ภาคผนวก

1. การเตรียมสารละลายสำหรับการทำ Immunocytochemistry

1.1	Phosphate Buffer	Saline (PBS) ความเข้มข้น	10 เท่า ปริมาตร 200 ml
	NaCl	17.52 g	

NaH ₂ PO ₄ .2H ₂ O	0.578 g
NaHPO ₄ .2H ₂ O	2.983 g

เทสารทั้งสามรวมกันในบีกเกอร์ 250 ml เติมน้ำกลั่น 100 ml คนให้ละลายแล้วปรับ pH=7.5 โดยใช้ pH meter วัด pH ปรับ pH ให้สูงโดยใช้สารละลาย NaOH และปรับ pH ให้ลดลง ใช้สารละลาย HCl หลังจากนั้นเทใส่ขวดปริมาตร 200 ml ปรับให้มีปริมาตร 200 ml

 Phosphate Buffer Saline (PBS) ปริมาณ 100 ml เจือจาง PBS ที่มีความเข้มข้น 10 เท่า โดยน้ำ 10xPBS 10 ml ผสมกับน้ำกลั่น 90 ml เขย่า ให้เข้ากัน เทใส่ขวดสารเคมีแล้วเก็บไว้ในตู้เย็น 4 °C

สารละลาย A : NaH₂PO₄.2H₂O สารละลาย B : NaOH สารละลาย C : CaCl₂ สารละลาย 1.0N NaOH 1.74 g ในน้ำกลั่น 100 ml 2.52 g ในน้ำกลั่น 100 ml 1.00 g ในน้ำกลั่น 100 ml 4.00 g ในน้ำกลั่น 100 ml

ชั่งสาร Paraformaldehyde 4 g (ใส่ถุงมือและทำในตู้กวัน) ใส่ขวด Erlenmeyer flask เติม สารละลาย B 17 ml และหยดสารละลาย 1.0N NaOH 2 หยด กวนสารละลายด้วยแท่งแม่เหล็ก ให้สารละลายหมด (สารละลายมีลักษณะใส ไม่มีสี) เติม glucose 1.2 g กวนให้ glucose ละลาย หมด เติมสารละลาย A 83 ml และเติมสารละลาย C 0.5 ml เติมทีละหยดและช้าๆจนหมด ปรับ pH ให้อยู่ในช่วง 6.8-7.2 วัดด้วย pH meter

1.4 สารละลาย 4% PBT (4% Triton, 2% BSA, 2% Normal Serum ใน PBS)

BSA	0.2 g
Triton x-100	400 µl
NS	200 µl
PBS	9.40 ml

ผสมสารทั้งหมดให้เข้ากันโดยคนด้วยแท่งแก้วแล้วแบ่งใส่ Eppendorf ละ 1 ml เก็บใน ดู้เย็น -20 ℃

 1.5
 สารละลาย 0.4% PBT (0.4% Triton, 2% BSA, 2% Normal Serum ใน PBS)

 BSA
 0.2 g

 Triton x-100
 40 μL

ผสมสารทั้งหมดให้เข้ากันโดยคนด้วยแท่งแก้วแล้วแบ่งใส่ Eppendorf ละ 1 ml เก็บใน ดู้เย็น -20 °C (เมื่อจะนำไปใช้จึงค่อยใส่ Normal Serum)

9.76 ml

1.6 เตรียม DAPI solution
 ผสม stock DAPI 100 µg กับน้ำ 100 µl และเขย่าให้เข้ากัน

1.7 เตรียม Working DAPI solution

PBS

ละลาย 3.6 g. Na, HPO, ในน้ำ 50,00 ml มาการ สัมวาปสียาสีกรี มาการ สัมวาปสียาสีกรี

2. การเตรียมสารละลายสำหรับการสกัด Glycosaminoglycans (GAGs) และการทำ Liquid Scintillation Couting

