บทที่ 6

ผลการทดสอบในอุโมงค์ลมโดยวิธี High Frequency Force Balance

6.1 เครื่องมือสำหรับใช้ในการทดสอบ

6.1.1 อุโมงค์ลม

งานวิจัยนี้ได้ทำการทดสอบ โดยใช้อุโมงค์ลมและอุปกรณ์ที่ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ปทุมธานี (TU-AIT Wind Tunnel) ซึ่งมีขนาดหน้าตัดของ อุโมงค์ลม กว้าง 2.5 เมตร สูง 2.5 เมตร และ ยาวประมาณ 25 เมตร มีความเร็วลมที่ใช้ทดสอบ สูงสุดถึง 20 เมตรต่อวินาที และมีจุดรองรับปรับทิศทางลมได้ 2 ตำแหน่ง แต่ละจุดมีเส้นผ่าน ศูนย์กลาง 2 เมตร อุโมงค์ลมมีลักษณะยาว และเป็นแบบเปิด (Open-Circuit) โดยลมจะเข้ามา จากปลายด้านหนึ่งของอุโมงค์ และไหลผ่านบริเวณที่ทดสอบแล้วออกไปสู่ภายนอกอุโมงค์ที่ปลาย อีกด้าน

ภาพที่ 6.1 อุโมงค์ลมที่มหาวิทยาลัยธรรมศาสตร์ (TU-AIT Wind Tunnel)

6.1.2 เครื่องมือวัดแรงที่ฐาน

เป็นเครื่องมือที่ใช้วัดแรงและโมเมนต์ 3 แกนตั้งฉากกัน มีขนาดเส้นผ่านศูนย์กลาง 11.4 ซม. และหนา 3.8 ซม. สามารถวัดแรงตามแนว Fx, $Fy \le \pm 80 N$, $Fz \le \pm 160 N$ และ Mx, My, $Mz \le \pm 10 N.m$ ภายในมี strain gage ในการรับแรงแล้วส่งเป็นสัญญาณไฟฟ้า ไปยัง เครื่องรับสัญญาณผ่านสายสัญญาณ โดยสัญญาณของ strain gage ถูกขยายและรวมกันเพื่อ สร้างเป็นสัญญาณของแรงรวมทั้งโมเมนต์ของทุกแกน แรงลัพธ์ที่ได้จากเครื่องมือนี้มีทิศทางตาม ภาพที่ 6.2

ภาพที่ 6.2 เครื่องมือวัดแรงและโมเมนต์ 3 แกนของ JR3 และทิศทาง

เครื่องมือสำหรับวัดแรงที่ฐาน จะอ่านค่าเป็นความต่างศักย์ซึ่งจะมีหน่วยเป็นโวลต์ ดังนั้น เมื่อให้น้ำหนักที่ทราบค่าแน่นอน จะสามารถคำนวณค่าคงที่เพื่อไว้สำหรับแปลงจากความต่างศักย์ ให้เป็นแรงได้ โดยสมการที่ 6.1

$$\begin{bmatrix} 10.787 & 0.197 & -0.497 & 0.004 & 0.038 & 0.386 \\ 0.153 & 10.57 & -0.219 & 0.044 & -0.081 & -0.28 \\ -0.552 & -0.458 & 24.314 & -0.636 & -0.235 & -1.547 \\ 0.016 & -0.001 & -0.036 & 1.553 & -0.005 & 0.069 \\ 0.002 & 0.033 & -0.054 & -0.02 & 1.505 & 0.052 \\ 0.005 & -0.004 & 0.003 & -0.004 & -0.007 & 1.324 \end{bmatrix} \begin{bmatrix} E_{Fx} \\ E_{Fy} \\ E_{Fz} \\ E_{Mx} \\ E_{My} \\ E_{Mz} \\ E_{Mz} \end{bmatrix}$$
(6.1)

6.2 การจำลองสภาพลมภายในอุโมงค์ลม

การจำลองสภาพลมภายในอุโมงค์ลม ใช้เป็นภูมิประเทศแบบกลางเมืองใหญ่ (Urban) โดยมีค่า Normalized Mean Velocity ที่ความสูงต่างๆ ตามกฎเลขยกกำลัง α = 0.281 ซึ่งแสดงไว้ในภาพที่ 6.3 ส่วนค่า Turbulent Intensity, I_u ที่ความสูงต่างๆ แสดงในภาพที่ 6.4 และ ค่า Power spectra ของความเร็วลมที่ระดับความสูงที่ทำการทดสอบแสดงในภาพที่ 6.5

ความสัมพันธ์ระหว่าง Turbulent Intensity และ ความสูง

ภาพที่ 6.5 Power spectrum ของความเร็วลม

6.3 การจำลองอาคารเพื่อการทดสอบ

6.3.1 ลักษณะอาคารและ แบบจำลอง

การศึกษารูปแบบการรวมผลของแรงลมต่ออาคาร โดยการทดสอบในอุโมงค์ลมด้วย วิธี High Frequency Force Balance ในวิทยานิพนธ์นี้ได้ทดสอบแบบจำลอง โดยเลือกลักษณะ อาคารซึ่งมีค่า Aspect Ratio $(\frac{D}{W})$ เท่ากับ 1,3 และ 5 ค่าอัตราส่วนความซะลูด $(\frac{H}{\sqrt{DW}})$ เท่ากับ 3 และ 6 และความสูง (H) เท่ากับ 200 และ 90 เมตร รวมจำนวน 12 ตัวอย่าง และการย่อส่วน แบบจำลองอาคารเพื่อการทดสอบจำเป็นต้องพิจารณาถึง การย่อส่วนค่าองค์ประกอบต่างๆ ให้ สัมพันธ์กัน ได้แก่ อัตราส่วนความยาว (Length Scale; λ_L), อัตราส่วนความเร็ว (Velocity Scale; λ_V) และอัตราส่วนเวลา (Time Scale; λ_T) ซึ่งหาได้จากสมการที่ 6.2 ถึง 6.4

$$\lambda_L = \frac{D_m}{D_p} \tag{6.2}$$

$$\lambda_V = \frac{U_m}{U_p} \tag{6.3}$$

$$\lambda_T = \frac{T_m}{T_p} = \frac{\lambda_L}{\lambda_V} = \frac{D_m}{D_p} \frac{U_p}{U_m}$$
(6.4)

