel gene in the Liverpool strain of Ae. aegypti obtained from manual alignment of mree VectorBase 1D
AAEL004612, AAELO08297 and AAELO0G019. The gray blocks indicated the regions amplified from cDNA of PMD and PMD-R i by the PR p in Table 1. The

position of the amino acid substitution, F1552C, is also shown.

436. Therefore, this difference does not seem to be related to insec-
ticide resistance. None of the 29 putative amino acid mutations
[11] were detected in the PMD-R sample.

3.2. Genetic inheritance of the F1552 and C1552 alleles in Ae. aegypti

Data from larval permethrin susceptibility tests of the parental
strains, the F, hybridsand the F, backcrosses were analyzed by a plot
of concentration-mortality response (Fig. 2). Statistical data from
the probit analysis are presented in Table 2. The resistance ratio
(RR) of the permethrin susceptible (PMD) and resistant (PMD-R)
strains was about 25 as determined by LCs,. The concentration-mor-
tality line of F, hybrid mosquitoes shifts from intermediate toward,
but does not reach, the susceptible line with the RR reduced to about
2.94.Sequencing of the amplified fragment from adults and larvae of
F; hybrid progeny confirmed that they are heterozygous (F1552/
C1552), suggesting that resistance is highly associated with the
homozygous point mutation. In addition, the calculated degree of
dominance [21] are —0.308 for PMD (F) x PMD-R (M) and —0.347
for PMD (M) x PMD-R (F). All these results clearly suggest that per-
methrin resistance in PMD-R strain is partially recessive. The LCso
values of the F; progeny obtained from both directions of crosses
were similar as were the F, backcrosses (Table 2) suggesting that
there are no maternal effects or sex linkage, and thus resistance is
autosomally inherited.

The offspring obtained from backcrossing the F; progeny with
either the male or female resistant parents do not show a clear
plateau curve between the concentration-mortality lines of the
resistant and F; hybrid individuals at the 50% mortality level
(Fig. 2). In addition, estimated slopes of log dose-probit mortality

plots were lower for backcross progeny than for the parental
strains and their F, hybrid progeny (Table 2). These patterns sug-
gest an increased genetic variance in the backcross progeny com-
pared with that of parental populations and F, progeny. These
genotypes possess varying levels of resistance which suggests
involvement of other factors or mechanisms [22].

4. Discussion

From the screening of three cDNA fragments spanning 29 puta-
tive amino acid substitutions out of the total of 33 amino acid
mutations reported in correlation with insecticide resistance
[10.11]. we discovered a novel amino acid mutation in the per-
methrin resistance PMD-R strain of Ae. aegypti. This mutation is
at amino acid position 1552 where Phenylalanine (F) was substi-
tuted by Cysteine (C). Using a PCR primer pair that can specifically
amplify the mutated allele, we detected the F1552C mutation in
wild populations of Ae. aegypti in Chiang Mai city, Ubon Rachatha-
nee (north eastern) and Song Khla (southern) provinces, and also in
Myanmar and Cambodia (unpublished data). The apparently wide-
spread nature of this resistance allele indicates that it may play a
major role in DDT/permethrin resistance in Ae. aegypti

The putative binding sites in insect voltage-gated sodium chan-
nel were identified using a homology model of an available crystal
structure [23]. The model predicted that insecticide resistance was
associated with nine amino acid mutations located within this
putative binding pocket, M918T (or V or I) on the [1S4-1IS5 linker,
L9251, T929I (or V or C), L932F on the IISS helix and F15381 on the
111S6 helix. Position F1552 in the Ae. aegytpi sequence is equivalent
to F1534 in the housefly Vsscl sequence (Genbank Accession No.:
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Fig. 2. The log dose-mortality response curves and log dose-probit mortality lines (inset) of the parental strains, F, hybrids and backcrossed individuals after exposure to

permethrin.

Table 2

Toxicity of permethrin to the parental strains of Ae. aegypti, their reciprocal crosses and backcrosses.

