ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ



HOLEGULAR INVESTIGATIONS OF PHYTOCHEMICALS HAVING

REFECTS ON HURAN GEONDROGYTE METABOLISM

TEANYALIGE PHITAE

TERDENKER ED FOTBOE

IN BIOGRAMSIZT

tin graduate schood Genade Mai University

AUGUST 2010

ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ



# MOLECULAR INVESTIGATIONS OF PHYTOCHEMICALS HAVING EFFECTS ON HUMAN CHONDROCYTE METABOLISM

## THANYALUCK PHITAK



# A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN

# PARTIAL FULFILLMENT OF THE REQUIRMENTS

## FOR THE DEGREE OF

#### **DOCTOR OF PHILOSOPHY**

### **IN BIOCHEMISTRY**

THE GRADUATE SCHOOL

CHIANG MAI UNIVERSITY

AUGUST 2010

#### MOLECULAR INVESTIGATIONS OF PHYTOCHEMICALS HAVING EFFECTS ON HUMAN CHONDROCYTE METABOLISM

#### THANYALUCK PHITAK

# THIS THESIS HAS BEEN APPROVED TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOCHEMISTRY

#### **EXAMINING COMMITTEE**

Krytalet, CHAIRPERSON Kongtanht, PADVISOR

Assoc. Prof. Dr. Prachya Kongtawelert Sift. MEMBER

Assoc. Prof. Dr. Siriwan Ong-chai

Ampai Parthous MEMBER

Assoc. Prof. Dr. Ampai Panthong

Waraporn KasekamMEMBER

Dr. Waraporn Kasekarn

....Pothacharoca, P......MEMBER

Dr. Peraphan Pothacharoen

16 August 2010

©Copyright by Chiang Mai University

# THESIS ADVISORY COMITTEE

Assoc. Prof. Dr. Prachya Kongtawelert 

Assoc. Prof. Dr. Siriwan Ong-chai Ann Co-ADVISOR

Prof. Dr. Bruce Caterson

#### ACKNOWLEDGEMENTS

I wish to express my sincere gratitude and deep appreciation to my advisor, Assoc. Prof. Dr. Prachya Kongtawelert, for his patient guidance, precious advice, and persistent encouragement during the preparation and investigation of this thesis.

I also would like to express my gracious thank to my co-advisor, Prof. Dr. Bruce Caterson, Cardiff School of Biosciences, Cardiff University, Wales, UK for his valuable and kind advice, and for providing laboratory facilities during my stay in his laboratory and I would like to thank all staffs at the Caterson's laboratory for their kindness and friendship.

I would like to thanks Assist. Prof. Dr. Siriwan Ong-chai for her kindly help with best suggestions. I would like to give special thanks to Dr. Peraphan Pothacharoen, for her excellent training and advice in almost experiment in my thesis. I would like to extent my gracious thanks to Dr. Jongkolnee Settakorn, Department of Pathology, Faculty of Medicine, Chiang Mai University, for giving me the favor to analyze the results of histoimmunochemistry in animal model.

I also would like to thank my dear laboratory partners; Mr. Theerawut Chanmee and Mr. Kanchanok Kodchakorn for their favor in the setting up the animal model for my thesis.

I would like to acknowledge the Royal Golden Jubilee (RGJ) scholarship and PERCH-CIC for the financial support that made this work possible. Many thanks for my friends and colleagues in the Department of Biochemistry, Faculty of Medicine, Chiang Mai University for their kindness and friendship.

Finally, I would like to express my deepest appreciation to my family, my boy friend, Mr. Weerayuth Klaysutthi and finally my dear dog, Fender, for their love and encouragement during this study.

#### Thanyaluck Phitak

Thesis Title Molecular Investigations of Phytochemicals Having Effects on Human Chondrocyte Metabolism

Author Miss Thanyaluck Phitak

**Degree** Doctor of Philosophy (Biochemistry)

**Thesis Advisory Committee** 

Assoc. Prof. Dr. Prachya KongtawelertAdvisorAssoc. Prof. Dr. Siriwan Ong-chaiCo-advisorProf. Dr. Bruce CatersonCo-advisor

#### ABSTRACT

Determining (OA) is the most common form of arthritis and affects millions of people worldwide. Patients have traditionally been treated with non-steroidal antiinflammatory drugs (NSAIDs), but these are associated with significant side effects. The phytochemicals from plants are the choice for developing drug for OA treatment. The two type of Thai plants were selected, *Alpinia galanga* rhizomes and seeds of *Sesamum indicum*. The chondroprotective effect was studied in short-term porcine cartilage explant induced inflammation using interleukin-1beta (IL-1 $\beta$ ). The acetone extract of *A. galanga* had the highest chondroprotective effect above other non-polar extracts. An active compound, para-hydroxycinnamaldehyde, was isolated from this fraction. For *S. indicum*, the well-known active phytochemical, sesamin, was focused for this study. It showed the chondroprotective effect in porcine cartilage explant model. When compare the chondroprotective effect of these two phytochemicals, the effective doses of *p*-hydroxycinnamaldehyde was higher than sesamin about 160 times. Thus, sesamin was chosen to further investigate.