โดยที่

D_m คือ ขนาดของแบบจำลอง

D_p คือ ขนาดของอาคารต้นแบบ

U_m คือ ความเร็วลมที่กระทำกับแบบจำลอง

U " คือ ความเร็วลมที่กระทำกับอาคารต้นแบบ

- T, คือ ระยะเวลาในการเก็บข้อมูลในอุโมงค์ลมของแบบจำลอง (Sec)
- U _p คือ ระยะเวลาในการเก็บข้อมูลของอาคารต้นแบบ เท่ากับ 3600 Sec

เมื่อกำหนด อัตราส่วนความยาว (Length Scale; λ_L) เท่ากับ 1: 400 ความเร็วลมเฉลี่ยที่ ยอดของแบบจำลองซึ่งมีความสูง 50 และ 22.5 ซม. เท่ากับ 8.94 และ 7.12 *m/s* ตามลำดับ (วัด โดยเครื่องมือ Pitot tube ซึ่งต่อเข้า Pressure sensors) ซึ่งเทียบเท่ากับความเร็วลมเฉลี่ยที่ยอด อาคารต้นแบบซึ่งมีความสูง 200 และ 90 *m* เท่ากับ 69.62 และ 55.62 *m/s* ตามลำดับ (คำนวณ จาก $V_z = V_{ref} \left(\frac{z}{10}\right)^{0.281}$ โดย V_{ref} คือ ความเร็วลมอ้างอิงเฉลี่ย 1 ชั่วโมงที่ความสูง 10 *m* สำหรับ คาบเวลากลับ 50 ปี มีค่าเท่ากับ 30 *m/s*) ระยะเวลาที่ใช้สำหรับการเก็บข้อมูลในอุโมงค์ลมของ แบบจำลอง (T_m) เท่ากับ 70.3 sec (Sampling rate = 1,000 Hz) ขนาดของอาคารต้นแบบและ แบบจำลองที่ใช้สำหรับการทดสอบแสดงในตารางที่ 6.1 และภาพของแบบจำลองที่ใช้แสดงใน ภาพที่ 6.6

<u>6.3.2 ความถี่ธรรมชาติของแบบจำลอง</u>

การทดสอบในอุโมงค์ลมโดยวิธี HFFB ทำได้โดยสร้างแบบจำลองซึ่งมีลักษณะแข็ง เพื่อให้ความถี่ธรรมชาติของแบบจำลองมีค่าสูงกว่าช่วงความถี่ของลมที่สนใจ ความถี่ธรรมชาติขั้น ต่ำของแบบจำลอง (*f_m*) มีค่าดังสมการที่ 6.5 เมื่อกำหนดให้ความถี่ธรรมชาติของอาคารต้นแบบ (*f_p*) มีค่าเท่ากับ 44/*H* จะได้ว่าความถี่ธรรมชาติขั้นต่ำของแบบจำลองมีค่าเท่ากับ 11.40 และ 25.35 *Hz* สำหรับแบบจำลองที่มีความสูง 0.50 และ 0.225 m ตามลำดับ ค่าความถี่ธรรมชาติของ แบบจำลองแสดงในตารางที่ 6.2

$$f_m = f_p \frac{D_p}{D_m} \frac{U_m}{U_p} \tag{6.5}$$

ภาพที่ 6.6 แบบจำลองที่ใช้ในการทดสอบ

- 1 1 1 1	ବୀ	าคารตัวอย่	าง		แบบจำลอง			
11.67	H (cm)	(cm) W (cm)		H (cm)	W (cm)	D (cm)	- Т I/(DVV)	D/VV
А	90	30.0	30.0	22.5	7.5	7.5	3.00	1.00
В	90	13.6	67.2	22.5	3.4	16.8	2.98	4.94
С	90	15.0	15.0	22.5	3.75	3.75	6.00	1.00
D	90	6.8	33.6	22.5	1.7	8.4	5.95	4.94
Е	200	68.0	68.0	50.0	17.0	17.0	2.94	1.00
F	200	30.0	149.2	50.0	7.5	37.3	2.99	4.97
G	200	36.0	36.0	50.0	9.0	9.0	5.56	1.00
Н	200	16.0	76.0	50.0	4.0	19.0	5.74	4.75
I	90	17.3	52.0	22.5	4.33	13.0	3.00	3.00
J	200	38.5	115.5	50.0	9.62	28.9	3.00	3.00
К	90	8.7	26.0	22.5	2.17	6.50	6.00	3.00
L	200	19.3	57.5	50.0	4.8	14.4	6.0	3.00

ตารางที่ 6.1 ขนาด ของอาคารและแบบจำลองที่ใช้ในการทดสอบ

แบบจำลอง	Natural frec	quency (<i>Hz</i>)
	X-direction	Y-direction
	(ด้านยาว)	(ด้านสั้น)
А	164.1	183.6
В	175.8	125
С	148.4	125.2
D	171.9	82.0
E	78.1	80.1
F	65.9	47.9
G	93.8	85.0
Н	77.15	77.9
I	166.9	124.3
J	71.82	41.4
К	150.0	75.1
L	90.29	49.7

ตารางที่ 6.2 ความถี่ธรรมชาติของแบบจำลองที่ใช้ในการทดสอบ

6.4 ค่าสัมประสิทธิ์ความสัมพันธ์ร่วม

โดยทั่วไปจากการทดสอบในอุโมงค์ลมโดยวิธี HFFB สามารถหาผลตอบสนองสูงสุด ของอาคาร จากแรงลมสถิตย์เทียบเท่าในแต่ละทิศทางหลัก 3 ทิศทาง คือ ทิศทางในแนวระนาบ 2 ทิศทาง และทิศทางบิด แต่แรงทั้ง 3 ทิศทางนี้อาจมิได้กระทำกับอาคารพร้อมกัน สำหรับงานวิจัยนี้ พิจารณาความสัมพันธ์ของผลตอบสนองต่อแรงลม 2 ทิศทาง ในรูปแบบของค่า สัมประสิทธิ์ ความสัมพันธ์ร่วม (Correlation Coefficient; ρ) ซึ่งแสดงถึงสัดส่วนของแรงลมสถิตย์เทียบเท่าที่ กระทำกับในอีกทิศทางอื่น เมื่อพิจารณาแรงลมในอีกทิศทางหนึ่งกระทำกับอาคาร