LCso (95% CL) (ng1™") Slope (4SE) 7z

1,03 (0.92-1.17) 291 (+0.25) 753 (n=6.df=5)
25,64 (21.54-3049) 195 (+0.14) 311 (n=5,df=4)
3.13(282-345) 3.46 (+024) 324(n=6.df=5)
2.94 (265-324) 348 (+024) 208 (n=6,df=5)
8.96 (7.38-1084) 148 (+0.085) 9.18(a=7. df=6)
9.36 (7.69-11.38) 1.48 (+0,088) 1079 (n=7,df=6)

AAB47604) based on an alignment of the homologous sequences.
Although the F1534C mutation has not been reported for resis-
tance in housefly or other species, interpretation of the molecular
model suggests that the role of F1534 is important for making aro-
matic-aromatic contact with the first aromatic ring of the alcohol
moiety of pyrethroid [23). Moreover, F1534 is a highly conserved
residue across both arthropod and non arthropod species [23].
Therefore the F1552C mutation we observed in Ae. aegypti may
have disrupted the ability of the channel to interact with
pyrethroid.

Most studies of sodium channel mutations have focused on the
M918T and L1014F changes since the kdr and super-kdr strains of
housefly were found to have these point mutations in association
with a resistant phenotype [9]). Although the L1014F mutation has
now been identified in at least a dozen additional insect species, it
has not been found in any Ae. aegypti pyrethroid resistant strains
[24). Four other amino acid mutations were identified in 11S6 of the
sodium channel gene in pyrethroid resistant Ae. aegypti from various
countries [25]. One of these was the V1016G mutation within the
trans-membrane segment S6 of domain1(11S6 )in mosquito samples
from Tak, northwestern Thailand. However, they did not examine
the [11S6 region. Recently two novel mutations in [1S6 were also dis-
covered in Latin-American Ae. aegypti [26].

The genetics of resistance to permethrin have been investigated
in various insect species. Resistance to permethrin was generally
determined to be inherited as an autosomal and incompletely
recessive trait such as in housefly [27], a predatory mite Amblyseius
fallacis 28] and a southem cattle tick Boophilus microplus [29]. Our
results of the inheritance analysis of permethrin resistance in Ae.
aegypti PMD-R strain agree with these other studies.

The PMD and PMD-R strains were, respectively, permethrin sus-
ceptible and resistant strains selected from the same origin in Mae
Taeng District, Chiang Mai. Both strains are resistant to DDT which
our earlier studies have shown due to a glutathione transferase
mechanism [13]. In this study, we found the homozygous muta-
tions at F1552C is highly associated with permethrin resistance
and probably plays a major role in the resistant characteristics of
PMD-R. Both homozygous and heterozygous mutations have been
detected in wild populations, and both populations survived after
exposure to the discriminating dose of 0.75% permethrin (unpub-
lished data). The heterozygous mutation in our crossing experi-
ments showed a resistant level (LCso) of about 3 times higher
than the susceptible strain (Table 2), but lower than the logarith-
mic average of the susceptible and resistant parental strains.
A question arises whether the heterozygous mutation alone can
maintain this resistance level. Qur backcrossing experiment does
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not support monogenic control of resistance. In addition, the slopes
of the concentration-mortality lines of backcross progeny (Table 2)
were decreased compared with the parental strains and F, hybrid
progeny, indicating that a number of unlinked genes contribute
to resistance [22]. Our ongoing study by adding synergist piperonyl
butoxide, an inhibitor of microsomal oxidase, in larval bioassays
showed further decreases in permethrin resistance levels being
close to the susceptible strain, suggesting that a metabolic mecha-
nism, such as mixed function oxidases also may be involved in
resistance. The results of these biochemical studies will be pub-
lished elsewhere.

Therefore, in conclusion, we consider that permethrin resis-
tance in PMD-R is possibly conferred by two major mechanisms,
i.e. the homozygous mutation at F1552C in the Ae. aegypti volt-
age-gated sodium channel gene and a mixed function oxidase.
The spread of pyrethroid resistant Ae. aegypti could have serious
implications for the successful use of pyrethroid as a control mea-
sure and this problem must be closely monitored.
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Summary osjecTives  To develop rapid monitoring tools to detect the F1534C permethrin-resistance mutation in
domain I1IS6 of the Aedes aegypti voltage-gated sodium channel gene and determine the frequency and
distribution of this mutation in Thailand.

