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Computing ruin probability and minimum initial capital by simulation
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Abstract

In this paper, we propose a new approximation method to obtain the ruin probability by modifying the Pollaczek-
Khinchin approximation. The proposed approximation is simpler and requires fewer assumptions than other methods
mentioned in the literature. The results from a simulation study show that, in some cases, the proposed method gave better
ruin probability values in terms of the overall deviation from the exact values. Insurance companies are interested in
calculating the initial capital by using ruin probability and so, with this in mind, we applied the proposed method to estimate
the minimum initial capital that must be reserved to ensure that the ruin probability does not exceed an acceptable quantity.
To illustrate the performance of our approximation, we estimated the ruin probability and the minimum initial capital with
real data from an insurance company.
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1. Introduction

This study is concerned with the probability of ruin
in  a  classical  compound  Poisson  continuous  time  surplus
process. The surplus process at time t  defined as

    ,U t u ct S t   (1)
where u is the initial capital, c is the rate of premium income
per unit of time, and the aggregate claim process  S t 

 1 2 ... ,N tX X X    where  N t  is the number of claims
at time t. The number of claims process   ; 0N t t   is
assumed to be a Poisson process with intensity 0.   The
sequence of claim sizes  ; 1, 2, , ( )iX i N t   is assumed
to  be  a  sequence  of  positive  independent  and  identically
distributed (i.i.d.) random variables with distribution function

XF  and a finite mean   1 ,iE X p  and are independent of
( ).N t  The premium rate c is calculated using the expected

value premium principle, i.e.

  11 ,c p   (2)
where 0   is the relative security loading. The risk of
insolvency,  which  is  when  the  surplus  of  an  insurance
company becomes less than zero with a given initial capital
u or the probability of ruin over infinite time, is defined as

      0, 0 0 .u Pr U t for some t U u     (3)
The ruin probability when the surplus process is based

upon a compound Poisson aggregate claims process with
the claim amounts distribution being exponential with mean

1 1 /p   or  Expo   is in the form

  1
exp
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u
u




 




 
 
 
 

(4)

for all initial capital 0.u   See pp. 414-415 in Bowers et al.
(1997)  for  details.  For  the  claim  amounts  distributed  as
gamma with shape 2 and scale 1/   or  2, ,Gamma   the
ruin probability in Yuanjian et al. (2003) is derived as follows:
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where    2

1 2 4 / 2c c c         and

   2

2 2 4 / 2 .c c c       

However, for other claim amounts distributions, ruin
probabilities are not easy to obtain. Thus, approximations for
ruin probability are of interest. There are many approximation
methods  to  obtain  the  ruin  probability,  but  only  three  are
discussed here: the De Vylder approximation in De Vylder
(1978), the Bowers approximation in Bowers et al. (1997), and
the  Pollaczek-Khinchin  approximation  in  Asmussen  and
Binswanger (1997).

1.1 The De Vylder approximation

This approximation is based on the idea of replacing
the surplus process with a surplus process of exponentially
distributed  claim  amounts  so  that  the  first  three  moments
coincide. Subsequently,

  1
exp ,

1 1DV

u
u




 




 
 
 
 

 

  (6)

where    2

1 3 2 2 32 / 3 , 3 /p p p p p      and ,j

j ip E X   
for 1, 2,3.j   When  the  claim  amounts  distribution  is
exponential,  DV u  is equal to   .u  It should be noted
here that the De Vylder approximation requires the existence
of the first three moments of the claim amounts distribution.

1.2 The Bowers approximation

The  well-known  Lundberg  upper  bound  of  ruin
probability  is  defined  from  the  right  hand  side  of  the
inequality below:

  Ruu e  (7)

for any initial capital 0,u   and the adjustment coefficient
R is defined as the smallest positive root of

      
    1.r S t ct rct

S t ct S tM r E e e M r 


     (8)

The ruin probability  u  is a non-increasing function in u,
so that its lower bound, defined on p. 415 in Bowers et al.
(1997), is

 
1

0
1

.