In long-term porcine cartilage explant, sesamin had ability to revert  $IL-1\beta$ effects on the degradations of extracellular matrix (ECM) molecules. IL-1\beta-induced the releases of sulfated-glycosaminoglycan (s-GAG) and hydroxyproline from the explants were significantly inhibited by sesamin. The molecular mechanism of this ability of sesamin was studied, it was found that sesamin could decrease the expressions of MMP-1, -3 and -13, which play a role on both PGs and type II collagen degradation, both on mRNA and protein levels. Interestingly, the activation of MMP-3 might be inhibited by sesamin. Moreover, in human articular chondrocytes (HACs), IL-1ß signal transductions were inhibited by sesamin: p38 and JNK phosphorylations in MAPK pathway and NFkB activation. The effect of sesamin was further studied in papain-induced OA rats. Sesamin treament reversed pathological changes in OA cartilage, which were reduction of the disorganization of chondrocytes in cartilage, increase of the cartilage thickness, decreasing of type II collagen and s-GAG losses. Sesamin alone might increase type II collagen and s-GAG in cartilage tissue of normal rats. The results demonstrate that sesamin efficiently suppressed pathological processes in an OA model.

In addition, the additive effect of sesamin with drug used for OA treatment, glucosamine-sulfate (GlcN-S) was also studied in short-term porcine cartilage explant model. Sesamin showed the additive effect with GlcN-S to protect proteoglycans degradation in IL-1 $\beta$ -induced-porcine cartilage explant.

Taken all results, sesamin could be a potential therapeutic agent for the treatment of OA or at least as the complementary medicine.

การตรวจสอบสารพฤกษเคมีระดับโมเลกุลที่มีผลต่อเมแทบอลิซึมของ ชื่อเรื่องวิทยานิพนธ์ เซลล์คอนโครไซต์มนษย์ นางสาว ธัญญลักษ์ พิทักษ์ วิทยาศาสตรคษฎีบัณฑิต (ชีวเคมี)

ดณะกรรมการที่ปรึกษาวิทยานิพนธ์

รศ. คร. ปรัชญา คงทวีเลิศ รศ ดร ศิริวรรณ กงค์ใชย Prof. Dr. Bruce Caterson

อาจารย์ที่ปรึกษาหลัก ดาจารย์ที่ปรึกษาร่วม อาจารย์ที่ปรึกษาร่วม

## บทคัดย่อ

# E47369

โรคข้อกระดูกอักเสบเป็น ภาวะที่พบบ่อยที่สุดในภาวะข้อต่ออักเสบและ ส่งผลกระทบต่อ ประชากรกว่าถ้านคนทั่วโลก การรักษาผู้ป่วยแบบคั้งเคิมมักใช้ยาในกลุ่มยาค้านการอักเสบที่ไม่ใช่ สเตอร์รอยค์ แต่ยาในกลุ่มนี้มีผลข้างเคียงก่อนข้างรุนแรง สารเกมีจากพืชเป็นอีกหนึ่งทางเลือก เพื่อพัฒนาไปสู่ยารักษาโรคข้อกระดูกอักเสบ ในการศึกษานี้พืชของไทยสองชนิคไค้ถูกคัคเลือกมา เพื่อศึกษา ได้แก่ เหง้าข่า (Alpinia galanga rhizomes) และ เมล็ดงา (Sesamun indicum seeds) ฤทธิ์การป้องกันกระดูกอ่อนของสารสกัดจากพืชทั้งสองชนิดถูกศึกษาโดย การเพาะเลี้ยงผิวกระดูก อ่อนหมูโคยกระคุ้นให้เกิดการอักเสบด้วยสารอินเตอร์ลิวกิน-1-เบด้า พบว่าสารสกัดจากเหง้าข่า ในชั้นอะซีโตนมีฤทธิ์ยับยั้งการสลายของกระดูกอ่อนมากกว่าสารสกัคในชั้นตัวทำละลายอื่นๆ และ พบว่าสารพาราไฮครอกซีซินนามอลคีไฮค์คือสารที่ออกฤทธิ์ในสารสกัคนี้ สำหรับเมล็ดงาสารที่

ปริญญา

ผู้เขียน

ยี่นที่รู้จักและพบมากในงา คือ เซซามิน ใด้ถูกนำมาศึกษาในครั้งนี้และพบว่าสารคังกลาวมีฤทธิ์ ในการป้องกันการสลายของกระดูกอ่อนที่กระตุ้นด้วยอินเตอร์ลิวคิน-1-เบต้าเช่นกัน เมื่อเปรียบ เทียบฤทธิ์ในการป้องกันการสลายของกระดูกอ่อนของสารทั้งคู่นี้ พบว่าปริมาณของสารพารา-ไฮดรอกซีซินนามอลดีไฮด์ที่ใช้ เพื่อทำให้ออกฤทธิ์นั้นมากกว่าปริมาณของสารเซซามินถึง 160 เท่า ดังนั้นในการศึกษาต่อไป จะเลือกเฉพาะ สารเซซามินมาทำการศึกษาเท่านั้น