2.1	สารละลาย 0.3 M NaOH ปริมาตร 100 ml ชั่ง NaOH 1.2 g ละลายน้ำในขวคปริมาตร ขนาค 100 ml
2.2	สารละลาย 1% Potassium acetate ใน 95 % Ethanol ปริมาตร 100 ml ชั่ง CH ₃ COOK 1.000 g ละลายด้วย 95 % Ethanol ในขวคปริมาตรขนาด 100 ml
2.3	1 M Tris-HCl Buffer pH 8.0 ปริมาตร 50 ml ชั่ง Tris-(Hydroxymethyl)-aminomethane 6.057 g ปรับปริมาตรด้วยน้ำกลั่น50 ml แล้ว
เติม 1 M	THCI ปริมาตร 29.2 ml เก็บสารละลายที่ 4 °c

2.4 สารถะลาย pronase enzyme เป็มปั้น 5 mg ใน1ml ของ 1 M Tris-HCl Buffer pH 8

ชั่ง pronase enzyme 5 mg ละลายด้วย 1 M Tris-HCl Buffer pH 8.0 ใน eppendorf ขนาด 1 ml

2.5 เตรียม phosphor-detergent liquid scintillation mixture ที่ใช้ในการทำ Liquid

Scintillation

เตรียม TPM (toluene-phosphor mixture)

- 8 g VOV 2,5-diphenyl-oxazole + 50 mg VOV 1,4-bis-2'(s'-diphenyl-oxazoyl)benzene
- · ปรับปริมาตรด้วย toluene จนได้ 1 ลิตร
- un TPM 400 ml + triton-x 300 ml + methanol 20 ml

3. Preparation of chitosanbeads

1. chitosan highly vis. [2-amino-2-deoxy-(1-4)B-D glucopyranan] Biochemika Fluka

2. NaOH 0.2 M,

3. 1.0% acetic acid (CH₃COOH)

Preparation of chitosanbeads

1. น้ำ chitosan 20 g ละลายในสารละลายกรคอซิติก เข้มข้น 2% โคยปริมาตร 2. ละถายจนเข้ากันเป็นเนื้อเคียว กรองลารละลาย เอาส่วนที่ไม่ละลายออก ทิ้งให้ฟองอากาศ

- บรรจุสารละลาย chitosan ที่ได้ ในหลอดฉีดยาขนาด 10 cm³ ใช้เข็มฉีดยาเบอร์ 20 และ เบอร์ 24
- 4. หยุดสารละลาย chitosan ในหลอดฉีดยาเบอร์ 24 ลงใน สารละลาย NaOH เข้มข้น 0.2 M อย่างช้า กรองและเก็บเม็ด chitosan beads
- 5. หยุดสารละลาย chitosan ในหลอดฉีดยาเบอร์ 20 ลงใน สารละลาย NaOH เข้มข้น 0.25 M อย่างช้า กรอง และเก็บ chitosan beads ในที่เย็น
- 6. ตรวจดูลักษณะเม็ด chitosan ที่ได้โดยกล้องจุลทรรศน์ และ SEM

ขั้นตอนการเตรียมเม็ด ใค โตซาน

Preparetion of chitosan derivatives

1. cross-linked with glutadialdehyde

chemicals

- chitosan beads
- glutsdialdehyde (50%)
- methanal
- sodiumborohydride

Cross-linked with glutadialdehyde

นำ Chitosan beads ที่เตรียมได้ตากตอนที่1 จำนวน 56 g แช่ใน methanol 100 mL ทำ3ชุดการทดลอง ชุดที่ 1