(9)

The  Bowers  approximation  uses  the  fact  that
   11 ,Ruu e

     giving  the  approximated  ruin
probability as

  1
.

1
Ku

B u e





(10)

To obtain a reasonable constant K, the process of aggregate
claims over premiums received   S t ct  is considered.

Let  ; 1iT i   be the sequence of timing of claims corres-
ponding to claim amounts  ; 1 .iX i   Thus, the process

  S t ct  decreases with slope c and jumps at each iT  for
1, 2, 3,i     Let  M  be  the  number  of  claims  where  the

process    S t ct  becomes maximum at .MT  Let 1Y  be
the value of the process   S t ct  that reaches above zero
for the first time. Next, let 2Y  be the value of 1Y  excess that
reaches  above  the  value  of 1Y  for the first time. Variables

3 4, ,Y Y   are sequentially defined in the same way. Let N be
the number of iterations of the process   S t ct  carried
out  in  this  sequence.  It  is  obvious  that .N M  Thus,
a  maximal  of  the  process   S t ct  or  the  maximal
aggregate loss L is illustrated as

   1 2
0

max .N
t

L S t ct Y Y Y


      (11)

The values ,kY  for 1, 2, , ,k N   are called new record highs
and the number N is called the number of new record highs.
Figure 1 shows a graph of L for 5M   and 3.N 

Since  a  stationary  and  independent  increment  of
process  S t  is assumed,  kY  is a sequence of independent
and identically distributed variables with the density

    1/ ,Y Xf y F y p (12)

where    1X XF y F y   and 1p  is the expected value of
the claim amounts. The number of new record highs N is
geometric  distributed  with  parameter  1 0 ,   and  its
probability mass function is

       
11

1 0 0 ,
1

Pr
n

nN n   







    
 
 

(13)

where 0,1,2,...n   The ruin probability in infinite horizon
time in (3) can be represented in the form of a distribution
function of L derived as follows:

       
0

Pr( ) 1max ,
t

LS t ct uuu Pr L F u


    

(14)
where LF  is a distribution function of the maximal aggregate
loss  L.  The  constant  K  in  (10)  is  chosen  such  that  the
approximated value conforms to

       2
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So that reasonable K  is
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and the Bowers approximation in (10) becomes



441P. Paksaranuwat & S. Chongcharoen / Songklanakarin J. Sci. Technol. 39 (4), 439-449, 2017

 
1

2

2
11

( ) .
1B

p
u

pu e










See  pp.  418-423  in  Bowers  et  al.  (1997)  for  details.  One
advantage of the Bowers approximation over the De Vylder
approximation is that it requires only the first two moments
of the claim amounts distribution.

1.3 The Pollaczek-Khinchin approximation

This algorithm only requires the first moment of the
claim amounts distribution, and the method is based on a
Monte Carlo simulation using (14). To obtain  1 LF u  in
(14), first define the density Yf  as in (12) and generate the
number of new record highs N with a density as in (13). Next,
generate a sequence of new record highs  1 2, , , NY Y Y  with

.Yf  Let 1 2 NL Y Y Y      and define an indicator Z as

0 ; ,

1 ; ,

L u
Z

L u










(17)

where     .E Z u  Repeat this process n times, so we

have 1 2, , , nZ Z Z   and 
1

/
n

i
i

Z Z n


  converges to  u
as n is large. The algorithm for computing the approximation
of the ruin probability can be presented as follows:

1. Assume XF  is known. Obtain the density Yf  from
     11 / .Y Xf y F y p 

2. Set the number of iterations n to be some large
number. Generate , 1, 2, ,iN i n   from   ,Geometric q
where  / 1 ,q     and set it to be the number of new
record highs.