ในการศึกษาที่ลึกลงไปทำในกระดูกอ่อนผิวข้อของหมู โคยใช้ระยะเวลาในการเพาะเลี้ยง ที่นานขึ้นเป็นเวลา พบว่าสารเซซามินสามารถยับยั้งฤทธิ์ของอินเตอร์ลิวคิน-1-28 วัน เบต้า ต่อการสลายของโมเลกุลภายนอกเซลล์ไค้ โดยพบว่าการสลายของซัลเฟตไกลโคซามิโน-ใกลแคนและไฮครอกซีโพรลีนถูกยับยั้งไค้โคยสารเซซามิน ไค้ศึกษากลไกการยับยั้งของสารเซซามิน . ต่อ และพบว่าสารเซซามินสามารถลดการแสดงออกของเอ็นไซม์เมทริกซ์เมทาลโลโปร่ทีเนส-1, -3 ซึ่งเป็นเอนไซม์ที่สามารถสลายโปรตีโอไกลแคนและคอลลาเจนได้ทั้งในระดับยืน -13 และโปรตีน นอกจากนั้นยังพบว่าสารเซซามินยังสามารถยับยั้งการกระตุ้นกัมมันตภาพของเอนไซม เมทริกซ์เมทาลโลโปรทีเนส-3 ใค้อีกควย ในเซลล์กระดูกอ่อนมนุษย์พบว่าสัญญาณภายในเซลล์ ที่ถูกกระตุ้นโดยอินเตอร์ลิวคิน-1-เบต<sup>้</sup>า ถูกยับยั้งได้โดยสารเซซามิน โดยสามารถยับยั้งทั้งการเติม หมูฟอสเฟตให้กับโปรตีน p38 และ JNK ในวิถี MAPK ใค้ และนอกจากนี้ยังสามารถ ยับยั้งการกระตุ้นทรานสคริปชั่นเฟคเตอร์ชนิด NFkB ใค้อีกควย ถทธิ์ของสารเซซามิน ถูกศึกษาต่อในหนูที่ถูกกระตุ้นให้เป็นโรคขอกระดูกอักเสบควัยปาเปน พบว่าการให้สารเซซามิน ร่วมกับฉีดปาเปนแก่หนูดังกล่าว สามารถยับยั้งพยาธิสภาพการเกิดโรคได้ โดยสามารถลดการ เรียงตัวของเซลล์กระดูกอ่อนที่ผิดปกติเนื่องจากการอักเสบไค้ สามารถเพิ่มความหนาของกระดูก อ่อนได้และสามารถลดการสลายของสารชีวโมเลกุลในกระดูกอ่อนที่สำคัญ คือ คอลลาเจน ซัลเฟตไกลโคซามิโนไกลแคนได้ นอกจากนั้นสารเซซามินยังสามารถเพิ่ม ชนิดที่สอง ແລະ คอลลาเจนชนิคที่สองและซัลเฟตไกลโคซามิโนไกลแคน ในเนื้อเยื่อกระดูกอ่อนของข้อหนูปกติ

ใค้อีกควย จากผลการศึกษาดังกล่าว ทั้งหมคสามารถบอกใค้ว่าสารเซซามินมีประสิทธิภาพในการ ลดการพัฒนาการเกิดพยาธิสภาพของ โรคข้อกระดูกอักเสบในหนูใด้

นอกจากนี้ ได้ทำการศึกษาความสามารถในการเสริมฤทธิ์ของยาที่ใช้รักษาโรคข้อเสื่อม ได้แก่ กลูโคซามีนซัลเฟต ของสารเซซามินในเนื้อเยื่อกระดูกอ่อนหมู พบว่าสารเซซามินสามารถ เสริมฤทธิ์ของกลูโคซามีนซัลเฟต ในการป้องกันการสลายของโปรตีโอไกลแคนโอในเนื้อเยื่อกระดูก อ่อนหมูที่ถูกกระตุ้นด้วยอินเตอร์ลิวกิน-1-เบต้า

ดังนั้นสารเซซามินน่าจะสามารถพัฒนาเพื่อใช*้*เป็นยารักษาโรคข<sup>้</sup>อกระดูกอักเสบ หรืออย่าง น<sup>้</sup>อยเป็นตัวเสริมประสิทธิภาพของยารักษาโรคนี้ได*้* 