ค่าสัมประสิทธิ์ความสัมพันธ์ร่วมระหว่างผลตอบสนองสองทิศทางคือทิศทาง s และ l $(
ho_{sl})$ เมื่อพิจารณาผลตอบสนองในรูปของโมเมนต์ที่ฐานแต่ละทิศทาง จะสามารถหาได้ตาม

โดย

 ρ_{sl}

$$= \frac{\rho_{sBlB}\sigma_{M_sB}\sigma_{M_lB} + \rho_{sRlR}\sigma_{M_sR}\sigma_{M_lR}}{\sigma_{M_s}\sigma_{M_l}}$$
(6.6)

$$\sigma_{Mi} = \sqrt{\sigma_{M_iB}^2 + \sigma_{M_iR}^2}$$

$$\sigma_{M_iB} = \sigma_{cm_i}\overline{M}_i$$

$$\sigma_{M_iR} = \sigma_{cm_i}\overline{M}_i \sqrt{\frac{\pi}{4\zeta_{i1}}}C_{m_i}(f_{i1}); (i=s,l)$$

$$\sigma_{cm_i} = \rho_1 \tilde{a}$$
มประสิทธิ์ความผันผวนของโมเมนต์ทิศทาง i

$$\overline{M}_i = \rho_1 \tilde{b}$$
เมเมนต์อ้างอิงทิศทาง i

จัดรูปสมการที่ 6.6 ใหม่ทำให้พจน์ของ $\sigma_{\scriptscriptstyle cm_i}$ และ $\overline{M}_{\scriptscriptstyle i}$ หายไปได้ดังสมการที่ 6.7

$$\rho_{sl} = \frac{\rho_{sBlB} + \rho_{sRlR} \sqrt{\frac{\pi^2 C_{m_s}(f_{s1}) C_{m_l}(f_{l1})}{16\zeta_s \zeta_l}}}{\sqrt{\left(1 + \frac{\pi C_{m_s}(f_{s1})}{4\zeta_s}\right) \left(1 + \frac{\pi C_{m_l}(f_{l1})}{4\zeta_l}\right)}}$$
(6.7)

ค่า ho_{sBIB} คือค่า สัมประสิทธิ์ความสัมพันธ์ร่วมของผลตอบสนองในส่วน Back ground สามารถหาได้ดังสมการที่ 6.8

โดย

ค่า $ho_{_{SRIR}}$ คือค่า สัมประสิทธิ์ความสัมพันธ์ร่วมของผลตอบสนองในส่วน Resonant สามารถหาได้ดังสมการที่ 6.9 และเขียน ให้อยู่ในรูปของแรงลมที่มากระทำได้ดังสมการที่ 6.10

$$\rho_{sRIR} = \frac{\operatorname{Re}\left[\int_{0}^{\infty} S_{sl}(f)df\right]}{\sigma_{sR}\sigma_{lR}}$$
(6.9)

$$= \frac{1}{\sigma_{sR}\sigma_{lR}}Re\left[\int_{0}^{\infty}H_{s}(f)H_{l}^{*}(f)S_{F_{sl}}(f)df\right]$$
$$= \frac{1}{\sigma_{sR}\sigma_{lR}}Re\left[\int_{0}^{\infty}H_{s}(f)H_{l}^{*}(f)\sqrt{S_{Fs}(f_{s})S_{Fl}(f_{l})coh_{sl}(f_{0})}e^{-i\theta_{sl}(f_{0})}df\right]$$
(6.10)

โดย

$$H_{s}(f) = \frac{1}{K_{s1} \left[\left(1 - \left(\frac{f}{f_{s1}} \right)^{2} \right) + 2i\zeta_{s1} \left(\frac{f}{f_{s1}} \right) \right]}$$
$$H_{l}^{*}(f) = \frac{1}{K_{l1} \left[\left(1 - \left(\frac{f}{f_{l1}} \right)^{2} \right) - 2i\zeta_{l1} \left(\frac{f}{f_{l1}} \right) \right]}$$
$$coh_{sl}(f_{0}) = \frac{\left| S_{Fs}(f_{0}) \right|^{2}}{S_{Fs}(f_{s1}) S_{Fl}(f_{l1})}$$

เมื่อ

$K_{i1}, f_{i1}, \zeta_{i1}$	=	Modal stiffness, ความถี่ธรรมชาติ และอัตราส่วน
		ความหน่วงทิศทาง i ($i{=}s,l$) ใน mode ที่ 1
f_0	=	ค่าที่น้อยกว่าของความถี่ธรรมชาติใน mode ที่ 1 ในทิศทาง
		s หรือ l
$coh_{sl}(f_0)$	=	Coherence ของแรงที่กระทำ 2 ทิศทาง
$ heta_{\scriptscriptstyle sl}(f)$	=	มุมเฟสของ XPSD ระหว่างโมเมนต์ที่ฐานทิศทาง s และ /
$S_{F_{SL}}(f_0)$	=	XPSD ของแรงที่กระทำ 2 ทิศทาง
$S_{F_i}(f_i)$	=	PSD ของแรงที่กระทำทิศทาง <i>i (i=s,l)</i>