3. Generate ,i
jY  for 1, 2, , ,i n   1, 2, , ,ij N 

from the density Yf  of step 1 and obtain 1 ... .
i

i i

i NL Y Y  

4. For each i, if ,iL u  then 1,iZ   otherwise
0.iZ 

5. Calculate 
1

/ .
n

i
i

Z Z n



6. Increase the number of iterations n and repeat steps

1 to 5 until Z  remains constant.
The above algorithm describes the steps for the

Pollaczek-Khinchin approximation denoted by   .PK u Z 
One difficulty of this method is at the step of simulating
 1 2, , ,

i

i i i

NY Y Y  with density .Yf  For example, when the claim
amounts distribution is  ,Gamma    with shape parameter
  as an integer, the density Yf  can be derived to the density
of a mixture of   gamma distributions with equal weights
1 / ,  scale parameter , and shape parameters  1, 2, , .
However, when shape parameter  is non-integer, to simulate
the amount of each new record high  1 2, , ,

i

i i i

NY Y Y  with Yf
is complicated. In this study, we propose a simple algorithm
to approximate  u  based on the amount of each new
record high  1 2, , , .

i

i i i

NY Y Y

2. The Proposed Modified Ruin Probability Approximation

The  main  objective  of  this  study  is  to  present  an
algorithm to simulate the amount of each new record high
 1 2, , ,

i

i i i

NY Y Y  for the thi  loop without density Yf  and
apply this algorithm to real data. We represent the timing of
claims in the form of 1 ... ,n nT W W   1, 2,3, ,n    and

nW  is the time difference between consecutive claims nT  and
1.nT   For the Poisson claims number process with intensity

0,   1 2, ,W W    is a sequence of i.i.d. random variables
with   .Expo 

To simulate the amount of the first new record high 1 ,Y
we generate the time difference between consecutive claims
 1 2, ,W W    and  the  claim  amount  random  variables
 1 2, , .X X   We compute the timing of claims 1 ...j jT W W  

and the value of process    ,S t ct  for 1 2, , ,t T T   until
the process   S t ct  reaches above the zero level for the
first time.

However, it is possible that the process    ,S t ct
which computes forms  1 2, ,W W   and  1 2, , ,X X   does
not reach above the zero level at any time t. To mitigate this,
we set a large positive integer D to be the limit on the number
of simulated claims; the constant D also refers to the number
of elements to truncate. Let TD be the timing of the claim that
correspond to D. When the process   ; 0 DS t ct t T  
reaches above the zero level at least once, then let 1,DY  be
the value of the process   ; 0 DS t ct t T    that reaches
above zero for the first time.

Theorem 1 If the number of truncated elements D is large,
then 1,DY  converges in distribution to the first order of new
record highs Y1.

Figure 1. Maximal aggregate loss when the number of new record
highs N = 3.
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From Theorem 1, we can approximate Y1 by 1, .DY  The
sequence  of  new  record  highs  1 2, , , NY Y Y  is  an  i.i.d.
sequence of random variables, and so 1,DY  converges in
distribution to Y1, for 2, 3, ..., ,i N  when D is large. Too
simulate the amount of each new record high  1 2, , ,

i

i i i

NY Y Y
for  the  thi  loop,  generate  the  time  difference  between
consecutive claims  1 2, , , DW W W  from i.i.d.  Exp   and
the claim amount random variables  1 2, , , DX X X  with

.XF  We compute the timings of the claims  1 2, , , DT T T
from  1 ...j jT W W     and  let  1,

i
DY   be  the  value  of  the

process   ; 0 DS t ct t T    that reaches above zero for
the first time. If the process   S t ct  does not reach above
zero for all 0 ,Dt T   then repeatedly generate the timings
of the claims and the claim amount random variables until

1,
i
DY   occurs.  We  approximate  1

iY   by  1,
i
DY   and  repeat  this

process until the values  2 , 3, ,, , ,
i

i i i

D D N DY Y Y  that approximate
 2 3, , ,

i

i i i

NY Y Y  are obtained. In a real situation where the
claim  amounts  distribution  XF   is  unknown,  we  would
approximate  XF   based  on  real  claim  amounts  data.  The
proposed algorithm to obtain an approximation of the ruin
probability is as follows:

1. Approximate XF  based on real data.
2. Set  the  number  of  iterations  n  and  number  of

truncated elements D to be some large number. Generate
, 1, 2, ,iN i n   from   ,Geometric q  where  / 1 ,q   

and set them to be the number of new record highs.
3. Generate sequence  1 2, , , DW W W  from i.i.d.