METHODS A TagMan SNP genotyping and an allele specific PCR (AS-PCR) assay were developed and
validated by comparison with DNA sequencing of homozygous susceptible and homozygous resistant
laboratory strains, their reciprocal-cross progenies, and field-caught mosquitoes. To determine the
resistance phenotype of wild-caught A. aegypti, mosquitoes were exposed to 0.75% permethrin paper.
The AS-PCR assay was used to screen 619 individuals from 20 localities throughout Thailand.
REsuLTs Overall, both assays gave results consistent with DNA sequencing for laboratory strains of
known genotype and for wild-caught A. aegypti. The only slight discrepancy was for the AS-PCR
method, which overestimated the mutant allele frequency by 1.8% in wild-caught samples. AS-PCR
assays of permethrin-exposed samples show that the mutant C1534 allele is very closely associated with
the resistant phenotype. However, 19 permethrin-resistant individuals were homozygous for the wild-
type F1534 allele. DNA sequencing revealed all these individuals were homozygous for two other
mutations in domain II, V1016G and S989P, which are known to confer resistance (Srisawat et al.
2010). The F1534C mutation is widespread in Thailand with mutant allele frequencies varying among
populations from 0.20 to 1.00.

coNcLusIONs These assays can be used for the rapid detection of the F1534C resistance mutation in
A. aegypti populations. The F1534C, and other, mutations underlie an extremely high prevalence of
pyrethroid resistance in Thailand.

keywords Aedes aegypti, pyrcthroid resistance, voltage-gated sodium channel gene, mutation detection

Introduction

Aedes aegypti is a major vector of viral diseases, particularly
dengue and chikungunya, which cause serious public health
problems in Thailand and elsewhere. Since there is no
vaccine or specific treatment, control of disease transmission
is based mainly on management of breeding habitats and
insecticide applications. The adverse effect of the heavy and
long-term use of insecticides is the resistance of the vector
throughout the world. In Thailand, A. aegypti is resistant to
several insecticides including DDT, pyrethroids, temephos,
fenitrothion and propoxur (Somboon et al. 2003; Paeporn

© 2011 Blackwell Publishing Ltd

et al. 2004; Ponlawat et al. 2005; Jirakanjanakit et al. 2007
a,b; Pethuan et al. 2007). This problem has hampered the
control of vectors using insecticides.

There are two broad classes of resistance mechanism
that play role in mosquito resistance to insecticides: target-
site insensitvity and metabolic enzyme-based resistance
(Hemingway & Ranson 2000). Target-site insensitivity,
known as knockdown resistance {kdr), is the important
mechanism for resistance to pyrethroid and DDT and is
associated with a single or multiple mutations in the
voltage-gated sodium channel gene in several insect species
{Soderlund & Knipple 2003; Davies et al. 2007). In
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A. aegypti, several mutations, c.g. G923V, LI82T,
11011M, 11011V, V10161, V1016G and D1794Y have
been identified in the voltage-gated sodium channel gene
and shown to confer pyrethroid resistance (Brengues et al.
2003; Saavedra-Rodriguez et al. 2007; Chang et al. 2009).
In addition, we have recently reported a novel mutation, a
phenylalanine to cysteine in A. aegypti at position 1552 in
11IS6 in a DDT/permethrin-resistant A. aegypti strain
(PMD-R) from Thailand (Yanola et al. 2010). We refer to
this mutation as F1534C in reference to the equivalent
resistance mutation F1534C in the housefly Vsscl se-
quence. This mutation has also been found associated with
pyrethroid resistance in Vietnam and the British West
Indies (Kawada et al. 2009; Harris et al. 2010).
Development of early detection and characterization of
mutations associated with resistance phenotypes is essen-
tial for resistance management strategies. High-throughput
molecular tools are required to screen large numbers of
individuals to monitor the emergence and presence of
mutations associated with resistance. There are now at
least seven different methods available for detecting the
mutations responsible for kdr in the malaria vector
Anopheles gambiae (Bass et al. 2007). In A. aegypti, allele
specific PCR (AS-PCR) has been used to screen for
mutations 11011V, 11011M, V10161 and V1016G (Saavedra-
Rodriguez et al. 2007) and F1534C (Harris et al. 2010), in
mosquitoes from Latin America. The hot oligonucleotide

ligation assay technique was also developed to detect
the 11011V and V1016G mutations in Thai strains of
A. aegypti (Rajatileka et al. 2008).