- 1. เติม สารละลาย Glutadialdehyde เข้มข้น 25 % จำนวน 0.23 mL (0.6 mmol) คนทิ้งไว้ 6 ชั่วโมง
- 2. เติม Sodiumborohydride (NaBH₄) จำนวน 0.76 g (20mmol) Reaction mixture was reflux 4 hr
- ล้างด้วยethanol และน้ำกลั่น กรอง นำไปตรวจดูผิวสัมผัสด้วย กล้องจุลทรรศน์ และ SEM ชุดที่ 2
- 1. เติม สารละลาย Glutadialdehyde เข้มข้น 50 % จำนวน 0.46 mL (1.2 mmol) คนทิ้งไว้ 6 ชั่วโมง
- 2. เติม Sodiumborohydride (NaBH4) ขำนวน 0.76 g (20mmol) Reaction mixture was reflux 4 hr
- ล้างด้วยethanol และน้ำกลั่น กรอง นำไปตรวจดูผิวสัมผัสด้วย กล้องจุลทรรศน์ และ SEM ชุดที่ 3
- 1. เติม สารละลาย Glutadialdehyde เข้มข้น 50 % จำนวน 0.92 mL (2.4 mmol) คนทิ้งไว้ 6 ชั่วโมง
- 2. เติม Sodiumborohydride (NaBH₄) จำนวน 1.52 g (40mmol) Reaction mixture was reflux 4 hr
- 3. ล้างด้วย ethanol และน้ำกลั่น กรอง นำไปตรวจดูผิวสัมผัสด้วย กล้องจุลทรรศน์ และ SEM

ทำ Cross-link ด้วย Glutardialdehyde และ Benzaldehyde

นำไคโตซานบิคส์ที่ได้จากข้อ 3.1.1 มา 20 กรับ ใส่ในขวดกันกลม แติมสารละลาย Influtardialdehyde 82.08 แม้ Infland Infland มีการสะลาย เติม methanol 100 cm³ ทิ้งไว้ 6 ชั่วโมง

> เติม 0.5 NaOH 6 cm³ และ Benzaldehyde 1,000 μL ทิ้งไว้ 4 ชั่วโมง ล้างเม็ดบีดส์ที่ได้ด้วยเครื่องกรอง

การทำกราฟมาตรฐาน

การเตรียมสารละลาย

1) สารละลายมาตรฐานของไอออนฟอสเฟต

ละลาย KH₂PO₄ 219.5 mg ในน้ำกลั่น แล้วทำให้เป็น 1 dm³ ซึ่งจะมี ฟอสเฟตเข้มข้น 50 μg/cm³ ทำเจือจางลง 10 เท่า โดยปีเปตสารละลายมาตรฐานมา 10.0 cm³ แล้วทำ ให้ปริมาตรรวมเป็น 100 cm³ ด้วยน้ำกลั่นในขวดปริมาตร จะมีฟอสเฟตอยู่เข้มข้น 5.00 μ/cm³ 2) สารละลายแอม โมเนียม โมลิบเดต

ละลาย (NH₄)₆Mo₇O₂₄.4H₂O 12 g ลงในน้ำกลั่น 85 cm³ แล้วเติมใน สารละลายกรคซัลฟูริก ซึ่งเตรียมจากการเติมซัลฟูริกเข้มข้น 140 cm³ ในน้ำ 200 cm³ เติมน้ำกลั่นจน มีปริมาตรรวมเป็น 500 cm³ 3) สารถะถาย SnCl₂

ละลาย SnCl₂.2H₂O 2.5 g ในกลีเซอรอล 100 cm³ นำไปอุ่นในอ่างน้ำร้อน คนด้วยแท่งแก้วจนเกลือละลายหมด สารละลายนี้เก็บไว้ได้นาน

4) รีเอเจนต์ แบลงค์ (reagent blank)

นำน้ำกลั่นใส่ในขวดปริมาตร 100 cm³ เติมสารละลายแอมโมเนียมโมลิบเดต 25 cm³ เติม สารละลาย SnCl₂ 200 μL เติมน้ำกลั่นจนถึงขีดปริมาตร 100 cm³ ทิ้งไว้ 10 นาที

การทำกราฟมาตรฐาน

1) ปีเปตสารละลายมาตรฐานของไอออนฟอสเฟตมา 1, 2, 10, 20, 50,

100 cm³ใส่ในขวดปริมาตร 100 cm³ 6 ขวด เติมน้ำกลั่นให้มีปริมาตรรวม 100 cm³ ทุกขวด ได้