 Exp   and  1 2, , , DX X X  with .XF  Let 1 ...j jT W W  
and 1 ...j jS X X    be the timings of the claims and the
values of the claims process, respectively. Compute the value
of the process   ; 0 DS t ct t T    by  ,j j jV S cT   for

1, 2, , .j D 
4. If 0jV   for some 1, 2, , ,j D   then let 

1,

i

DY  be
the first jV  above zero, else repeat step 3.

5. Obtain  the  amount  of  2, 3, ,{ , ,..., }
i

i i i

D D N DY Y Y   by
repeating steps 2 to 4 and let , 1, ,... .

i

i i

i D D N DL Y Y  
6. For each i, if , ,i DL u  then 1,iZ   otherwise

0.iZ 

7. Calculat e 
1

/ .
n

i
i

Z Z n



8. Increase n and D, and repeat steps 1 to 5 until Z

remains constant.
We use the proposed approximation  M u Z   to

approximate    , .i i DE Z LPr u   From Theorem 1 and
the fact that  1 2, , ,

i

i i i

NY Y Y  is a sequence of i.i.d. random
variables,  1, 2, ,, , ,

i

i i i

D D N DY Y Y  converges in distribution to
 1 2, , ,

i

i i i

NY Y Y  when D is large, so that  ,i Dr LP u 

 1, ,...
i

i i

D N DPr Y Y u    converges to  1 ...
i

i i

NY Y uPr    

  .u  Thus,  M u  converges to   u  when n and D
are large.

2.1 Numerical  evaluation  of  the  ruin  probability  approxi-
mation

To  measure  the  performance  of  the  proposed
algorithm, we used a numerical evaluation. The claim amounts
distributions Expo(1), Expo(2), Gamma(2,1), and Gamma
(2,2) whose exact ruin probabilities are obtained by (4) and
(5),  were  considered.  We  compared  approximated  values
from  the  proposed  method  and  the  previously  reported
methods  using  their  maximum  absolute  errors  defined a s

   ˆmax u u   for any approximation  ˆ .u  Moreover,,
we also compared all approximated values with the Lundberg
upper bound of ruin probability in (7).

We  set  the  security  loading  0.1, 0.3, 0.5,    the
intensity  of  the  number  of  claims  process  1,    and  the
initial capital 0,5,10, ,30.u    For the approximation based
on simulation, we set the number of iterations 500, 000.n 
For  the  proposed  approximation,  we  set  the  number  of
truncated elements 100.D   The comparisons are shown in
Tables 1-4.

When the claim amounts distribution is exponential,
 DV u  and  B u  are equal to the exact ruin probability

  .u  The results shown in Tables 1 and 2 show that  PK
u

and  M u  were close to the exact ruin probability  u
and none of them were higher than .Rue  That means both of
them gave reasonable values.

The maximum absolute error results in Tables 3 and 4
show that, when the claim amounts distribution was gamma,

 M u  performed the best in terms of overall deviation from
the exact value. Moreover, all of the values of  M u  were
within Rue  whereas most values of  PK u  were higher than

Rue  when the security loading   was large. The value of
 DV u  gave the highest maximum absolute error because

there were more derivations between   0  and  0 .DV
When the initial capital 0,u   both of   M u  and  DV u
gave similar results overall. However, in the case where the
first three moments of claim amounts distribution did not
exist,  DV u  was undefined.