จากสมการ 6.10 เมื่อกำหนดให้ $S_{F_i}(f_i), \, coh_{sl}(f_0)$ เป็นค่าคงที่ จะจัดรูปใหม่ได้ดังสมการที่ 6.11

$$\rho_{sRIR} = \frac{\sqrt{S_{Fs}(f_{s1})}}{K_{s1}\sigma_{sR}} \frac{\sqrt{S_{Fl}(f_{l1})}}{K_{l1}\sigma_{lR}} \times \left[\sqrt{\cosh_{sl}(f_{0})} e^{-i\theta_{sl}(f_{0})} \int_{0}^{\infty} \frac{1}{\left[\left(1 - \left(\frac{f}{f_{s1}}\right)^{2} \right) + 2i\zeta_{s1} \left(\frac{f}{f_{s1}}\right) \right] \left[\left(1 - \left(\frac{f}{f_{l1}}\right)^{2} \right) - 2i\zeta_{l1} \left(\frac{f}{f_{l1}}\right) \right]} df \right]$$

$$(6.11)$$

ใช้สมมุติฐาน White noise จะสามารถหาค่า $\sigma_{_{I\!R}}$ ได้ดังสมการที่ 6.11

$$\sigma_{iR}^{2} = \frac{\pi f_{i1} S_{Fi}(f_{i})}{4 \zeta_{i1} K_{i1}}$$
(6.12)

แทนค่าสมการที่ 6.12 ในสมการที่ 6.11 และกำหนดให้ $\phi = \frac{f_{l1}}{f_{s1}}$, $A = \frac{f}{f_{s1}}$, $df = f_{s1} dA$ จะได้

$$\rho_{sRIR} = Re\left[\sqrt{\cosh_{sl}(f_0)}e^{-i\theta_{sl}(f_0)}\frac{4\sqrt{\zeta_{s1}\zeta_{l1}}}{\pi\sqrt{\phi}}\int_{0}^{\infty}\frac{1}{\left[\left(1-A^2\right)+2i\zeta_{s1}A\right]\left[\left(1-\left(\frac{A}{\phi}\right)^2\right)+2i\zeta_{l1}\left(\frac{A}{\phi}\right)\right]}dA\right]$$

(6.13)

เขียนสมการที่ 6.13 ใหม่ได้ดังสมการที่ 6.14

$$\rho_{sRIR} = Re\left[\sqrt{coh_{sl}(f_0)}e^{-i\theta_{sl}(f_0)}\psi(\zeta_{s1},\zeta_{l1},\phi)\right]$$
(6.14)
$$\psi(\zeta_{s1},\zeta_{l1},\phi) = \frac{4\sqrt{\zeta_{s1}\zeta_{l1}}}{\sqrt{\zeta_{s1}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\zeta_{s1}\zeta_{l1}}} dA$$

$$\int \Theta E = \psi(\zeta_{s1}, \zeta_{l1}, \phi) = \frac{4\sqrt{\zeta_{s1}\zeta_{l1}}}{\pi\sqrt{\phi}} \int_{0}^{0} \frac{1}{\left[\left(1 - A^{2}\right) + 2i\zeta_{s1}A\left[\left(1 - \left(\frac{A}{\phi}\right)^{2}\right) + 2i\zeta_{l1}\left(\frac{A}{\phi}\right)\right]} dA$$

จากงานวิจัยของ Asami(2000) ได้ประมาณการหาค่า $\psi(\zeta_{s1},\zeta_{l1},\phi)$ ซึ่งเป็นจำนวนเชิงซ้อนไว้ดัง สมการที่ 6.15 และแสดงในภาพที่ 6.7

$$Re[\psi(\zeta_{s1},\zeta_{l1},\phi)] \approx \left[1 - 0.125abs\left(ln\left(\frac{\zeta_{s1}}{\zeta_{l1}}\right)\right)^{1.5}\right] \left[\frac{\zeta_{s1}\zeta_{l1}}{(0.4 - 0.4\phi)^{2} + \zeta_{s1}\zeta_{l1}(0.6 + 0.4\phi)}\right]$$
$$Im[\psi(\zeta_{s1},\zeta_{l1},\phi)] \approx -\left[1 - 0.125abs\left(ln\left(\frac{\zeta_{s1}}{\zeta_{l1}}\right)\right)^{1.5}\right] \left[\frac{\phi - 1}{2\sqrt{\zeta_{s1}\zeta_{l1}}}\right] \left[1 + \frac{(\phi - 1)^{2}}{4\zeta_{s1}\zeta_{l1}}\right]^{-0.95}$$
(6.15)

ค่า $\psi(\zeta_{\scriptscriptstyle s1},\zeta_{\scriptscriptstyle I1},\phi)$ สำหรับการคำนวณ $ho_{\scriptscriptstyle sRIR}$

จากสมการที่ 6.14 เมื่อพิจารณาเฉพาะส่วนของค่าในส่วนจริงของจำนวนเชิงซ้อน จะจัดรูปใหม่ได้ ดังสมการที่ 6.16

$$\rho_{sRIR} = \sqrt{Coh_{sl}(f_0)} \left[\cos(\theta_{sl}(f_0)) \operatorname{Re}(\Psi) + \sin(\theta_{sl}(f_0)) \operatorname{Im}(\Psi) \right]$$
(6.16)

6.5 ผลการทดสอบ

จากสมการที่ 6.7, 6.8 และ 6.14 จะเห็นว่า ค่า ρ_{sl} จะขึ้นอยู่กับ พารามิเตอร์ 2 ส่วน คือ ส่วนที่ 1 เป็นส่วนที่ได้จากการทดสอบ HFFB คือ ρ_{sBlB} , $C_{mi}(f_{i1})$, $coh_{sl}(f_0)$ และ $\theta_{sl}(f_0)$ และส่วนที่ 2 เป็นส่วนที่ได้จากคุณสมบัติทางพลศาสตร์ของโครงสร้าง คือ ค่าความถี่ธรรมชาติของ โครงสร้าง, f และค่าอัตราส่วนความหน่วง, ζ จากการผลการศึกษาพบว่า ค่าพารามิเตอร์ต่างๆ ใน กลุ่มแรก จะขึ้นอยู่กับลักษณะรูปร่างของอาคาร โดยจะขึ้นกับค่า D/W เป็นหลัก งานวิจัยนี้ได้ แบ่งกลุ่มอาคารที่จะศึกษาโดยแบ่งกลุ่มอาคารตามค่า D/W เป็นหลัก และพบว่าความสัมพันธ์ร่วม ส่วน Background, ρ_{sBlB} ระหว่างทิศทางตั้งฉากกับทิศทางลม และ ทิศทางบิด, ρ_{LBTB} มีค่า มากกว่าความสัมพันธ์ในสองทิศทางอื่น และ ρ_{LBTB} มีค่าต่ำที่สุดเมื่อค่า D/W = 1 และมีค่ามาก ขึ้นเมื่อค่า D/W มากขึ้นหรือน้อยลง โดยอาคารที่มีค่า D/W เท่ากันจะมีค่า ρ_{LBTB} ใกล้เคียงกัน ดัง แสดงในภาพที่ 6.8