สารละลายที่มีความ เข้มข้น 0.05 , 0.1 , 0.5 , 1.0 , 2.5, 5 ppm ตามลำดับ

2) ปีเปตสารละลายจากข้อ 1) มา 25 cm³ใส่ในขวคปริมาตร 100 cm³

เติมสารละลายแอมโมเนียมโมลิบเดต 4 cm³ เขย่าให้เข้ากัน

- 4) เติมสารละลาย SnCl_ 200 μ L เติมน้ำกลั่นจนถึงขีดปริมาตร 100 cm 3 ทิ้งไว้ 10 นาที
- 5) นำไปค่าการดูดกลืนแสงด้วยเครื่อง spectrophotometer โดยถ่ายสารละลายใส่เซลล์ขนาด 1 cm3
- วัคค่า <u>abso</u>rbance ที่ความยาวคลื่น <u>700</u> nm

1016) นำข้อมูลที่ได้ไปเขียนกราฟมาตรฐาน และบันทึกผล S สถาบเปลาบลากธ

การทำกราฟมาตรฐานของคอปเปอร์ซัลเฟต

1. เตรียมสารละลาย ${
m CuSO_4}$ เข้มข้น 2 × 10 $^4\,$ ppm โดยละลาย ${
m CuSO_4}$ 5 กรัม ในน้ำกลั่น 250 cm 3

2. ปีเปตสารละลาย CuSO₄ จากข้อ 3.3.6.1 มา 50 cm³ ใส่ในขวดปริมาตร 100 cm³ เติม น้ำกลั่นจนมีปริมาตร 100 cm³ จะมี CuSO₄ เข้มข้น 1×10^4 ppm

3 ปีเปตสารละลาย CuSO₄ จากข้อ 3.3.6.2 มา 50 cm³ ใส่ในขวคปริมาตร 100 cm³ เติม น้ำกลั่นจนมีปริมาตร 100 cm³ จะมี CuSO₄ เข้มข้น 5 × 10³ ppm

4 นำไปวัดค่าการดูดกลืนแสงด้วยเครื่อง spectrophotometer โดยถ่ายสารละลายใส่เซลล์ ขนาด 1 cm3 วัดค่า absorbance ที่กวามยาวกลื่น 853 nm

5 บันทึกค่า absorbance และนำข้อมูลที่ได้ไปเขียนกราฟมาตรฐาน

adsorption west S-35 derivative (C1) chitosan-beads

.

.

count in west

	beads			
NO.	weight	time adsorption(hr.)	CPMA	CPMB
w1/31/10/48	0.1121	0.167	5306.4	5207.2
w2/31/10/48	0.1021	1	5234.2	5135
w3/31/10/48	0.0904	2	4695.4	4613.4
w4/31/10/48	0.089	4	4833.6	4743.2
w5/31/10/48	0.0987	6	3999.6	3925.4
w6/31/10/48	0.0863	12	1639	1605.8

count in beads

NO. b1/31/10/48 b2/31/10/48 b3/31/10/48 b4/31/10/48 b5/31/10/48	beads weight 0.1121 0.1021 0.0904 0.089 0.0987	time adsorption(hr.) 0.167 1 2 4 6	CPMA 201 201.2 233 331 303.6	CPMB 194.4 192.2 221.4 316.2 293.4
b6/31/10/48	0.0863	12	256	247 247

error count in west before adsorption 6840.4 6810.4 west not keep in dark and not cover with aluminium sheet

ี ผลการทดลอง ใช้ cross-linked chitosan beads จับ ฟอสเฟตไอออน

		มวล		มวล	
เวลา	ความเข้มข้นที่เหลือ	บีสต์	เวลา	เฉลี่ย	ความเข้มขนเหลือเฉลี่ย
5	1.365	1.0065	5	1.00975	1.233545
10	1.687	1.0081	10	1.00955	1.340809
30	1.051	1.0023	30	1.0049	1.967333
60	2.906	1.009	60	1.0053	2.25256
120	3.198	1	120	1.0052	2.325695

ครั้ง 2

	de sta	มวล	ความเข้มข้นที่ รื
เวลา	คา abs	บลด	เหลอ
5	0.208	1.0065	1.014139
10	0.213	1.0081	1.038518
30	0.392	1.0023	1.911263
60	0.438	1.009	2.135544
120	0.432	1	2.10629