3. Minimum Initial Capital

The minimum initial capital is defined in Pairote et al.
(2013) as follows:

Definition 1 Let   , 0U t t   be a surplus process which is
driven by the compound Poisson claim process   , 0S t t 
and  0c    be  the  premium  rate.  For  any   0,1 ,    let

0u   be the initial capital. If   ,u   then u is called
an  acceptable  initial  capital  level  corresponding  to

   , , , 0 .c S t t   In particular, if
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Table 1. Comparison of the approximate ruin probability with the exact ruin
probability ( )u  and the Lundberg upper bound for claim amounts
distribution Expo (1).

 R u  u Rue  PK u  M u

0.1 0.0909 0 0.9091 1.0000 0.9092 0.9092
5 0.5770 0.6347 0.5774 0.5782
10 0.3663 0.4029 0.3670 0.3659
15 0.2325 0.2557 0.2326 0.2333
20 0.1476 0.1623 0.1485 0.1472
25 0.0937 0.1030 0.0936 0.0939
30 0.0595 0.0654 0.0597 0.0594

0.3 0.2308 0 0.7692 1.0000 0.7691 0.7697
5 0.2426 0.3154 0.2424 0.2423
10 0.0765 0.0995 0.0764 0.0771
15 0.0241 0.0314 0.0243 0.0239
20 0.0076 0.0099 0.0075 0.0078
25 0.0024 0.0031 0.0024 0.0024
30 0.0008 0.0010 0.0008 0.0008

0.5 0.3333 0 0.6667 1.0000 0.6656 0.6677
5 0.1259 0.1889 0.1262 0.1250
10 0.0238 0.0357 0.0239 0.0240
15 0.0045 0.0067 0.0045 0.0045
20 0.0008 0.0013 0.0008 0.0009
25 0.0002 0.0002 0.0002 0.0002
30 0.0000 0.0000 0.0000 0.0000

                             Maximum Absolute Error 0.0011 0.0013

0.5   is not considered because most  u  will be zero.

  *

0
min :

u
u u u


 


  (18)

exists, *u  is called the minimum initial capital corresponding
to    , , , 0 .c S t t 
Lemma 1 Let non-ruin probability    1 ,u u    then
the transformation through function  g t  dened for 0 1t 
by    1 .g t t   We have the rst derivative of g as

   
  

1

1

1
.

d
g t t

dt t


 



  



Theorem 2  Let   1 2, ,L L    be  a  sequence  of  maximal
aggregate loss with each , 1, 2, ,jL j n   being indepen-
dent random variables and distributed according to non-ruin
probability    1 .u u    Let   1nL

  be the  1 thn 
order statistic based on  1 2, , , nL L L  and  / 1 .   

Therefore,

     
 

*

1 2*

1
0, .

d

nn L u W N
u

 



 





 



 
 
    



From our idea of proposed approximation of the ruin prob-
ability, we apply percentile estimation using Monte Carlo
simulation to obtain the computed approximation of  * .u  The
algorithm is as follows:

1. Approximate XF  based on real data.
2. Set the numbers of iterations , ,n m  and number of

truncated elements D to be some large numbers. Generate
, 1, 2, ,iN i n   from   ,Geometric q  where  / 1 ,q   

and set them to be the number of new record highs.
3. Generate sequence  1 2, , , DW W W  from i.i.d.

 Exp   and  1 2, , , DX X X  with .XF  Let 1 ...j jT W W  
and 1 ...j jS X X    be the timing of claims and values
of the claims process, respectively. Compute the value of
the process   ; 0

D
S t ct t T    by  ,j j jV S cT   for

1, 2, , .j D 
4. If 0jV   for some 1, 2, , ,j D   then let 1,

i
DY  be

the first jV  above zero, else repeat step 3.
5. Obtain  the  amount  of  2, 3, ,{ , ,..., }

i

i i i

D D N DY Y Y   by
repeating steps 2 to 4 and let , 1, ,... .

i

i i

i D D N DL Y Y  
6. Repeat steps 2 to 6 m times.
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Table 2. Comparison of the approximate ruin probability with the exact ruin
probability ( )u  and the Lundberg upper bound for claim amounts
distribution Expo (2).

