

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อ (1) ศึกษาคุณลักษณะของน้ำประปา น้ำรีเวอร์สօอสโนชิสที่ผลิตได้ และน้ำรีเวอร์สօอสโนชิสที่ถูกนำไปใช้ในหอทำความเย็น (2) ศึกษาคุณลักษณะของน้ำบาราญ์ ซึ่งได้จากการกระบวนการผลิตน้ำรีเวอร์สօอสโนชิส โดยการเบรเยนเทบประสีทิพิภากก่อนแล้ว หลังทำการแยกปริมาณตะกรันที่อยู่ในน้ำบาราญ์ที่ถูกนำไปใช้ในหอทำความเย็นด้วยวิธีอิเล็กโทร ไอลชิส

การวิจัยเชิงทดลองนี้แยกปริมาณตะกรันในน้ำบาราญ์ โดยทำการต่ออุปกรณ์แยกตะกรันเข้ากับห้องตัวหอทำความเย็นน้ำบาราญ์ในหอทำความเย็นจะ ไอลชิส โดยการทำงานของปั๊ม ทำการจ่ายไฟฟ้ากระแสตรงที่กระแสสูงสุด 25 แอมป์เร็ว แรงดันสูงสุดไม่เกิน 50 โวลท์ เข้าที่ข้ออิเล็กโทร ซึ่งประกอบด้วยข้อบาก 2 ข้อและข้อลุบที่เป็นผนังของอุปกรณ์แยกตะกรัน ทำการเก็บตัวอย่างน้ำบาราญ์ที่ผลิตได้จากการกระบวนการรีเวอร์สօอสโนชิสและตัวอย่างน้ำบาราญ์หลังผ่านอุปกรณ์แยกตะกรันเพื่อทำการวิเคราะห์พารามิเตอร์ ได้แก่ ค่าความเป็นกรด-ค่าง ความนำไฟฟ้า ความกระต้างหึ้งหมน ความกระต้างแคลเซียม เหล็กหึ้งหมน คลอไรด์อ่อน และแมกนีเซียม ทำการวิเคราะห์พารามิเตอร์ทุกตัว 3 ครั้ง ผลิตที่ใช้ในการวิเคราะห์ข้อมูลได้แก่ ค่าเฉลี่ย และการทดสอบที่

ผลการวิจัยพบว่า (1) คุณลักษณะของน้ำประปาอยู่ในเกณฑ์มาตรฐาน สำหรับน้ำรีเวอร์สօอสโนชิสที่ผลิตได้ มีค่าความเป็นกรด-ค่างเท่ากับ 6.1 และไม่พบความกระต้างแคลเซียมและคลอไรด์อ่อนที่เหลืออยู่ ส่วนคุณลักษณะของน้ำรีเวอร์สօอสโนชิสที่ใช้ในหอทำความเย็น พบว่ามีค่าความเป็นกรด-ค่างลดลงเหลือเท่ากับ 5.9 ความนำไฟฟ้า ความกระต้างหึ้งหมน ความกระต้างแคลเซียม เหล็กหึ้งหมน คลอไรด์อ่อนและแมกนีเซียมมีค่าเพิ่มขึ้น (2) คุณลักษณะของน้ำบาราญ์ที่ได้จากการผลิตน้ำรีเวอร์สօอสโนชิสก่อนแยกตะกรันเบรเยนเทบกับน้ำบาราญ์ที่นำไปใช้ในหอทำความเย็นหลังแยกตะกรันด้วยวิธีอิเล็กโทร ไอลชิส พบว่า ค่าความเป็นกรด-ค่างในน้ำบาราญ์หลังผ่านอุปกรณ์แยกตะกรันเพิ่มขึ้นร้อยละ 1.2 ความนำไฟฟ้าเพิ่มขึ้นร้อยละ 2.6 ความกระต้างหึ้งหมนเพิ่มขึ้นร้อยละ 1.3 ค่าเหล็กหึ้งหมนเพิ่มขึ้นร้อยละ 0.7 คลอไรด์อ่อนเพิ่มขึ้นร้อยละ 3.4 แมกนีเซียมเพิ่มขึ้นร้อยละ 1.7 และพบว่า ประสีทิพิภากกของอุปกรณ์แยกตะกรันในน้ำบาราญ์ด้วยวิธีอิเล็กโทร ไอลชิสสามารถลดความกระต้างแคลเซียมลงได้ร้อยละ 4.7

ABSTRACT**206376**

The purposes of the research were to (1) study the characteristics of tap water, produced reverse osmosis water, reverse osmosis water used in cooling tower; and (2) study the characteristics of brine water produced by reverse osmosis process by comparing the efficiency before and after removing scale in brine water used in a cooling tower by electrolysis method.

This experimental research was studied by removing scale in brine water by connecting scale removal equipment to cooling tower piping. The brine water used in the cooling tower would be circulated by pump Supplying DC (direct current) of maximum current 25 Ampere, maximum voltage not over 50 volt to 2 anodes and 1 cathode at the wall of scale removing equipment. Brine water sample produced by the reverse osmosis process and brine water sample after passing scale removing equipment were collected in order to analyze various parameters including pH, electric conductivity, total hardness, calcium hardness, total iron, chloride ion and magnesium. These parameters were analyzed three times. Statistics used for data analysis were mean and t-test.

The results of the studies showed that (1) the characteristics of tap water was within the standard. The produced reverse osmosis water contained pH of 6.1. No calcium hardness and chloride ion in the produced reverse osmosis water. The characteristics of reverse osmosis water used in cooling tower was found that pH was reduced to 5.9, electric conductivity, total hardness, calcium hardness, total iron, chloride ion and magnesium were increased; and (2) the characteristics of brine water produced from reverse osmosis water process before removing scale compared with brine water used in cooling tower after removing scale by electrolysis method was found that pH in brine water after passing scale removing equipment was increased 1.2%, electric conductivity was increased 2.6%, total hardness conductivity was increased 1.3%, total iron was increased 0.7%, chloride ion was increased 3.4%, magnesium was increased 1.7%. The scale removing equipments by electrolysis method had the efficiency of calcium hardness reduction 4.7%.