## **TABLE OF CONTENT**

|     |            |                                           | Page |
|-----|------------|-------------------------------------------|------|
| AC  | KNOWL      | EDGEMENT                                  | iii  |
| EN  | GLISH A    | BSTRACT                                   | v    |
| ГН  | AI ABST    | RACT                                      | viii |
| LIS | ST OF TA   | BLES                                      | xix  |
| LIS | ST OF FIG  | GURES                                     | XX   |
| AB  | BREVIA     | ΓΙΟΝS                                     | xxvi |
| CH  | APER I:    | INTRODUCTION                              |      |
| 1.1 | Statemen   | t and significance of the problem         | 1    |
| 1.2 | Literature | e reviews                                 | 5    |
|     | 1.2.1      | Articular cartilage                       | 5    |
|     | 1.2.2      | Composition of articular cartilage matrix | 12   |
|     |            | 1.2.2.1 Collagens                         | 12   |
|     |            | 1.2.2.1.1 Cartilage collagen              | 14   |
|     |            | - Type II collagen                        | 14   |
|     |            | - Type XI collagen                        | 16   |
|     |            | - Type IX collagen                        | 17   |
|     |            | - Other collagens                         | 18   |
|     |            | 1.2.2.1.2 Collagen biosynthesis           | 19   |
|     |            | - Step of collagen biosynthesis           | 19   |
|     |            | 1.2.2.2 Proteoglycan                      | 23   |

|       | 1.2.2.2.1 Structure of proteoglycan                           | 23 |
|-------|---------------------------------------------------------------|----|
|       | 1.2.2.2.2 Cartilage proteoglycan                              | 29 |
|       | - Aggrecan                                                    | 29 |
|       | - Other hyaluronan-binding                                    | 31 |
|       | proteoglycans                                                 |    |
|       | - Small leucine-rich proteoglycans                            | 31 |
|       | (SLRs)                                                        |    |
|       | 1.2.2.2.1 Proteoglycan biosynthesis                           | 33 |
| 1.2.3 | Cartilage extracellular matrix                                | 43 |
|       | 1.2.3.1 Aggrecan                                              | 45 |
|       | 1.2.3.2 The collagen network                                  | 45 |
|       | 1.2.3.3 Collagen associated molecules                         | 46 |
|       | 1.2.3.4 Other cartilage extracellular matrix constituents     | 46 |
|       | 1.2.3.5 Other proteins in cartilage                           | 48 |
| 1.2.4 | Cartilage matrix metabolism                                   | 48 |
| 1.2.5 | Osteoarthritis                                                | 51 |
|       | 1.2.5.1 Pathobiology of osteoarthritis                        | 51 |
|       | 1.2.5.2 Degeneration of articular cartilage in osteoarthritis | 54 |
|       | 1.2.5.2.1 Cartilage degradation                               | 54 |
|       | - Aggrecanase                                                 | 54 |
|       | - Matrix metalloproteinases (MMPs)                            | 61 |
|       | 1.2.5.2.2 Cartilage synthesis                                 | 69 |
|       | 1.2.5.2.3 Inflammation                                        | 69 |

|     |            | 1.2.5.3 Symptoms and signs                              | 75 |
|-----|------------|---------------------------------------------------------|----|
|     |            | 1.2.5.4 Treatment of osteoarthritis                     | 76 |
|     |            | 1.2.5.4.1 Pharmacologic treatment                       | 76 |
|     |            | 1.2.5.4.2 Non-pharmacologic treatment                   | 78 |
|     |            | 1.2.5.4.3 Alternative treatments                        | 78 |
|     |            | 1.2.5.4.4 Surgical treatment                            | 79 |
|     | 1.2.6      | Sesamum indicum and Alpinia galanga                     | 79 |
|     |            | 1.2.6.1 Sesamum indicum and sesamin                     | 79 |
|     |            | 1.2.6.2 Alpinia galanga                                 | 80 |
| 1.3 | Objective  | es                                                      | 82 |
|     |            |                                                         |    |
| CH  | APTER I    | I: MATERIALS AND METHODS                                |    |
| 2.1 | Chemical   | s                                                       | 83 |
| 2.2 | Preparatio | ons of extracts                                         | 83 |
|     | 2.2.1      | Preparation of Alpinia galanga extracts                 | 83 |
|     | 2.2.2      | Isolation of active compound of acetone fraction of     | 86 |
|     |            | A. galanga                                              |    |
|     | 2.2.3      | Preparation of sesamin from Sesamum indicum Linn.       | 88 |
| 2.3 | Tissue/ce  | Il cultures and treatments                              | 89 |
|     | 2.3.1      | Porcine cartilage explant preparation and treatment     | 89 |
|     | 2.3.2      | Human articular chondrocyte (HAC) culture and treatment | 89 |

| 21             | In mine          |                                                           |    |
|----------------|------------------|-----------------------------------------------------------|----|
| 2.4            | <i>in vivo</i> e | experiment                                                | 90 |
| 2.5            | Analytic         | al methods                                                | 91 |
|                | 2.5.1            | Cytotoxicity detections                                   | 91 |
|                | 2.5.2            | Measurement of s-GAG levels                               | 92 |
|                | 2.5.3            | Measurement of HA levels                                  | 92 |
|                | 2.5.4            | Gelatin zymography                                        | 93 |
|                | 2.5.5            | Quantitation of uronic acid remaining in cartilage tissue | 93 |
|                | 2.5.6            | Measurement of hydroxyproline release and remaining       | 94 |
|                | 2.5.7            | Gene expression analysis                                  | 94 |
| 50<br>10<br>10 | 2.5.8            | Measurement of protein level                              | 97 |
|                | 2.5.9            | Protein extraction and western blot analysis              | 97 |
|                | 2.5.10           | Western blots for aggrecanase activities                  | 98 |
|                | 2.5.11           | Immunohistochemistry analysis                             | 99 |