In this study, we developed two PCR-based assays to
detect the F1534C mutation in the A. aegypti voltage-gated
sodium channel gene, one a high-throughput allelic dis-
crimination assay and the other a simple low-cost assay.
We also used these tools to estimate the frequency of the
F1534C mutation in A. aegypti populations in Thailand.

Materials and methods

Amplification and DNA sequencing of a fragment of the
Aedes aegypti sodium channel gene

Genomic DNA was extracted using DNAzol Reagent
(Invitrogen, Carlsbad, CA, USA). PCR primers were
designed using the web-based Primer 3 program (Rozen &
Skaletsky 2000) to encompass the region with the V1016G
and F1534C mutations (Table 1).

PCR wascarried outina S0 ulreaction volume containing
1.0 unit of Platinum Taq DNA polymerase (Invitrogen),
0.1 mm dNTPs, 1.5 mm MgCl; and 0.5 pm each of the
forward and reverse primers. The amplification consists of
aninitial heat activation stepat 95 °C for2 min, followed by
35 cyclesof 95 °Cfor30 5,63 °Cfor 30 sand 72 °Cfor 30 s
with a final extension step at 72 °C for 2 min.

Table | Sequences of oligonucleotides used to amplify fragments of the volrage-gated sodium channel gene, for the TagMan SNP
genotyping assay and for the AS-PCR assay. The long 26-bp GC tail has the sequence 5-GCGGGCAGGGCGGCGGGGGCGGGGCC-¥

and the short 6-bp GC tail has the sequence 5-GCGGGC-3

Product Region in
Primer name Primer sequence (5°-37) size (bp) sodium channcl Exont
Direct sequencing
1IP_F GGTGGAACTTCACCGACTTIC 581 [IP-11S6 16-17
1IS6_R GGACGCAATCTGGCTTGTTA
Ge-IIIS6_F GCTGTCGCACGAGATCATT 635 111S4-11S6 24-26
MMS6_R GTTGAACCCGATGAACAACA
TaqMan SNP genotyping
Primers:
F1534C SNP-F CGAGACCAACATCTACATGTACCT 88 11sé6 25
F1534C SNP-R GATGATGACACCGATGAACAGATTC
Probes:
F1534-pV {(VIC)-AACGACCCGAAGATGA-(MGBNFQ)
C1534-PF (FAM)-ACGACCCGCAGATGA-(MGBNFQ)
AS-PCR
F1534-f [short GC tail [TCTACTTTGTGTTCTTCATCATATT 93 1iseé 25
C1534-f {long GC @il TCTACTTTGTGTTCTTCATCATGTG 113 11se 25
CP-r TCTGCTCGTTGAAGTTGTCGAT

AS-PCR, allele specific PCR.

+Exon from the A. aegypti voltage-gated sodium channel gene. This transcript corresponds to VectorBase Transcript ID AAEL006019 and

appears in supercontl.186, nucleorides 18 685-163 943.
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The PCR fragments were purified using ExoSap-IT (USB,
Columbus, OH, USA). Nucleotide sequences were deter-
mined on both strands of purified PCR products at the
Macrogen sequencing facility (Macrogen Inc., Seoul,
Korea). Sequence data were analyzed using CLUSTAL W
(Thompson et al. 1994) and the Six Frame Translation
program (Sequence Launcher, BCM) (Smith et al. 1996).

Development of TagMan SNP genotyping (TagMan SNP)
and AS-PCR assays

Laboratory strains of A. aegypti including PMD (homo-
zygous wild type, F/F1534), PMD-R (homozygous mutant
C/C1534), their reciprocal-cross progenics (PMD-RS1 and
PMD-RS2, heterozygous F/C1534) (Yanola et al. 2010),
and the New Orleans strain is a pyrethroid susceptible
strain originally collected from New Orleans, USA
(homozygous F/F1534, Yanola et al. 2010), as well as
ficld-caught A. gegypti mosquitoes, were used to validate

the TagMan SNP and AS-PCR assays. Validation was done
by comparison of assay genotyping with DNA sequencing
as described in Yanola et al. (2010).