ครั้ง 3

		ມວລ	ความเข้มข้นที่
เวลา	ค่า abs	บีสต์	เหลือ
5	0.298	1.013	1.45295
10	0.337	1.011	1.643101
30	0.415	1.0075	2.023403
60	0.486	1.0016	2.369576
120	0.522	1.0104	2.5451

adsorption west S-35 of derivative GH3 GH4 GH5 chitosan-beads

count in west

NO.	beads weight	time adsorption(hr.)	CPMA	CPMB
GH3	0.1121	0.167	4676.6	4666.2
GH4	0.1021	0.167	4435.2	4422.6
GH5	0.1042	0.167	4425.6	4402.6
GH3	0.1002	1	4606.6	4587.4
GH4	0.105	1	4333.2	4323.4
GH5	0.101	1	4326.4	4320.2

count in beads

NO.	beads weight	time adsorption(hr.)	CPMA	CPMB
GH3	0.1121	0.167	199.4	190.2
GH4	0.1021	0.167	197.2	188.8
GH5	0.1042	0.167	201.2	198.4
GH3	0.1002	1	198.4	192.6
GH4	0.105	1	196.6	190.2
GH5	0.101	1	197.6	192.2

count in west before adsorption 5780.4 5664.2 west not keep in dark and not cover with aluminium sheet

	ເວລາ 0 5 10 30 60 120	ความเข้มข้นที่ เหลือ 4 3.592 4.593 4.846 5.228 4.498	มวล ปีสต์ 1.0024 1.0014 1.0045 1.0075 1.0058		ເວລາ 0 5 10 30 60 120	ນວລ ເฉລີ່ຍ 1.0024 1.00127 1.0045 1.00783 1.0058	ความเข้มขนเหลือ เฉลี่ย 4 2.59174 3.61238 3.84642 3.7783 3.57175
	ครั้ง ที่1						
	ເວລາ 5 10 30 60 120	ค่า abs 0.626 0.943 0.746 0.998 0.76	ນວລ บีสต์ 1.0048 1.001 1.0046 1.0081 1.0062	ความเข้มข้น 3.05217 4.597757 3.63725 4.865919 3.70551	เที่เหลือ		
	ครั้ง ที่3						
IJŊ	ເວລາ 5 10 30 60 120	йп abs 0.719 0.865 0.897 0.966 0.749	มวล บีสต์ 1.0014 1.0044 1.0079 1.0054	ความเข้มข้น 3.505607 4.217455 4.373476 4.709898 3.651877	เที่เหลือ ไก้โร	ai 1	DUAUAMS
	ครั้ง ที่2 เวลา	ค่า abs	มวล บีสต์ 1.0024	ความเข้มข้น 4 247455	เที่เหลือ		
	5 10 30 60 120	0.865 1.03 1.339 1.253 1.304	1.0024 1.0014 1.0045 1.0075 1.0058	4.217455 5.021941 6.528523 6.109215 6.357874			
	ผลการ	รทดลอง ใช้ cross-li	nked chite	osan beads	จับ ฟอสเฟด	าไอออน	
	1222	ดาางแต้งเต้งเพื่างจื่า	มวล บีสต์		1222	มวล เวลี่ย	ความเข้มขนเหลือ เวอี่ย

ผลการทดลอง ใช้chitosan beads จับ ฟอสเฟตไอออน

		มวล		มวล	ความเข้มขนเหลือ
เวลา	ความเข้มข้นที่เหลือ	บีสต์	เวลา	เฉลี่ย	เฉลี่ย
			0		4
5	1.365	1.0065	5	1.00975	1.233545
10	1.687	1.0081	10	1.00955	1.340809
30	1.051	1.0023	30	1.0049	1.967333
60	2.906	1.009	60	1.0053	2.25256
120	3.198	1	120	1.0052	2.325695