ภาพที่ 6.8 ค่าสัมประสิทธิ์ความสัมพันธ์ร่วมในส่วน Background

เมื่อพิจารณาสมการที่ 6.7 ในส่วนค่าพารามิเตอร์ที่ได้จากการทดสอบในอุโมงค์ลม อีก 3 ค่าที่เหลือ ซึ่งเป็นฟังก์ชันกับค่าความถี่ของอาคาร, f ซึ่งโดยทั่วจะอยู่ในรูปของ Reduce frequency, $\frac{fW}{V..}$ คือค่า $C_m(f)$, $coh_{sl}(f)$ และ $heta_{sl}(f)$ จากผลการทดสอบพบว่าฟังก์ชัน เหล่านี้จะมีลักษณะคล้ายกันเมื่ออาคารมีค่า D/W เท่ากัน ดังนั้นสำหรับอาคารซึ่งมีค่า D/W ค่า หนึ่งเมื่อกำหนดค่า $\frac{fW}{V_{cr}}$ จะสามารถหาค่าพารามิเตอร์ทั้ง 3 ค่าได้ และจากนั้นกำหนดค่า อัตราส่วนความหน่วงของอาคาร, ζ จะสามารถคำนวณค่า ho_{sl} สำหรับอาคารที่มีค่า D/W แต่ละ แบบได้ เนื่องจากค่าความสัมพันธ์ร่วมระหว่างทิศทางลมและทิศทางอื่นๆ สำหรับอาคารสูงจะมีค่า ้น้อย ดังนั้นงานวิจัยนี้จะแสดงเฉพาะในส่วนของความสัมพันร่วมระหว่างทิศทางตั้งฉากกับทิศทาง ลมและทิศทางบิด, $ho_{\scriptscriptstyle LT}$ เท่านั้น เนื่องข้อจำกัดในเรื่องสัญญาณรบกวน จากคลื่นแม่เหล็กไฟฟ้า ที่ ความถี่ประมาณ 50 Hz ในการทดสอบจึงกรองสัญญาณใช้เฉพาะส่วนที่ต่ำกว่า 40 Hz เท่านั้น ดังนั้นจึงทำให้ค่า $C_m(f)$, $coh_{LT}(f)$ และ $heta_{LT}(f)$ ของแบบจำลองแต่ละแบบซึ่งมีความกว้าง แตกต่างกันจะมีความถี่สูงสุดที่ใช้ได้ แตกต่างกัน สำหรับอาคารมีค่า D/W ต่างๆ จะได้ $ho_{\scriptscriptstyle LBTB}$ จาก ภาพที่ 6.8 และได้ค่า $C_{m}(f)$, $coh_{LT}(f)$ และ $heta_{LT}(f)$ ซึ่งแสดงในภาพที่ 6.9 ถึง 6.13 จากนั้น เมื่อกำหนดค่าความถี่ธรรมชาติ และอัตราส่วนความหน่วงให้กับอาคารที่ต้องการศึกษา จะ ้สามารถคำนวณค่า $ho_{\scriptscriptstyle LT}$ ของอาคารที่สนใจได้ ผลการคำนวณค่า $ho_{\scriptscriptstyle LT}$ โดยกำหนดให้อัตราส่วน ความหน่วงของอาคารมีค่าเท่ากับ 0.02 ในทุกทิศทางแสดงในตารางที่ 6.3 ถึง 6.7

