สารบัญภาพประกอบ

ภาพที่		หน้
1.1	การประยุกต์ใช้งานแมกนีเซียมอัลลอยด์ในอุตสาหกรรมยานยนต์	2
2.1	แสดงการยืดของแท่งโลหะที่ถูกดึง	11
2.2	แสดงลักษณะของกราฟ stress-strain diagram จากการทดสอบ strength	
	ของโลหะผสมอะลูมิเนียม (7075-T6) ขนาดเพลต 5/8 นิ้ว เส้นผ่านศูนย์กลาง	
	0.50 ນີ້ວ ແລະໃช้ gauge length 2 ນີ້ວ	13
2.3	แสดงการเกิดคอคอดของตัวออย่างเหล็กกล้า (mild steel) ซึ่งเป็นแท่งกลม	
	แต่หลังจากถูกดึงตามแนวแกนจนเกือบถึงจุดแตกหัก หน้าตัดของตัวอย่างจะ	
	ลดลงเกิดคอคอดตรงกลาง	15
2.4	แสดงตัวอย่างของขนาดที่จะใช้ทดสอบแรงดึง	16
2.5	แสดงลักษณะขั้นตอนของการเกิดรอยแตกเป็นฟันปลาของโลหะอ่อน	17
2.6	แสดงการเกิดรอยแตกขึ้นภายในที่บริเวณส่วนเว้าของทองแดงที่มี	
	ความบริสุทธิ์สูง ซึ่งเป็น polycrystalline	18
2.7	แสดงการแเตกหักแบบเหนียวเกิด cup and cone อะลูมิเนียม	18
2.8	แสดงลักษณะของกราฟที่ได้จาก fatigue stress เทียบกับจำนวนรอบ	20
2.9	แสดงแผนภาพการทดสอบความล้าของวัสดุด้วย direct-current electrical	
	potential crack monitoring system ที่มีจำนวน cycle สูง	23
2.10	(ก) แสดงวัสดุตัวอย่างที่บางๆ ที่จะทดสอบซึ่งมี edge crack ภายใต้	
	cyclic stress (ข) แสดงภาพของกราฟที่ได้จาก crack length vs.	
	จำนวน stress cycles สำหรับ $\sigma_{_1}$ และ $\sigma_{_2}(\sigma_{_2}\!>\!\sigma_{_1})$	24
2.11	แสดงลักษณะของ Fatigue crack growth ของเหล็กกล้า ASTM A533 B1	
	(Yield strength 470 MPa) Test condition $R = 0.1$ room temp 24° C	27
2.12	แสดงภาพภาพกลไกที่หน่วงทำให้การขยายตัวรอยร้าวล้าช้าลง	
	ในสภาวะที่ให้ constant amplitude fatigue	29
3.1	แสดงภาพ microstructure ของ extrude AZ61 magnesium alloy	33
3.2	แสดงภาพขั้นตอนการเตรียมชิ้นงาน compact tension (CT specimen)	
	ที่ใช้ในการทดสอบ fatigue crack growth	34

3.3	แสดงภาพลักษณะของชิ้นงาน compact tension (CT specimen) และ	
	notch ที่ใช้ในการทดสอบ fatigue crack growth	34
3.4	แสดงภาพลักษณะ ลักษณะแนวทางการขัดชิ้นตรวจสอบสลับเป็นตาราง	35
3.5	แสดงแผนผังการติดตั้งการทดลองโดยการใช้ compliance technique	36
3.6	แสดงภาพ Window ของ compliance program ที่ใช้สำหรับ	
	การตรวจวัด crack length	39
3.7	แสดงภาพขั้นตอนของการดำเนินการใช้งาน software	40
3.8	แสดงภาพการติดตั้งการทดสอบ FCG ภายใต้สภาวะควบคุมใน	
	ห้องปฏิบัติการ(ความชื้นสัมพัทธ์ 55%, 20°C)	42
3.9		42
3.10	แสดงภาพ CT specimen ที่ทำการติดตั้ง strain gauge	45
3.11	แสดงภาพการตรวจสอบ crack closure load ซึ่งใช้วิธี compliance	
	technique (เส้นโค้งแสดงความชันของ stain ต่อ load) เพื่อการพิจารณา	
	ตัดสินค่า closure load	46
3.12	ขั้นตอนแผนงานวิจัย	47
4.1	แสดง FCG curve $\mathrm{d}a/\mathrm{d}N$ vs ΔK ของ magnesium alloy AZ61	
	ภายใต้สภาวะความชื้นต่ำ (ความชื้นสัมพัทธ์ 55%, 20°C)	49
4.2	แสดงความสัมพันธ์ระหว่าง crack closure ratio และ ΔK ของ magnesium	
	alloy AZ61 ภายใต้สภาวะควบคุมในห้องปฏิบัติการ	
	(ความชื้นสัมพัทธ์ 55%, 20°C)	50
4.3	แสดง FCG curve da/dN vs $\Delta K_{_{eff}}$ ของ magnesium alloy AZ61	
	ภายใต้สภาวะควบคุมในห้องปฏิบัติการ (ความชื้นสัมพัทธ์ 55%, 20°C)	51
4.4	แสดงภาพตัวอย่างกราฟ load VS stain และ compliance curve ของ	
	magnesium alloy AZ61 ภายใต้สภาวะควบคุมในห้องปฏิบัติการ	
	(ความชื้นสัมพัทธ์ 55%, 20°C) ที่ <i>R</i> = 0.1	52
4.5	แสดงภาพตัวอย่างกราฟ load VS stain และ compliance curve ของ	
	magnesium alloy AZ61 ภายใต้สภาวะควบคุมในห้องปฏิบัติการ	
	(ความชื้นสัมพัทธ์ 55%, 20°C) ที่ <i>R</i> = 0.7	53
4.6	แสดง FCG curve da/dN vs ΔK ของ magnesium alloy AZ61	