TaqMan SNP assay

Two primers and two minor groove binding probes were
designed using the Custom TagMan SNP genotyping assay
service (Table 1). Primers F1534C SNP-F and F1534C
SNP-R were standard oligonucleotides. The probe oligo-
nucleotides each consist of a 5’ reporter dye, a 3’ non-
fluorescence quencher and a minor groove binder at the 3°
end. The probe F1534-PV was labelled with VIC dye
fluorescence at the §” end for the detection of the wild-type
allele whereas the probe C1534-PF was labelled with
6-FAM dye fluorescence at the 5’ end for the detection of
the mutant allele (Figure 1a).

The TagMan reaction contained 12.5 ul of 2X TagMan
Universal PCR Master Mix, 1.44 um of each primer,

@ F1534-PV (Wild type probe)
F1534C SNP-F G T e NFQ
5 . TTC .
P
F1534C SNP-R
t 88 bp L
C1534-PF (Mutant probe)
F1534C SNP-F FAMumrs G ssmsne NFQ
5’ TGC ) 3
P
F1534C SNP-R
t 88 bp :
(b)
Short GC tail F1534-f A
\ At
5 CTT ¥
CP-r
oot
£ 93 bp (Wild type allele) mmm—d

Figure | Schematic of the {a) TagMan
SNP Genotyping and (b) the allele specific

PCR assays for detection of the F1534C
mutation. The primers and probes were
designed based on the sequence of voltage-
gated sodium channel from the PMD and

Long GC tail G
~, C1534-f A

PMD-R strains of A. aegypti (Genbank
accession numbers: EU259810 and
EU259811 respectively).

© 2011 Bladwell Publishing Ltd

5% CTG 3
Chr
R ol
 ——— 113 bp (Mutant allele) —
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0.4 pm of each probe and 2 ul of genomic DNA (50 ng)
made up to 25 sl with sterile water. The assay was
performed using an ABI 7500 instrument (Applied Bio-
systems, Foster City, CA, USA), under the following
thermocycling conditions: 10 min at 95 °C, 40 cycles of
92 °C for 15 min and 60 °C for 1 min. Data were analyzed
by the 7500 System SDS Software version 1.3.1.

AS-PCR assay

The design of the AS-PCR assay increased specificity by
following the methods of Okimoto and Dodgson (1996)
and Saavedra-Rodriguez et al. (2007), by positioning the
mismatches in each allele specific primer at the third
nucleotide from the 3’ terminus. To distinguish berween
the amplification products based on size, 5’ GC tails of
different lengths were attached to each allele specific
primer (Germer & Higuchi 1999, Wang et al., 2005).
The reaction (50 ul) contained 1.0 unit of Platinum Taq
DNA polymerase (Invitrogen), 0.2 mm dNTPs, 1.5 mm
MgCly, 0.5 pm F1534-f forward primer, 0.165 pm C1534-
f forward primer and 0.5 pm CP-r common reverse primer
(Table 1). The amplification consists of a 95 °C 2 min heat
activation step, 35 cycles of 95 °C for 30 s, 60 °C for 30 s
and 72 °C for 30 s with a 2 min final extension step at
72 °C. The amplified fragments were analyzed on a 3.0%
agarose gel (Agarose 3:1; HRB, Amresco, OH, USA).

Genotyping of the F1534C mutation in wild-caught Aedes
aegypti from Thailand by AS-PCR

Wild A. aegypti mosquitoes were collected as larvae and
pupae from 20 localities around Thailand (Table $1) and
reared to adulthood in the insectary. Insecticide suscepti-
bility tests were carried out for 14 localities using one-day-
old non-blood fed females using WHO 0.75% permethrin
paper for 60 min exposure time and mortality recorded
after 24 h. Survivors and dead individuals from this test
were stored at —20 °C until tested. These mosquitoes were
genotyped individually for the F1534C mutation with our
developed AS-PCR method using the known genotyped
laboratory strains as controls. A Pearson Chi-square test
was used to compare the genotype frequency and also the
allele frequency between the dead and survivor mosquito

groups.
Results

Development of TagMan SNP assay

Scatter plots of relative end point fluorescence intensities of
each sample (Figure S1) show a clear clustering for each
sample group of homozygous (C/C1534) mutant, homo-
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zygous (F/F1534) wild type and the heterozygotes
(F/C1534). The limit of detection for each genotyping was
a 1:100 dilution, equivalent to 1 ng of DNA (Figure S2).