ตารางที่ 6.3

ผลค่าสัมประสิทธิ์ความสัมพันธ์ร่วม เมื่อค่า *D/W* = 0.2

E.W/U	f_T/f_L	f W/U	ρ_{LRTR}				DIRTR	ρ_{LT}					
$\Gamma_L W/U$		$J_T W/U$	90(3)	90(6)	200(3)	200(6)	ρ_{LBTB}	90(3)	90(6)	200(3)	200(6)	Max	
0.10	1.00	0.10	0.83	0.63	0.78	0.89	0.60	0.82	0.63	0.78	0.89	0.89	
0.10	1.05	0.11	0.44	0.51	0.49	0.55	0.60	0.44	0.52	0.49	0.55	0.55	
0.10	1.10	0.11	0.18	0.28	0.23	0.26	0.60	0.20	0.29	0.24	0.27	0.29	
0.10	1.15	0.12	0.10	0.18	0.13	0.15	0.60	0.12	0.20	0.15	0.16	0.20	
0.10	1.20	0.12	0.06	0.13	0.09	0.10	0.60	0.09	0.15	0.11	0.12	0.15	
0.10	1.25	0.13	0.04	0.10	0.07	0.07	0.60	0.07	0.13	0.09	0.10	0.13	
0.10	1.30	0.13	0.03	0.08	0.05	0.06	0.60	0.06	0.11	0.08	0.08	0.11	
0.10	1.35	0.14	0.02	0.07	0.04	0.05	0.60	0.06	0.10	0.07	0.08	0.10	
0.20	1.00	0.20	0.35	Nan	0.16	0.32	0.60	0.37	Nan	0.21	0.35	0.37	
0.20	1.05	0.21	0.25	Nan	0.26	0.32	0.60	0.29	Nan	0.30	0.34	0.34	
0.20	1.10	0.22	0.13	Nan	0.17	0.18	0.60	0.18	Nan	0.22	0.23	0.23	
0.20	1.15	0.23	0.08	Nan	0.12	0.12	0.60	0.14	Nan	0.17	0.18	0.18	
0.20	1.20	0.24	0.06	Nan	0.09	0.09	0.60	0.12	Nan	0.15	0.16	0.16	
0.20	1.25	0.25	0.04	Nan	0.07	0.07	0.60	0.11	Nan	0.14	0.14	0.14	
0.20	1.30	0.26	0.03	Nan	0.06	0.06	0.60	0.10	Nan	0.13	0.13	0.13	
0.20	1.35	0.27	0.03	Nan	0.05	0.05	0.60	0.10	Nan	0.12	0.12	0.12	
0.30	1.00	0.30	-0.12	Nan	-0.23	0.15	0.60	-0.01	Nan	-0.10	0.25	0.25	
0.30	1.05	0.32	0.20	Nan	0.18	0.37	0.60	0.26	Nan	0.24	0.41	0.41	
0.30	1.10	0.33	0.17	Nan	0.17	0.25	0.60	0.23	Nan	0.23	0.32	0.32	
0.30	1.15	0.35	0.13	Nan	0.14	0.18	0.60	0.20	Nan	0.21	0.27	0.27	
0.30	1.20	0.36	0.11	Nan	0.12	0.14	0.60	0.18	Nan	0.19	0.24	0.24	
0.30	1.25	0.38	0.09	Nan	0.10	0.11	0.60	0.17	Nan	0.18	0.22	0.22	
0.30	1.30	0.39	0.08	Nan	0.09	0.10	0.60	0.16	Nan	0.16	0.20	0.20	
0.30	1.35	0.41	0.07	Nan	0.08	0.08	0.60	0.15	Nan	0.16	0.20	0.20	
0.60	1.00	0.60	0.30	Nan	0.10	0.42	0.60	0.37	Nan	0.22	0.49	0.49	
0.60	1.05	0.63	0.49	Nan	0.43	0.56	0.60	0.51	Nan	0.47	0.57	0.57	
0.60	1.10	0.66	0.31	Nan	0.31	0.35	0.60	0.38	Nan	0.38	0.45	0.45	
0.60	1.15	0.69	0.22	Nan	0.22	0.24	0.60	0.32	Nan	0.32	0.40	0.40	
0.60	1.20	0.72	0.17	Nan	0.18	Nan	0.60	0.29	Nan	0.29	Nan	0.29	
0.60	1.25	0.75	0.14	Nan	0.15	Nan	0.60	0.27	Nan	0.27	Nan	0.27	
0.60	1.30	0.78	0.11	Nan	0.12	Nan	0.60	0.27	Nan	0.26	Nan	0.27	
0.60	1.35	0.81	Nan	Nan	0.11	Nan	0.60	Nan	Nan	0.25	Nan	0.25	
1.00	1.00	1.00	Nan	Nan	0.39	Nan	0.60	Nan	Nan	0.45	Nan	0.45	
1.00	1.05	1.05	Nan	Nan	0.50	Nan	0.60	Nan	Nan	0.52	Nan	0.52	
1.00	1.10	1.10	Nan	Nan	0.31	Nan	0.60	Nan	Nan	0.41	Nan	0.41	
1.00	1.15	1.15	Nan	Nan	0.21	Nan	0.60	Nan	Nan	0.35	Nan	0.35	
1.00	1.20	1.20	Nan	Nan	0.16	Nan	0.60	Nan	Nan	0.33	Nan	0.33	
1.00	1.25	1.25	Nan	Nan	0.13	Nan	0.60	Nan	Nan	0.32	Nan	0.32	
1.00	1.30	1.30	Nan	Nan	0.11	Nan	0.60	Nan	Nan	0.31	Nan	0.31	