# **CHAPTER III: RESULTS**

| 3.1 | Investiga  | tion of chondroprotective effect of Alpinia galanga       | 100 |
|-----|------------|-----------------------------------------------------------|-----|
|     | extracts a | and screening for active phytochemical                    |     |
|     | 3.1.1      | Chondroprotective effect of hexane, acetone,              | 100 |
|     |            | ethylacetate, and methanol extracts of Alpinia galanga in |     |
|     |            | porcine cartilage explant induced inflammation            |     |
|     |            | using IL-1β                                               |     |
|     | 3.1.2      | The isolation of active compound in acetone extract of    | 105 |
|     |            | A. galanga                                                |     |

|     | 3.1.3            | The effect of <i>p</i> -hydroxycinnamaldehyde on porcine          | 108 |
|-----|------------------|-------------------------------------------------------------------|-----|
|     |                  | cartilage explant                                                 |     |
| 3.2 | 2 Investig       | gation of chondroprotective effect of sesamin isolated            | 110 |
|     | from Se          | samum indicum Linn.                                               |     |
|     | 3.2.1            | Chondroprotective effect of sesamin in porcine cartilage          | 110 |
|     |                  | explant induced inflammation using IL-1β                          |     |
| 3.3 | Investig         | ation of molecular mechanisms of chondroprotective effect         | 114 |
|     | of <i>p</i> -hyd | lroxycinnamaldehyde and sesamin in human articular                |     |
|     | chondro          | cytes (HACs)                                                      |     |
|     | 3.3.1            | Cytotoxicities of <i>p</i> -hydroxycinnamaldehyde and             | 114 |
|     |                  | sesamin in HACs                                                   |     |
|     | 3.3.2            | The effects of <i>p</i> -hydroxycinnamaldehyde and sesamin        | 116 |
|     |                  | on human articular chondrocytes                                   |     |
|     | 3.3.3            | The effects of <i>p</i> -hydroxycinnamaldehyde and sesamin on     | 119 |
|     |                  | catabolic and anabolic gene expressions in HACs                   |     |
| 3.4 | Investiga        | ation of chondroprotective effect of sesamin in long-term         | 125 |
|     | porcine c        | cartilage explant culture induced inflammation using IL-1 $\beta$ |     |
|     | 3.4.1            | The effect of sesamin on proteoglycans (PGs) degradation          | 125 |
|     | 3.4.2            | The effect of sesamin on collagen degradation                     | 128 |
| 3.5 | Investiga        | tion of molecular mechanism of chondroprotective                  | 131 |
|     | effect of        | sesamin                                                           |     |
|     | 3.5.1            | The effect of sesamin on ADAMTS activities                        | 131 |
|     | 3.5.2            | The effect of sesamin on MMP-1, MMP-3 and MMP-13                  | 133 |
|     |                  | expressions                                                       |     |

xv

| 3.6 | Investiga | tion of sesamin effect on IL-1 $\beta$ signal transduction in HACs      | 136 |
|-----|-----------|-------------------------------------------------------------------------|-----|
|     | 3.6.1     | The effect of sesamin on IL-1 $\beta$ induces MAPK signaling            | 136 |
|     |           | pathway in HAC                                                          |     |
|     | 3.6.2     | The effect of sesamin IL-1 $\beta$ induces NF- $\kappa$ B transcription | 140 |
|     |           | factor in HAC                                                           |     |
| 3.7 | Investig  | gation of sesamin effect on osteoarthritis pathological                 | 144 |
|     | progres   | sion in papain-induced osteoarthritis (OA) rat model                    |     |
|     | 3.7.1     | The effect of sesamin on the cartilage and chondrocyte                  | 144 |
|     |           | morphology in papain-induced osteoarthritis (OA)                        |     |
|     |           | rat model                                                               |     |
|     | 3.7.2     | The effect of sesamin on the degradation of extracellular               | 146 |
|     |           | matrix (ECM) molecules in papain-induced osteoarthritis                 |     |
|     |           | (OA) rat model                                                          |     |
| 3.8 | Investiga | tion of the chondroprotective effect of the combination                 | 150 |
|     | between   | sesamin and glucosamin-sulfate                                          |     |
|     | 3.8.1     | Comparison of glucose derivatives effects on cartilage                  | 150 |
|     |           | degradation                                                             |     |
|     |           | 3.8.1.1 Chondroprotective effects of Glc, GlcN-S, GlcA                  | 151 |
|     |           | and GlcN-HCl in porcine cartilage explants                              |     |
|     |           | 3.8.1.2 Cytotoxic effects of Glc, GlcN-S, GlcA and GlcN-                | 154 |
|     |           | HCl in HAC                                                              |     |
|     |           | 3.8.1.3 Effects of Glc, GlcN-S, GlcA and GlcN-HCl on                    | 156 |
|     |           | HA release and MMP-2 activity in                                        |     |
|     |           | IL-1β-treated-HAC                                                       |     |