Development of AS-PCR

The wild-type homozygous samples (F/F1534) gave a
single 93 bp band, the homozygous mutant samples
{(C/C1534) gave a single 113 bp band and the heterozy-
gous (F/C1534) samples gave both of those bands
(Figure S3). The sensitivity of this method was evaluated
by testing with a set of DNA dilutions of each genotype.
The calculated limit of detection was at a 1: 100 dilution,
equivalent to 1 ng of genomic DNA.

Comparison of DNA sequencing with the TagMan SNP
and AS-PCR assays

In testing 150 known genotyped laboratory A. aegypti
female mosquitoes, the three methods were fully consistent
(Table 2). For the wild-caught mosquitoes, of 85 samples
tested, the TaqMan method was as good as DNA
sequencing. The AS-PCR, however, showed a discrepancy
with the DNA sequencing for 2 out of 103 wild-caught
mosquitoes, although these two mosquitoes were scored
the same by both DNA sequencing and TagMan SNP.
Thus, the AS-PCR apparently slightly overestimated the
mutant C1534 allele, by approximately 1.8%.

Distribution of the F1534C mutation in Aedes aegypti
populations from Thailand

In the insecticide bioassay test of 2,154 A. aegypti females
from 14 localities in four regions of Thailand, only

41 (1.9%) insects died (susceptible) with mortality rates
ranging from 0 to 13.3%. Table 3 shows the genotyping
results determined from the 41 dead mosquitoes and 463
individuals randomly selected from the 2,113 survivors
{resistant). The genotype frequencies of the dead and
survivors were significantly different (;* = 80.8, df = 2,
P < 0.0001). The overall mutant allele frequency was
significantly higher in the survivor group (0.84) than the
dead group (0.56) (% = 52.1, df = 1, P < 0.0001).

Some of the survivor group possessed a homozygous
wild-type F/F1534 genotype (r = 19). We predicted that
this may be due to a different mutation undetectable by our
primers. Hence, we sequenced the samples and found that
all were homozygous for mutations V1016G and S989P in
domain II. The V1016G and $989P mutations have been
reported to confer pyrethoid resistance in A. aegypti
(Bregues et al. 2003; Srisawat et al. 2010). To determine if
both mutations co-existed with F1534C, we sequenced the

© 2011 Blackwell Publishing Ltd
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Table 2 Comparison of genotype results for the F1534C mutation obtained from the TagMan SNP and AS-PCR assays with DNA
sequencing

TaqMan SNP genotyping/DNA sequencing AS-PCR/DNA sequencing
{(no. of samples) {no. of samples)
Strains F/F1534 F/C1534 C/C1534 Total F/F1534 F/C1534 C/C1534 Total
Laboratory strains
PMD 30/30 0/0 0/0 30/30 30/30 0/0 0/0 30/30
PMD-R 0/0 070 30730 30730 0/0 00 30730 30730
PMD-RS1 0/0 30/30 0/0 30/30 0/0 30/30 0/0 30730
PMD-RS2 0/0 30730 0/0 30/30 0/0 30/30 0/0 30730
New Orleans 30730 0/0 0/0 30/30 30/30 0/0 0/0 30/30
Total 60/60 60/60 30730 1507150 60/60 60/60 30730 1507150
Wild-caught strains
Chiang Mai city 6/6 12/12 14/14 32/32 13/13 12/12 14/14 39/39
Mae Taeng District 0/0 9/9 18718 27/27 6/6 9/9 18718 33/33
Lampang city 22 7/7 10710 19/19 §t/6 7/7 11/10 23/23
Mae Sariang District 777 0/0 070 7/7 8/8 0/0 0/0 8/8
Total 15/15 28/28 42/42 85/85 32/33 28/28 43/42 103/103

AS-PCR, allele specific PCR.
tOne sample was heterozygous F/C13534 by AS-PCR, but homozygous F/F1534 by DNA sequencing.
1One sample was homozygous C/C1534 by AS-PCR, but heterozygous F/C1534 by DNA sequencing.