e e e e e e e e e e e e e e e e e e e	~ _
มวล ความเขม	มขนท
เวลา คา ads บลต เหลอ	
5 0.208 1.0065 1.01413	39
10 0.213 1.0081 1.03851	8
30 0.392 1.0023 1.91126	63
60 0.438 1.009 2.13554	14
120 0.432 1 2.10629)
ครั้ง 1	
มวล ความเข้ม	มข้นที
เวลา ค่า abs บีสต์ เหลือ	
5 0.298 1.013 1.45295	5
10 0.337 1.011 1.64310)1
30 0.415 1.0075 2.02340)3
60 0.486 1.0016 2.36957	76
120 0.522 1.0104 2.5451	

ผลการทดลอง ใช้ cross-linked chitosan beads+glutadialdehyde จับ ฟอสเฟตไอออน

				์ เวลา	เวลา มวลเฉลี่ย		แหลือเฉลี่ย
				0		4	
5	2.942	1.0072		5	1.0072	2.94198	
10	2.343	1.0065		10	1.0065	2.343247	ð
30	1.3013	1.0018		30	1.0018	1.301316	
60	1,1506	<u> </u>	1(6)211	60	1.005	1.152446	12111155
	0.0739		JIJIGLU	/ ∐∐ 120/	1.001	/ 1.072973	

เวลา	ค่า abs	มวลบีสต์	ความเข้มข้นที่ เหลือ	เวลา	ค่า abs	มวลบีสต์	ความ เข้มข้นที่ เหลือ
5	0.594	1.0072	2.896148	5	0.617	1.0021	3.008289
10	0.412	1.0065	2.008776	10	0.5482	1.0054	2.672843
30	0.2044	1.0018	0.996587	30	0.303	1.0019	1.477328
60	0.1834	1.005	0.894198	60	0.264	1.0087	1.287177
120	0.1734	1.001	0.845441	120	0.2488	1.0009	1.213067
			al				

			ความเข้มข้นที
เวลา	ค่า abs	มวลบีสต์	เหลือ
5	0.5992	1.0123	2.921502
10	0.4816	1.0076	2.348123
30	0.2933	1.0017	1.430034
60	0.2617	1.0013	1.275963
120	0.238	1.0011	1.16041

บหาวิทยาลัยสีสปากร สบวนลิบสิทธิ์

710001												
	CE	3		GCB		BGCB						
	g	abs	mg/ml	g	abs	mg/ml	g	abs	mg/ml			
10	0.5067	0.822	17.48936	0.5135	0.766	16.29787	0.5032	0.666	14.17021			
20	0.5122	0.646	13.74468	0.5001	0.655	13.93617	0.5112	0.576	12.25532			
30	0.5111	0.334	7.106383	0.5101	0.311	6.617021	0.5106	0.442	9.404255			
60	0.5132	0.144	3.06383	0.5201	0.134	2.851064	0.5221	0.129	2.744681			
600	0.5163	0.155	3.297872	0.5064	0.131	2.787234	0.5066	0.122	2.595745			
1800	0.5055	0.153	3.255319	0.5035	0.128	2.723404	0.5007	0.108	2.297872			
3600	0.5121	0.157	3.340426	0.508	0.133	2.829787	0.5127	0.124	2.638298			
7200	0.5164	0.086	1 829787	0 5022	0 127	2 702128	0.5121	0 1 1 9	2 531915			

Adsorption Cu2+ 794 nm (UV-vis 1600)

		-	\	/					
	CE	3		GCB			BGCB		
	g	abs	mg/ml	g	abs	mg/ml	g	abs	mg/ml
0		0.963	20.48936		0.963	20.48936		0.963	20.48936
10	0.5067	0.822	17.48936	0.5135	0.766	16.29787	0.5032	0.666	14.17021
20	0.5122	0.646	13.74468	0.5001	0.655	13.93617	0.5112	0.576	12.25532
30	0.5111	0.334	7.106383	0.5101	0.311	6.617021	0.5106	0.442	9.404255
60	0.5132	0.144	3.06383	0.5201	0.134	2.851064	0.5221	0.129	2.744681
600	0.5163	0.155	3.297872	0.5064	0.131	2.787234	0.5066	0.122	2.595745
1800	0.5055	0.153	3.255319	0.5035	0.128	2.723404	0.5007	0.108	2.297872