ตารางที่ 6.4
ผลค่าสัมประสิทธิ์ความสัมพันธ์ร่วม เมื่อค่า <i>D/W</i> = 0.33

	C /C			ρ	LRTR		ρ_I		$ ho_{LT}$	LT		
$F_L W/U$	f_T/f_L	$f_T W/U$	90(3)	90(6)	200(3)	200(6)	$ ho_{LBTB}$	90(3)	90(6)	200(3)	200(6)	Max
0.10	1.00	0.10	0.84	0.79	0.87	0.73	0.60	0.83	0.77	0.86	0.72	0.86
0.10	1.05	0.11	0.41	0.33	0.51	0.45	0.60	0.42	0.34	0.51	0.45	0.51
0.10	1.10	0.11	0.16	0.11	0.23	0.21	0.60	0.18	0.14	0.24	0.22	0.24
0.10	1.15	0.12	0.08	0.05	0.13	0.12	0.60	0.10	0.08	0.15	0.14	0.15
0.10	1.20	0.12	0.05	0.02	0.09	0.08	0.60	0.07	0.05	0.10	0.10	0.10
0.10	1.25	0.13	0.03	0.01	0.06	0.06	0.60	0.06	0.04	0.08	0.09	0.09
0.10	1.30	0.13	0.02	0.00	0.05	0.05	0.60	0.05	0.04	0.07	0.08	0.08
0.10	1.35	0.14	0.01	0.00	0.04	0.04	0.60	0.05	0.04	0.06	0.07	0.07
0.20	1.00	0.20	-0.09	Nan	-0.14	-0.56	0.60	-0.02	Nan	-0.04	-0.42	0.42
0.20	1.05	0.21	0.21	Nan	0.17	-0.11	0.60	0.24	Nan	0.23	-0.03	0.24
0.20	1.10	0.22	0.17	Nan	0.15	0.01	0.60	0.21	Nan	0.21	0.08	0.21
0.20	1.15	0.23	0.13	Nan	0.12	0.04	0.60	0.18	Nan	0.18	0.10	0.18
0.20	1.20	0.24	0.11	Nan	0.10	0.04	0.60	0.16	Nan	0.16	0.11	0.16
0.20	1.25	0.25	0.09	Nan	0.08	0.04	0.60	0.14	Nan	0.15	0.11	0.15
0.20	1.30	0.26	0.08	Nan	0.07	0.04	0.60	0.14	Nan	0.14	0.10	0.14
0.20	1.35	0.27	0.07	Nan	0.06	0.03	0.60	0.13	Nan	0.14	0.10	0.14
0.30	1.00	0.30	-0.28	Nan	-0.18	-0.46	0.60	-0.15	Nan	-0.05	-0.27	0.27
0.30	1.05	0.32	0.17	Nan	0.25	0.10	0.60	0.23	Nan	0.31	0.19	0.31
0.30	1.10	0.33	0.17	Nan	0.22	0.15	0.60	0.24	Nan	0.28	0.23	0.28
0.30	1.15	0.35	0.14	Nan	0.17	0.14	0.60	0.21	Nan	0.24	0.23	0.24
0.30	1.20	0.36	0.12	Nan	0.14	0.12	0.60	0.19	Nan	0.22	0.21	0.22
0.30	1.25	0.38	0.10	Nan	0.12	0.10	0.60	0.18	Nan	0.20	0.20	0.20
0.30	1.30	0.39	0.09	Nan	0.10	0.09	0.60	0.17	Nan	0.19	0.19	0.19
0.30	1.35	0.41	0.08	Nan	0.09	0.08	0.60	0.16	Nan	0.19	0.18	0.19
0.60	1.00	0.60	0.31	Nan	0.20	Nan	0.60	0.42	Nan	0.31	Nan	0.42
0.60	1.05	0.63	Nan	Nan	0.49	Nan	0.60	Nan	Nan	0.52	Nan	0.52
0.60	1.10	0.66	Nan	Nan	0.33	Nan	0.60	Nan	Nan	0.41	Nan	0.41
0.60	1.15	0.69	Nan	Nan	0.24	Nan	0.60	Nan	Nan	0.35	Nan	0.35
0.60	1.20	0.72	Nan	Nan	0.18	Nan	0.60	Nan	Nan	0.32	Nan	0.32
0.60	1.25	0.75	Nan	Nan	0.15	Nan	0.60	Nan	Nan	0.30	Nan	0.30
0.60	1.30	0.78	Nan	Nan	0.13	Nan	0.60	Nan	Nan	0.29	Nan	0.29
0.60	1.35	0.81	Nan	Nan	0.11	Nan	0.60	Nan	Nan	0.29	Nan	0.29
1.00	1.00	1.00	Nan	Nan	0.38	Nan	0.60	Nan	Nan	0.52	Nan	0.52
1.00	1.05	1.05	Nan	Nan	0.38	Nan	0.60	Nan	Nan	0.53	Nan	0.53

ตารางที่ 6.5	
ผลค่าสัมประสิทธิ์ความสัมพันธ์ร่วม เมื่อค่า <i>D/W</i> = 1.0)0

	£ I£	f W/II		ρ	LRTR		_	$ ho_{LT}$					
$F_L W/U$	Jt/Jl	$J_T W/U$	90(3)	90(6)	200(3)	200(6)	ρ_{LBTB}	90(3)	90(6)	200(3)	200(6)	Max	
0.10	1.00	0.10	0.54	Nan	0.48	0.28	0.40	0.52	Nan	0.46	0.28	0.52	
0.10	1.05	0.11	0.01	Nan	-0.07	-0.13	0.40	0.04	Nan	-0.03	-0.09	0.09	
0.10	1.10	0.11	-0.09	Nan	-0.13	-0.15	0.40	-0.04	Nan	-0.08	-0.10	0.10	
0.10	1.15	0.12	-0.09	Nan	-0.12	-0.12	0.40	-0.05	Nan	-0.07	-0.07	0.07	
0.10	1.20	0.12	-0.08	Nan	-0.11	-0.10	0.40	-0.04	Nan	-0.05	-0.06	0.06	
0.10	1.25	0.13	-0.07	Nan	-0.09	-0.09	0.40	-0.03	Nan	-0.04	-0.05	0.05	
0.10	1.30	0.13	-0.07	Nan	-0.08	-0.08	0.40	-0.02	Nan	-0.03	-0.03	0.03	
0.10	1.35	0.14	-0.06	Nan	-0.07	-0.07	0.40	-0.02	Nan	-0.02	-0.03	0.03	
0.20	1.00	0.20	Nan	Nan	-0.28	-0.59	0.40	Nan	Nan	-0.14	-0.37	0.37	
0.20	1.05	0.21	Nan	Nan	-0.38	-0.40	0.40	Nan	Nan	-0.22	-0.22	0.22	
0.20	1.10	0.22	Nan	Nan	-0.24	-0.20	0.40	Nan	Nan	-0.11	-0.06	0.11	
0.20	1.15	0.23	Nan	Nan	-0.16	-0.12	0.40	Nan	Nan	-0.04	-0.01	0.04	
0.20	1.20	0.24	Nan	Nan	-0.12	-0.08	0.40	Nan	Nan	-0.01	0.03	0.03	
0.20	1.25	0.25	Nan	Nan	-0.10	-0.06	0.40	Nan	Nan	0.00	0.04	0.04	
0.20	1.30	0.26	Nan	Nan	-0.08	-0.05	0.40	Nan	Nan	0.01	0.05	0.05	
0.20	1.35	0.27	Nan	Nan	-0.07	-0.04	0.40	Nan	Nan	0.02	0.07	0.07	
0.30	1.00	0.30	Nan	Nan	-0.16	-0.52	0.40	Nan	Nan	0.04	-0.10	0.10	
0.30	1.05	0.32	Nan	Nan	-0.28	-0.36	0.40	Nan	Nan	-0.05	0.00	0.05	
0.30	1.10	0.33	Nan	Nan	-0.18	-0.18	0.40	Nan	Nan	0.01	0.12	0.12	
0.30	1.15	0.35	Nan	Nan	-0.13	Nan	0.40	Nan	Nan	0.05	Nan	0.05	
0.30	1.20	0.36	Nan	Nan	-0.10	Nan	0.40	Nan	Nan	0.08	Nan	0.08	
0.30	1.25	0.38	Nan	Nan	-0.08	Nan	0.40	Nan	Nan	0.09	Nan	0.09	
0.30	1.30	0.39	Nan	Nan	-0.07	Nan	0.40	Nan	Nan	0.11	Nan	0.11	
0.30	1.35	0.41	Nan	Nan	-0.06	Nan	0.40	Nan	Nan	0.11	Nan	0.11	