Table 3 Frequency of the F1534C mutation in the A. aegypti voltage-gated sodium channel gene within dead and survivor mosquitoes
from 14 localities of Thailand determined using the AS-PCR method

Dead Survivors
No. mosquitoes No. mosquiroes
No dead/total —————  Freq. ——————————  Freq.
Region Province Locality (% mortality) F/F F/C C/C Callele F/F F/C C/C Callele
Northern Chiang Mai Chiang Mai City 5/751 (0.7) 5 0 0 0.00 8t 20 33 0.70
Mae Taeng District 107116 (8.6) 6 4 0 0.20 0 7 48 093
Lampang Lampang city 0/250 {0.0) 0 0 0 0.00 St 26 18 0.63
Donchai, Thoen District 0/150 (0.0) 0 0 0 0.00 0 10 22 0.84
Mae Hong Son  Mace Sariang District 5/67 (7.5) 4 1 0 0.10 6t 8 13 0.63
Chiang Rai Chiang Sane District 3728 (10.7) O 0 3 1.00 0 2 21 0.96
Uttraradit Uttraradit city 2/15(13.3) 0 0 2 1.00 0 0 13 100
Central Phitsanulok Phitsanulok City 0/70 (0.0) 0 0 0 0.00 0 11 21 0.83
Phetchabun Phetchabun City 0/30 (0.0} 0 0 0 0.00 0 0 29 1.00
Nakhonsawan  Nakhonsawon city 3/134 (2.2) 0 0 3 1.00 0 10 19 083
Eastern Trat Koh Chang Subdistrict 2/40 (5.0) 0 0 2 1.00 0 9 21 0.85
Western  Tak Tak city 8/241 (3.3) 0 0 8 1.00 0 0 24 1.00
Mae Kasa, Mae Sot District 2/138 (1.4) 0 1 1 075 0 s 25 092
Mae Sot, Mae Sot District 1/124 (0.8) 0 0 1 1.00 0 1 30 0.98
Total 4172154 (1.9) 15 6 20 0.56 19 109 337 084

AS-PCR, allele specific PCR.
+The V1016G and $989P mutations in domain 1 of the A. aegypti voltage-gated sodium channel gene were detected.

I[P-IIS6 region in 33 survivors homozygous for C/C1534 from Chiang Mai city (6) and Mae Sariang District (3) and

from Chiang Mai city {11), Lampang city (10) and Mae found one of the latter was heterozygous for V/G1016 and
Sariang District (12). None of them possessed cither the S/P989.
V1016G or the S989P mutation. We also sequenced the Figure 2 summarizes the estimated genotype frequencies

IIP-TIS6 region in nine heterozygous F/C1534 individuals and distribution of F1534C among 2,267 mosquitoes of

© 2011 Blackwell Publishing Ltd 505
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A. aegypti populations from 20 localities of Thailand. The
data were derived partly from the 14 populations

(n = 2,154) in Table 3 together with six other populations
that were genotyped but not tested by the permethrin
paper. As not all individuals in the survivor group from
Table 3 were genotyped, we prevented any bias in the
estimation of the population genotype frequencies (Fig-
ure 2) by estimating the absolute number of genotypes in
the survivor group by multiplying the determined genotype
frequencies with the total number of survivors. In a total of
2,267 mosquitoes, the homozygous wild-type F/F1534
genotype was rarely observed, with estimated frequencies
ranging from 0 to 0.31. The F1534C mutation was widely
distributed with the heterozygous F/C1534 genotype
ranging from 0 to 0.53 and the homozygous mutant
C/C1534 genotype ranging from 0.20 to 1.00. The
estimated overall genotype frequencies of F/F1534,
F/C1534 and C/C1534 were 9.71%, 26.36%, and
63.93%, respectively and the estimated mutant allele
frequency was 0.77. Although the frequency of this
resistance mutation is, overall, high in Thailand, it appears
to be lower in the Provinces of Phetchaburi (sites Non-
gyapong and Phetchaburi city), Mae Hong Son (Mae
Sariang) and Chaing Mai (Mae Taeng and Chiang Mai
city), indicating some geographical variation in its
distribution.