 R u  u Rue  PK u  M u

0.1 0.1818 0 0.9091 1.0000 0.9092 0.9095
5 0.3663 0.4029 0.3672 0.3653
10 0.1476 0.1623 0.1482 0.1478
15 0.0595 0.0654 0.0592 0.0594
20 0.0240 0.0263 0.0238 0.0239
25 0.0097 0.0106 0.0097 0.0095
30 0.0039 0.0043 0.0040 0.0040

0.3 0.4615 0 0.7692 1.0000 0.7691 0.7696
5 0.0765 0.0995 0.0760 0.0764
10 0.0076 0.0099 0.0076 0.0076
15 0.0008 0.0010 0.0008 0.0008
20 0.0001 0.0001 0.0001 0.0001
25 0.0000 0.0000 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000

0.5 0.6667 0 0.6667 1.0000 0.6671 0.6665
5 0.0238 0.0357 0.0236 0.0237
10 0.0008 0.0013 0.0009 0.0008
15 0.0000 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000 0.0000
25 0.0000 0.0000 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000

                             Maximum Absolute Error 0.0009 0.0010

0.5   is not considered because most  u  will be zero.

7. Let ju  be the   1 thm   smallest observation
in 

1 2, , ,, , ..., .
mN D N D N DL L L

8. Repeat steps 2 to 7 n times.

9. Estimate *u  by 
1

/ .
n

j

j

u u n 



10. Increase , ,n m  and D, and repeat steps 2 to 9

until  u   remains  constant.  From  Theorems  1  and  2,  u

converges to *u  as , ,n m  and D, become large.

 3.1 Performance evaluation of the proposed approximation

We  evaluated  the  performance  of  the  proposed
approximation,  u   it  numerically.  The  claim  amounts
distributions  1 ,Expo   2 ,Expo   2,1 ,Gamma  and Gamma
(2,2),  that obtained the  minimum initial capital *u  by setting
(4) and (5) equal to , were used. From the Lundberg upper
bound (7) and the fact that the ruin probability is a non-
increasing function in u, that means the upper bound of the
minimum initial capital can derived as follows:

  **

* ln
.

,Rueu

u
R







 



 

 (19)

If the simulation results show that the proposed estimate
is greater than the upper bound for any cases, then the
proposed estimator is considered not reasonable. We set the
security loading 0.1, 0.3, 0.5,   the intensity of the number
of claims process 1,   the acceptable level 0.05, 0.1, 0.2, 
the numbers of iterations 5, 000, 1, 000m n   and 100.D 
The comparison of the proposed estimator u  and the upper
bound of the minimum initial capital are shown in Table 5.

From Table 5, we can see that the proposed estimator
u  was close to the exact minimum initial capital *u  when
the claim amounts distribution was exponential or gamma.
Moreover, all of the values u  were within the upper bound of
the minimum initial capital. Thus, the proposed approximate
u  is reasonable for the minimum initial capital.
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4. Application of the Approximation to Real Data

Data from a motor insurance company was used. When
looking at the data from 2013, this company had an average
number  of  motor  insurance  claims  of  13.1275  cases  per
month. The number of claims distribution of this company
was Poisson with parameter =13.1275.  To obtain the claim
amounts distribution that the company will face, 100 costs
data  form  from  five  dealer  garages  were  collected,  and
the claim amounts fitted to a Pareto distribution with the
following density:

1
( ) ,  0,  0,Xf x x

x






 


   

and  /i iE X i      where .i   Two parameters
of the Pareto distribution were estimated by the maximum
likelihood estimator method and found to be 0.6475   and

2.5680.   By Kolmogorov-Smirnov test, the Pareto claim
amounts distribution was accepted with a p-value of 0.0592.

Since  the  first  three  moments  of  the  claim  amounts
distribution are undefined, the De Vylder approximation and
the Bowers approximation cannot be applied to this claim
amounts data. However, we were able to use the proposed

method  since  it  does  not  require  the  second  and  third
moments of the claim amounts distribution. In order to set a
premium rate dependent on the expected value of claim
amounts distribution, we used the sample mean of the claim
amounts data to estimate it. The approximate ruin probability

Table 3. Comparison of the approximate ruin probability with the exact ruin probability ( )u  and
the Lundberg upper bound for claim amounts distribution Expo (2,1).