		ผลค่าย	สัมประ	ะสิทธิ์ <i>ค</i>	เวามสัม	มพันธ์ร <u>่</u>	วม เมื่อ	ค่า <i>D</i> ∕	/W = 3	3.00		
	f_T/f_L	$f_T/f_L = f_T W/U$		ρ_{I}	LRTR		$ ho_{LBTB}$	$ ho_{LT}$				
1.7%/0			90(3)	90(6)	200(3)	200(6)		90(3)	90(6)	200(3)	200(6)	
0.10	1.00	0.10	0.72	0.32	0.68	0.46	0.60	0.69	0.37	0.67	0.47	
0.10	1.05	0.11	0.12	Nan	0.09	-0.08	0.60	0.18	Nan	0.14	0.02	
0.10	1.10	0.11	-0.03	Nan	-0.05	-0.14	0.60	0.05	Nan	0.02	-0.02	

-0.13

-0.11

-0.10

-0.08

-0.08

Nan

-0.07

-0.07

-0.06

-0.06

-0.05

Nan

0.10

0.10

0.10

0.10

0.10

0.20

1.15

1.20

1.25

1.30

1.35

1.00

0.12

0.12

0.13

0.13

0.14

0.20

-0.06

-0.06

-0.06

-0.05

-0.05

0.46

Nan

Nan

Nan

Nan

Nan

Nan

0.03

0.03

0.04

0.05

0.05

0.49

Nan

Nan

Nan

Nan

Nan

Nan

0.60

0.60

0.60

0.60

0.60

0.60

ตารางที่ 6.6

ตารางที่ 6.7
ผลค่าสัมประสิทธิ์ความสัมพันธ์ร่วม เมื่อค่า <i>D/W</i> = 5.00

f W/LI	£ /£	$f_T W/U$	$ ho_{LRTR}$					$ ho_{LT}$					
$J_T W/O$	Jt/Jl		90(3)	90(6)	200(3)	200(6)	ρ_{LBTB}	90(3)	90(6)	200(3)	200(6)	Max	
0.10	1.00	0.10	0.78	Nan	0.83	0.73	0.90	0.80	Nan	0.84	0.76	0.84	
0.10	1.05	0.11	0.25	Nan	0.36	0.29	0.90	0.44	Nan	0.45	0.48	0.48	
0.10	1.10	0.11	0.05	Nan	0.13	0.09	0.90	0.33	Nan	0.27	0.36	0.36	
0.10	1.15	0.12	0.00	Nan	0.05	0.03	0.90	0.31	Nan	0.22	0.35	0.35	
0.10	1.20	0.12	-0.01	Nan	0.03	0.01	0.90	0.31	Nan	0.21	0.34	0.34	
0.10	1.25	0.13	-0.02	Nan	0.01	0.00	0.90	0.33	Nan	0.20	0.38	0.38	
0.10	1.30	0.13	-0.02	Nan	0.01	0.00	0.90	0.35	Nan	0.22	0.36	0.36	
0.10	1.35	0.14	-0.02	Nan	0.00	-0.01	0.90	0.35	Nan	0.22	0.39	0.39	
0.20	1.00	0.20	Nan	Nan	0.57	Nan	0.90	Nan	Nan	0.70	Nan	0.70	
0.20	1.05	0.21	Nan	Nan	0.20	Nan	0.90	Nan	Nan	0.50	Nan	0.50	
0.20	1.10	0.22	Nan	Nan	0.05	Nan	0.90	Nan	Nan	0.42	Nan	0.42	
0.20	1.15	0.23	Nan	Nan	0.01	Nan	0.90	Nan	Nan	0.43	Nan	0.43	
0.20	1.20	0.24	Nan	Nan	-0.01	Nan	0.90	Nan	Nan	0.44	Nan	0.44	
0.20	1.25	0.25	Nan	Nan	-0.01	Nan	0.90	Nan	Nan	0.45	Nan	0.45	
0.20	1.30	0.26	Nan	Nan	-0.01	Nan	0.90	Nan	Nan	0.48	Nan	0.48	
0.20	1.35	0.27	Nan	Nan	-0.01	Nan	0.90	Nan	Nan	0.49	Nan	0.49	

Max

0.69

0.18

0.05

0.03

0.03

0.04

0.05

0.05

0.49

0.00

0.00

0.01

0.01

0.01

Nan

-0.01

0.01

0.03

0.04

0.04

Nan

Acrosswind aerodynamic base moments spectra

ภาพที่ 6.9 ค่า $C_{_m}(f)$, $coh_{_{LT}}ig(fig)$ และ $heta_{_{LT}}ig(fig)$ สำหรับอาคารที่มีค่า D/W=0.20

Acrosswind aerodynamic base moments spectra

ภาพที่ 6.10 ค่า $C_{_m}(f)$, $coh_{_{LT}}(f)$ และ $heta_{_{LT}}(f)$ สำหรับอาคารที่มีค่า D/W=0.33

Acrosswind aerodynamic base moments spectra

ภาพที่ 6.11 ค่า $C_{_m}(f)$, $coh_{_{LT}}ig(fig)$ และ $heta_{_{LT}}ig(fig)$ สำหรับอาคารที่มีค่า D/W=1.00

Acrosswind aerodynamic base moments spectra

ภาพที่ 6.12 ค่า $C_{_m}(f)$, $coh_{_{LT}}(f)$ และ $heta_{_{LT}}(f)$ สำหรับอาคารที่มีค่า D/W=3.00

Acrosswind aerodynamic base moments spectra

ภาพที่ 6.13 ค่า $C_{_m}(f)$, $coh_{_{LT}}(f)$ และ $heta_{_{LT}}(f)$ สำหรับอาคารที่มีค่า D/W=5.00