Discussion

We developed two methods, TagMan SNP and AS-PCR
assays, to detect the F1534C mutation. The TagMan SNP
method is as good as DNA sequencing, whereas the AS-
PCR method showed only a very small error. A similar
result was obtained in another study for the detection of
the L1014F and L1014S mutations in An. gambiae s.s., in
which the TagMan SNP was the most specific method
while the corresponding AS-PCR assay had a relatively low
error rate (3.1%) (Bass et al. 2007). Although some reports
questioned the reliability of the AS-PCR assay (Pinto et al.
2006; Verhaeghen et al. 2006), it is the most widely use
method to detect the kdr mutation in malaria endemic
countries because of its relatively low cost (Bass et al.
2007). Recently, Harris et al. (2010) developed their
tetraplex PCR assay to detect the F1534C mutation in
A. aegypti populations in Grand Cayman. Due to the
greater expense of operating costs and initial outlay for
special equipment for the TaqgMan SNP assay, the AS-PCR
may be the preferred method in disease endemic countries.
It should be noted that in some provinces small
numbers of samples were tested and thus the observed
frequency may not be a good estimation of genotype
frequency in the area. Nonetheless, this study has
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provided evidence that the mutant C1534 allele is wildly
distributed and significantly associated with the permeth-
rin-resistant phenotype in A. aegypti populations in
Thailand. The C1534 allele frequency in this study (0.77)
was higher than Vietnam (0.21) (Kawada et al. 2009) and
Grand Cayman (0.68) (Harris et al. 2010). We also
detected the F1534C mutation by AS-PCR in A. aegypti in
the neighbouring countries of Myanmar (Yangon city) and
Cambodia (Battambang town) (7/8 alleles and 20/20
genotyped alleles, respectively; Yanola et al. unpublished
data), indicating that this resistance mutation is wide-
spread in Southeast Asia.

Since the 1534C allele is recessive (Harris et al. 2010;
Yanola et al. 2010), only homozygous mutants were
expected to be alive after a 1 h exposure to the discrim-
inating dose (0.25% permethrin) for adult A. aegypti
set by the World Health Organization (1998). However,
not all homozygous mutant mosquitoes survived here
(Table 3), probably due to the higher concentration of
permethrin (0.75%) used in this study. In addition, 23.4%
of the survivor mosquitoes were heterozygous F/C1534,
probably due to additional enzyme-based resistance.
Previous studies (Yaicharoen et al. 2005; Pethuan et al.
2007) and our ongoing study (Somwang et al. in press)
revealed that cytochrome P450 monooxygenases and
other oxidative enzymes are involved in pyrethroid resis-
tance in A. aegypti populations in Thailand. Studies in
An. gambiae s.s. also suggested that the sodium channel
mutations (L1014F and L1014S) may co-operate with
other unidentified mechanisms including the detoxification
enzyme system (Brooke 2008; Nwane et al. 2009). As
discussed by Brooke (2008), resistance could be multigenic
and kdr mutations might not fully explain all the

variance in the resistance phenotype. However, the

strong correlation between the kdr mutation and the
pyrethroid and/or DDT resistance phenotype in An.
gambiae s.s. (Martinez-Torres et al. 1998; Chandre et al.
2000; Ranson et al. 2000) and A. aegypti (Harris et al.
2010) has been demonstrated previously, as well as in
this study.

A small proportion of homozygous wild type F/F1534
(4.09%) individuals were able to survive the permethrin
exposure (Table 3) due to the V1016G and $989P muta-
tions in domain II. The V1016G mutation was originally
discovered in a permethrin-resistant strain of A. aegypti
from Thailand and Indonesia (Brengues et al. 2003) and is
widely distributed in Thailand with an allele frequency of
0.23 (Rajatileka et al. 2008). The V1016G mutation was
also found in A. aegypti collected from Vietnam (Kawada
et al. 2009), Taiwan (Chang et al. 2009) and Bhutan
(Yanola et al., unpublished data). The role of the S989P
mutation in resistance needs further study.
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In conclusion, we have successfully developed the
TagMan SNP and AS-PCR assays for monitoring the
F1534C mutation in A. aegypti populations. Depending on
the available facilities, these assays are useful tools for the
rapid detection of the F1534C resistance mutation which is
essential for the development of resistance management
strategies. The AS-PCR method was extremely useful to
reveal the high frequency of the F1534C mutation
throughout Thailand as well as indicating this may be a
problem for resistance in the neighbouring countries of
Myanmar and Cambodia. The development of a multiplex-
PCR method to'detect both the F1534C and V1016G
mutations is now required to improve the surveillance of
resistance alleles in wild populations.
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