 R u  u Rue  DV u  B u  PK u  M u

0.1 0.0613 0 0.9091 1.0000 0.9184 0.9091 0.9090 0.9091
5 0.6767 0.7360 0.6762 0.6714 0.6237 0.6773
10 0.4982 0.5417 0.4979 0.4959 0.4391 0.4991
15 0.3668 0.3987 0.3666 0.3663 0.3224 0.3679
20 0.2700 0.2935 0.2699 0.2705 0.2420 0.2703
25 0.1988 0.2160 0.1987 0.1998 0.1849 0.1995
30 0.1463 0.1590 0.1463 0.1476 0.1433 0.1467

0.3 0.1584 0 0.7692 1.0000 0.7895 0.7692 0.7702 0.7692
5 0.3600 0.4529 0.3585 0.3564 0.3204 0.3600
10 0.1631 0.2052 0.1628 0.1652 0.1511 0.1626
15 0.0739 0.0929 0.0739 0.0765 0.0793 0.0736
20 0.0335 0.0421 0.0336 0.0355 0.0448* 0.0332
25 0.0152 0.0191 0.0152 0.0164 0.0258* 0.0154
30 0.0069 0.0086 0.0069 0.0076 0.0159* 0.0069

0.5 0.2324 0 0.6667 1.0000 0.6923 0.6667 0.6680 0.6667
5 0.2199 0.3129 0.2184 0.2195 0.1971 0.2191
10 0.0688 0.0979 0.0689 0.0722 0.0710 0.0692
15 0.0215 0.0306 0.0217 0.0238 0.0301 0.0213
20 0.0067 0.0096 0.0069 0.0078 0.0142* 0.0067
25 0.0021 0.0030 0.0022 0.0026 0.0070* 0.0020
30 0.0007 0.0009 0.0007 0.0008 0.0038* 0.0006

                                Maximum Absolute Error 0.0256 0.0053 0.0591 0.0011

*the approximate exceeds the Lundberg upper bound

Figure 2. Claim modeling with 100 costs data from five dealer
garages.
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and minimum initial capital for this company are shown in
Tables 6 and 7, respectively.

5. Conclusions

When the claim amounts distribution is exponential or
closely related to it, the ruin probability over infinite time with
a classical continuous time surplus process exists. However,
for other claim amounts distributions, the approximate
ruin  probability  is  used.  In  this  study,  we  proposed  a  new
simple approximate ruin probability for any claim amounts
distribution. The numerical studies showed that almost all
of  the  approximated  ruin  probability  by  the  proposed
approximation  is  reasonable  and  close  to  the  exact  ruin
probability. In some situations, the proposed method gave
better  approximated  values  than  other  previously  reported
approximation methods.

By  application  of  the  proposed  ruin  probability
approximation, we propose the approximate minimum initial
capital  for  any  claim  amounts  distribution.  The  numerical
study showed that the proposed approximation was close
to the exact minimum initial capital. Therefore, our proposed
approximation  is  reasonable  and  useful  for  reserving  the
initial capital for managing the ruin probability of companies

Table 4. Comparison of the approximate ruin probability with the exact ruin probability ( )u  and
the Lundberg upper bound for claim amounts distribution Expo (2,2).