	ภายใต้สภาวะการฉีดละอองโซเดียมคลอไรด์ 3.5%	55
4.7	แสดงความสัมพันธ์ระหว่าง crack closure ratio และ ΔK ของ	
	magnesium alloy AZ61 ภายใต้สภาวะการฉีดละอองโซเดียมคลอไรด์ 3.5%	56
4.8	แଶดง FCG curve $\mathrm{d}a/\mathrm{d}N$ vs $\Delta K_{_{eff}}$ ของ magnesium alloy AZ61	
	ภายใต้สภาวะการฉีดละอองโซเดียมคลอไรด์ 3.5%	57
4.9	แสดงภาพตัวอย่างกราฟ load VS stain และ compliance curve ของ	
	magnesium alloy AZ61ภายใต้สภาวะการฉีดละอองโซเดียมคลอไรด์ 3.5% ที่ <i>R</i> = 0.1	58
4.10	แสดงภาพตัวอย่างกราฟ load VS stain และ compliance curve ของ	
	magnesium alloy AZ61ภายใต้สภาวะการฉีดละอองโซเดียมคลอไรด์	
	3.5% ที่ <i>R</i> = 0.7	59
4.11	แสดงภาพ Fractograph ของ magnesium alloy AZ61 ภายใต้สภาวะ	
	ควบคุมในห้องปฏิบัติ (ความชื้นสัมพัทธ์ 55%, 20°C)	61
4.12	แสดงภาพ Fractograph ของ magnesium alloy AZ61 ภายใต้สภาวะ	
	การฉีดละอองโซเดียมคลอไรด์ 3.5% สำหรับ ΔK -decreasing test	61
4.13	แสดงภาพ Fractograph ของ magnesium alloy AZ61 ภายใต้สภาวะ	
	การฉีดละอองโซเดียมคลอไรด์ 3.5% สำหรับ ΔK -increasing test	62
4.14	แสดงภาพ Fractograph ผลของ EDS mapping และ EDS surface ของ	
	magnesium alloy AZ61 ภายใต้สภาวะควบคุมในห้องปฏิบัติการ	
	(ความชื้นสัมพัทธ์ 55%, 20°C) <i>R</i> = 0.1, ∆ <i>K</i> = 1.43 ณบริเวณ	
	ΔK -decreasing test	63
4.15	แสดงภาพ Fractograph ผลของ EDS mapping และ EDS surface ของ	
	magnesium alloy AZ61 ภายใต้สภาวะควบคุมในห้องปฏิบัติการ	
	(ความชื้นสัมพัทธ์ 55%, 20°C) R = 0.1, ΔK = 3.02 ณบริเวณ	
	ΔK -increasing test	64
4.16	แสดงภาพ Fractograph ผลของ EDS mapping และ EDS surface and	
	quantitative analysis ของ magnesium alloy AZ61 ภายใต้สภาวะควบคุม	
	ในห้องปฏิบัติการ (ความชื้นสัมพัทธ์ 55%, 20°C) R = 0.7, ΔK = 0.78	
	ณบริเวณ ΔK -decreasing test	65

4.17	แสดงภาพ Fractograph ผลของ EDS mapping และ EDS surface and	
	quantitative analysis ของ magnesium alloy AZ61 ภายใต้สภาวะควบคุม	
	ในห้องปฏิบัติการ (ความชื้นสัมพัทธ์ 55%, 20°C) R = 0.7, ΔK = 4.33	
	ณบริเวณ ΔK -increasing test	66
4.18	แสดงภาพ Fractograph ผลของ EDS mapping และ EDS surface and	
	quantitative analysis ของ magnesium alloy AZ61 ภายใต้สภาวะการฉีด	
	ละอองโซเดียมคลอไวด์ 3.5% R = 0.1, ΔK = 1.47 ณบริเวณ	
	ΔK -decreasing test	67
4.19	แสดงภาพ Fractograph ผลของ EDS mapping และ EDS surface and	
	quantitative analysis ของ magnesium alloy AZ61 ภายใต้สภาวะการฉีด	
	ละอองโซเดียมคลอไวด์ 3.5% R = 0.1, ΔK = 4.19 ณบริเวณ	
	ΔK -increasing test	68
4.20	แสดงภาพ Fractograph ผลของ EDS mapping และ EDS surface and	
	quantitative analysis ของ magnesium alloy AZ61 ภายใต้สภาวะการฉีด	
	ละอองโซเดียมคลอไวด์ 3.5% R = 0.7, ΔK = 0.98 ณบริเวณ	
	ΔK -decreasing test	69
4.21	แสดงภาพ Fractograph ผลของ EDS mapping และ EDS surface and	
	quantitative analysis ของ magnesium alloy AZ61 ภายใต้สภาวะการฉีด	
	ละอองโซเดียมคลอไวด์ 3.5% R = 0.7, ΔK = 3.68 ณบริเวณ	
	ΔK -increasing test	70