| 3.8.1.4 Effects of Glc, GlcN-S, GlcA and GlcN-HCl                   | 158 |
|---------------------------------------------------------------------|-----|
| on catabolic (MMPs) gene expression in HAC                          |     |
| 3.8.1.5 Effects of Glc, GlcN-S, GlcA and GlcN-HCl on                | 160 |
| anabolic gene expressions in HAC                                    |     |
| 3.8.2 The additive chondroprotective effect of sesamin and          | 162 |
| GlcN-S on porcine cartilage explant                                 |     |
|                                                                     |     |
| CHAPTER IV: DISCUSSION AND CONCLUSION                               |     |
| 4.1 The chondroprotective effect of <i>Alpinia galanga</i> extracts | 172 |
| and its active phytochemical                                        |     |
| 4.2 The chondroprotective effect of sesamin                         | 172 |
| 4.3 The comparison of chondroprotective effect between              | 172 |
| <i>p</i> -hydroxycinnamaldehyde and sesamin                         |     |
| 4.4 Chondroprotective effect of sesamin, its molecular mechanism    | 173 |
| and its effect in animal model                                      |     |
| 4.5 Chondroprotective effects of glucose derivatives and the        | 175 |
| additive effect of sesamin                                          |     |
| SUMMARY                                                             | 178 |
| FURTHER STUDY                                                       | 179 |
| REFERENCES                                                          | 180 |

| APPENDICES              | 216 |
|-------------------------|-----|
| APPENDIX A              | 217 |
| APPENDIX B              | 222 |
| APPENDIX C              | 224 |
| PUBLICATIONS FOR THESIS | 229 |
| CURRICULUM VITA         | 230 |

# LIST OF TABLES

1

| Table |                                                                     | Page |
|-------|---------------------------------------------------------------------|------|
| 1.1   | Classification of matrix metalloproteinases                         | 62   |
| 2.1   | Primers used for semi-quantitative RT-PCR and quantitative          | 96   |
|       | real time PCR                                                       |      |
| 3.1   | The effect of GlcN-S and/or sesamin on the reduction of HA          | 165  |
|       | release from cartilage explant induced with IL-1 $\beta$ into media |      |
| 3.2   | The effect of GlcN-S and/or sesamin on the reduction of s-GAG       | 167  |
|       | release from cartilage explant induced with IL-1 $\beta$ into media |      |
| 3.3   | The effect of GlcN-S and/or sesamin on the reduction of uronic      | 169  |
|       | acid loss from cartilage explant induced with IL-1 $\beta$          |      |

# LIST OF FIGURES

| Figur | ure                                                                |    |  |
|-------|--------------------------------------------------------------------|----|--|
| 1.1   | Articular cartilage or hyaline cartilage covers the joint surfaces | 7  |  |
| 1.2   | Section of bovine articular cartilage stained with Hematoxylin     | 9  |  |
|       | & Eosin (H&E)                                                      |    |  |
| 1.3   | Type I procollagen as a prototype of fibril-forming collagens      | 13 |  |
| 1.4   | Structure of proteoglycan                                          | 25 |  |
| 1.5   | Repeating disaccharide units in proteoglycans                      | 26 |  |
| 1.6   | Structure of the different glycosaminoglycan chains                | 27 |  |
| 1.7   | Structure of aggrecan monomer                                      | 30 |  |
| 1.8   | Schematic overview of synthesis and secretion of aggrecan, link    | 34 |  |
|       | protein and hyaluronan by a chondrocyte                            |    |  |
| 1.9   | Synthesis pathway for the formation of UDP-sugars and PAPS         | 36 |  |
| 1.10  | The different steps in the synthesis of CS, DS, HS and heparin     | 38 |  |
|       | glycosaminoglycan chains of the GlcA-Gal-Xyl-linker region         |    |  |
| 1.11  | Heparan sulfate proteoglycans turn over                            | 42 |  |
| 1.12  | Illustration of components in the cartilage extracellular matrix   | 44 |  |
| 1.13  | The control of degradation of cartilage extracellular matrix       | 50 |  |
| 1.14  | Molecular and cellular mechanisms that perpetuate osteoarthritis   | 53 |  |
| 1.15  | Aggrecanase cleavage sites in the aggrecan core protein            | 55 |  |
| 1.16  | The structure of ADAMTS-4 and ADAMTS-5                             | 57 |  |