 R u  u Rue  DV u  B u  PK u  M u

0.1 0.1225 0 0.9091 1.0000 0.9184 0.9091 0.9077 0.9091
5 0.4982 0.5420 0.4979 0.4959 0.4408 0.4986
10 0.2700 0.2938 0.2699 0.2705 0.2408 0.2710
15 0.1463 0.1592 0.1463 0.1476 0.1424 0.1472
20 0.0793 0.0863 0.0793 0.0805 0.0889* 0.0800
25 0.0430 0.0468 0.0430 0.0439 0.0574* 0.0432
30 0.0233 0.0253 0.0233 0.0240 0.0381* 0.0236

0.3 0.3168 0 0.7692 1.0000 0.7895 0.7692 0.7687 0.7684
5 0.1631 0.2052 0.1628 0.1652 0.1506 0.1638
10 0.0335 0.0421 0.0336 0.0355 0.0444 0.0334
15 0.0069 0.0086 0.0069 0.0076 0.0161* 0.0066
20 0.0014 0.0018 0.0014 0.0016 0.0064* 0.0014
25 0.0003 0.0004 0.0003 0.0004 0.0028* 0.0003
30 0.0001 0.0001 0.0001 0.0001 0.0014* 0.0001

0.5 0.4648 0 0.6667 1.0000 0.6923 0.6667 0.6662 0.6663
5 0.0688 0.0979 0.0689 0.0722 0.0713 0.0689
10 0.0067 0.0096 0.0069 0.0078 0.0143* 0.0068
15 0.0007 0.0009 0.0007 0.0008 0.0037* 0.0006
20 0.0001 0.0001 0.0001 0.0001 0.0012* 0.0001
25 0.0000 0.0000 0.0000 0.0000 0.0004* 0.0000
30 0.0000 0.0000 0.0000 0.0000 0.0001* 0.0000

                                Maximum Absolute Error 0.0256 0.0034 0.0574 0.0010

*the approximate exceeds the Lundberg upper bound

over  innite  time  since  it  was  not  greater  than  the  given
quantity.
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Appendix

Proof of Theorem 1. Let 
1 ,DYF  and 

1YF  be distribution functions of 1,DY  and Y1 respectively, then

   
1 , 1,Pr

DY DF y Y y       Pr 0 0, 0 ,DS t ct y S t ct for some t T      

for some 0.y   When the number of truncated elements ,D    it is obviously that the time at which the thD  claim occurred

DT    as well. Thus

 
1 ,

lim
DY

D
F y


    lim Pr 0 0, 0 ,D

D
S t ct y S t ct for some t T


       

    Pr 0 0, 0 ,S t ct y S t ct for some t        

    Pr 0 0, 0 ,S t ct y S t ct for some t      

 
1

.YF y

Proof of Lemma 1. Let  1y t   iff   ,y t   then  y dy dt    and     1

1 1
.

dy

dt y t   
 

 

Proof of Theorem 2. Suppose the sequence of maximal aggregate loss consists of i.i.d. continuous random variables from

a distribution with non-ruin probability .  Let  nZ u  be a random variable dened for positive initial capital u by
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Subsequently,  iZ u  has the expectation       Pr i

iE Z u L u u    and the variance       2 1 ,u u u     and,

by the central limit theorem,

Table 7. The approximate minimum initial capital with real
data.

  u  (thousand baht)

0.1 0.10 84,335.98
0.20 27,070.93
0.30 12,432.430

0.3 0.10 20,448.590
0.20 6,129.938
0.30 2,521.029

0.5 0.10 11,875.940
0.20 3,380.349
0.30 1,255.261

Table  6. The approximate ruin probability with real data.

 u (thousand baht)  M u

0.1 0 0.9090
10 0.8860
20 0.8742
30 0.8649

0.3 0 0.7677
10 0.7273
20 0.7073
30 0.6922

0.5 0 0.6679
10 0.6222
20 0.5993
30 0.5833
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By Lemma 1, using the Delta method,
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and, by replacing u by the minimum initial capital * ,u  we have
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Now   1

nZ u   is a random variable that lies between the order   100 1 1 st
   and   100 1 th

  sample quantile that

can be written using order statistic notation as  [ 1 ] .nL
  In fact,

     
. .

1

1
0.

a s

n n
L Z u


 


 

It follows that

     
 

*

1 2*

1
0, ,

d

nn L u W N
u

 



 





 



 
 
    



and the proof of Theorem 2 is complete.