| 1.17 | Schematic representation of the two main aggrecanase-generated     | 60  |
|------|--------------------------------------------------------------------|-----|
|      | aggrecan cleavage fragments                                        |     |
| 1.18 | Major signaling pathways for IL-1 beta in chondrocytes and         | 73  |
|      | synovial cells                                                     |     |
| 2.1  | Diagram represents the method of A. galanga extraction and the     | 85  |
|      | dried weight of each crude extract                                 |     |
| 2.2  | Diagram represents the method of crude acetone extract isolation   | 87  |
|      | for finding out of the active compound                             |     |
| 3.1  | Characteristic of Alpinia galanga and it's rhizome                 | 101 |
| 3.2  | A. galanga extracts affect on the releases of s-GAG, HA from       | 102 |
|      | porcine cartilage tissue to the media and uronic acid remaining    |     |
|      | in the cartilage tissue                                            |     |
| 3.3  | Effects of A. galanga extracts on MMP-2 activity                   | 104 |
| 3.4  | Para-hydroxycinnamaldehyde the active compound of the              | 107 |
|      | acetone fraction of A. galanga                                     |     |
| 3.5  | Para-hydroxycinnamaldehyde affect on the releases of s-GAG,        | 109 |
|      | HA from porcine cartilage explant to the media and the uronic acid |     |
|      | remaining in the cartilage tissue and the production of            |     |
|      | MMP-2 activity                                                     |     |

| 3.6  | Characteristic of Sesamum indicum and it's seed                     | 111 |
|------|---------------------------------------------------------------------|-----|
| 3.7  | Sesamin: the phytochemical of the Sesamum indicum                   | 112 |
| 3.8  | Sesamin affect on the releases of s-GAG, HA from porcine            | 113 |
|      | cartilage explant to the media and the uronic acid remaining in     |     |
|      | the cartilage tissue and the production of MMP-2 activity           |     |
| 3.9  | Cytotoxicities of $p$ -hydroxycinnamaldehyde and sesamin on         | 115 |
|      | human articular chondrocytes                                        |     |
| 3.10 | Effects of <i>p</i> -hydroxycinnamaldehyde on releases of HA, s-GAG | 117 |
|      | and MMP-2 from chondrocytes                                         |     |
| 3.11 | Effects of sesamin on releases of HA, s-GAG and MMP-2 from          | 118 |
|      | chondrocytes                                                        |     |
| 3.12 | Effect of <i>p</i> -hydroxycinnamaldehyde on mRNA expression of     | 120 |
|      | proteinases                                                         |     |
| 3.13 | Effect of sesamin on mRNA expression of proteinases                 | 121 |
| 3.14 | Effects of <i>p</i> -hydroxycinnamaldehyde on mRNA expression of    | 123 |
|      | cartilage genes (AGG, COL2 and SOX9)                                |     |
| 3.15 | Effects of sesamin on mRNA expression of cartilage genes            | 124 |
|      | (AGG, COL2 and SOX9)                                                | æ   |

xxii

| 3.16 | Sulfated GAG release and uronic acid remaining in porcine                                        | 127 |
|------|--------------------------------------------------------------------------------------------------|-----|
|      | cartilage tissue explant co-treated with IL-1 $\beta$ and sesamin                                |     |
| 3.17 | The hydroxyproline release and remaining in porcine cartilage                                    | 129 |
|      | explant co-treated with IL-1 $\beta$ and sesamin                                                 |     |
| 3.18 | The hydroxyproline release and remaining in porcine cartilage                                    | 130 |
|      | explant explant co-treated with IL-1 $\beta$ /OSM and sesamin                                    |     |
| 3.19 | Aggrecanase activities in conditioned media of cartilage explant                                 | 132 |
|      | treated with IL-1 $\beta$ and sesamin                                                            |     |
| 3.20 | MMP-1, -3 and -13 mRNA expressions in HAC treated with                                           | 134 |
|      | IL-1 $\beta$ and sesamin                                                                         |     |
| 3.21 | MMP-1, -3 and -13 protein expressions in HAC treated with                                        | 135 |
|      | IL-1 $\beta$ and sesamin                                                                         |     |
| 3.22 | The effect of IL-1 $\beta$ on the phosphorylation of MAPK protein                                | 137 |
|      | families                                                                                         |     |
| 3.23 | The effects of sesamin on the phosphorylation of MAPK protein                                    | 139 |
|      | families induced by IL-1β                                                                        |     |
| 3.24 | The effect of IL-1 $\beta$ on the phosphorylations of IKK $\alpha/\beta$ , I $\kappa$ B $\alpha$ | 141 |
|      | and p65 subunit of NFkB transcription factor                                                     |     |

| 3.25 | The effects of sesamin on the phosphorylations of IKK $\alpha/\beta$ ,  | 143 |
|------|-------------------------------------------------------------------------|-----|
|      | IkBa and p65 subunit of NFkB transcription factor induced               |     |
|      | by IL-1β                                                                |     |
| 3.26 | H&E staining in cartilage of normal rats, mornal rats+10 $\mu$ M        | 145 |
|      | sesamin, papain-induced OA rats, OA rats+1 µM sesamin and               |     |
|      | OA rats+10 μM sesamin                                                   |     |
| 3.27 | Safranin O staining in cartilage of normal rats, mornal rats+10 $\mu$ M | 147 |
|      | sesamin, papain-induced OA rats, OA rats+1 µM sesamin and               |     |
|      | OA rats+10 μM sesamin                                                   |     |
| 3.28 | Type II collagen immunohistochemical staining in cartilage of           | 149 |
|      | normal rats, mornal rats+10 µM sesamin, papain-induced OA rats,         |     |
|      | OA rats+1 µM sesamin and OA rats+10 µM sesamin                          |     |
| 3.29 | The effects of Glc, GlcN-S, GlcA and GlcN-HCl: release of               | 152 |
|      | s-GAG, HA from porcine cartilage tissues to the media,                  |     |
|      | the uronic acid remaining in the cartilage tissue                       |     |
| 3.30 | Effects of Glc, GlcN-S, GlcA and GlcN-HCl on the production             | 153 |
|      | of MMP-2                                                                |     |
|      |                                                                         |     |

3.31 The cytotoxic effects of Glc, GlcN-S, GlcA and GlcN-HCl 155

1

| 3.32 | Effects of Glc, GlcN-S, GlcA and GlcN-HCl on the release  | 157 |
|------|-----------------------------------------------------------|-----|
|      | of HA, s-GAG and MMP-2 from chondrocytes                  |     |
| 3.33 | Effect of Glc, GlcN-S, GlcA and GlcN-HCl on the mRNA      | 159 |
|      | expression of proteinases [MMP-3 and MMP-13]              |     |
| 3.34 | Effects of Glc, GlcN-S, GlcA and GlcN-HCl on the mRNA     | 161 |
|      | expression of cartilage genes [AGG and SOX9]              |     |
| 3.35 | Effects of GlcN-S or sesamin or GlcN-S and sesamin on the | 164 |
|      | release of HA from cartilage explant                      |     |
| 3.36 | Effects of GlcN-S or sesamin or GlcN-S and sesamin on the | 166 |
|      | release of s-GAG from cartilage explant                   |     |
| 3.37 | Effects of GlcN-S or sesamin or GlcN-S and sesamin on the | 168 |
|      | uronic remaining in cartilage explant                     |     |

# ABBREVIATIONS

| Au       | absorbance unit                   |
|----------|-----------------------------------|
| BSA      | bovine serum albumin              |
| CS       | chondroitin sulfate               |
| CsCl     | cesium chloride                   |
| CV       | coefficient of variation          |
| DS       | dermatan sulfate                  |
| ELISA    | enzyme-linked immunosorbent assay |
| GAG      | glycosaminoglycan                 |
| Gal      | galactose                         |
| Glc      | glucose                           |
| GlcN     | glucosamine                       |
| GalNAc   | N-acetylgalactosamine             |
| GlcA     | glucuronic acid                   |
| GlcNAc   | N-acetylglucosamine               |
| GlcN-HCl | glucosamine hydrochloride         |

xxvii

| GlcN-S                | glucpsamine sulfate                    |
|-----------------------|----------------------------------------|
| gm                    | gram                                   |
| GuHCl                 | guanidine hydrochloride                |
| h                     | hour                                   |
| НА                    | hyaluronan                             |
| HAC                   | human articular chondrocyte            |
| НАВР                  | hyaluronan binding protein             |
| HPLC                  | high performance liquid chromatography |
| HS                    | heparan sulfate                        |
| $H_2SO_4$             | sulfuric acid                          |
| IdoA                  | iduronic acid                          |
| IgG                   | immunoglobulin G                       |
| IgM                   | immunoglobulin M                       |
| <i>k</i> <sub>a</sub> | association rate constants             |
| $k_d$                 | dissociation rate constants            |
| $K_d$                 | dissociation equilibrium constants     |
| kDa                   | kilodaltons                            |
| KS                    | keratan sulfate                        |

xxviii

| L                  | liter                               |
|--------------------|-------------------------------------|
| Μ                  | molar                               |
| mAb                | monoclonal antibody                 |
| pAb                | polyclonal antibody                 |
| min                | minute                              |
| ml                 | milliliter                          |
| mg                 | milligram                           |
| MW                 | molecular weight                    |
| NaCl               | sodium chloride                     |
| NaHCO <sub>3</sub> | sodium bicarbonate                  |
| μg                 | microgram                           |
| μΙ                 | microliter                          |
| ng                 | nanogram                            |
| nm .               | nanometer                           |
| nmol               | nanomole                            |
| NSAIDs             | non-steroid anti-inflammatory drugs |
| OA                 | osteoarthritis                      |
| PAGE               | polyacrylamide gel electrophoresis  |

PBS phosphate buffer saline PG proteoglycan pmol picomole RA rheumatoid arthritis RU resonance unit rpm revolution per minute S second SD standard deviation U unit w/v weight by volume w/w weight by weight °C degree Celsius Vt total volume Xyl xylose U unit UV ultraviolet V volting

xxix