Adsorption Cu2+ 794 nm (UV-vis 1600)

	CB			GCB			BGCB				
	g	abs	mg/ml	g	abs	mg/ml	g	abs	mg/ml		
10	0.5067	0.905	46.17347	0.5135	0.657	33.52041	0.5032	0.766	39.08163		
20	0.5122	0.697	35.56122	0.5001	0.66	33.67347	0.5112	0.544	27.7551		
30	0.5111	0.55	28.06122	0.5101	0.503	25.66327	0.5106	0.427	21.78571		
60	0.5132	0.166	8.469388	0.5201	0.134	6.836735	0.5221	0.12	6.122449		
600	0.5163	0.137	6.989796	0.5064	0.127	6.479592	0.5066	0.122	6.22449		
1800	0.5055	0.153	7.806122	0.5035	0.13	6.632653	0.5007	0.125	6.377551		
3600	0.5121	0.153	7.806122	0.508	0.118	6.020408	0.5127	0.117	5.969388		
7200	0.5164	0.146	7.44898	0.5022	0.12	6.122449	0.5121	0.119	6.071429		

Adsorption Ni2+ (UV-vis 1600)

	СВ		GCB			BGCB			
	g	abs	mg/ml	g	abs	mg/ml	g	abs	mg/ml
0		0.486	24.79592		0.486	24.79592		0.486	24.79592
10	0.5067	0.441	22.5	0.5135	0.435	22.19388	0.5032	0.422	21.53061
20	0.5122	0.267	13.62245	0.5001	0.244	12.44898	0.5112	0.233	11.88776
30	0.5111	0.233	11.88776	0.5101	0.199	10.15306	0.5106	0.22	11.22449
60	0.5132	0.166	8.469388	0.5201	0.134	6.836735	0.5221	0.12	6.122449
600	0.5163	0.137	6.989796	0.5064	0.127	6.479592	0.5066	0.122	6.22449
1800	0.5055	0.153	7.806122	0.5035	0.13	6.632653	0.5007	0.125	6.377551

Adsorption Ni2+ (UV-vis 1600)

Conc.	Abs
mg/ml	
0	0
2.5	0.157
12.5	0.626
20	0.963
25	1.172
50	2.33

Standard Cu2+ curv 794 nm (UV-vis 1600)แม้น 45

Standard Ni2+ curv 426 nm (UV-vis 1600)

1600)									
		СВ			GCB		BGCB		
	g	abs	conc.(uM)	g	abs	conc.(uM)	g	abs	conc.(uM)
10	0.5107	0.272	0.81755	0.5201	0.252	0.75744	0.5131	0.212	0.63721
20	0.5135	0.175	0.526	0.5021	0.254	0.76345	0.5135	0.114	0.34265
30	0.5067	0.123	0.3697	0.5055	0.131	0.39375	0.5035	0.088	0.2645
60	0.5164	0.133	0.39976	0.5101	0.112	0.33664	0.5088	0.076	0.22843
600	0.5135	0.155	0.46589	0.5122	0.092	0.27653	0.5055	0.081	0.24346
1800	0.5049	0.117	0.35167	0.5076	0.085	0.25549	0.5163	0.091	0.27352
3600	0.5067	0.092	0.27653	0.508	0.098	0.29456	0.5111	0.079	0.23745
7200	0.5074	0.086	0.25849	0.5127	0.111	0.33363	0.5132	0.088	0.2645

1000									
	СВ				GCB		BGCB		
	g	abs	conc.(uM)	g	abs	conc.(uM)	g	abs	conc.(uM)
10	0.5107	0.272	0.81755	0.5201	0.252	0.75744	0.5131	0.212	0.63721
20	0.5135	0.175	0.526	0.5021	0.254	0.76345	0.5135	0.114	0.34265
30	0.5067	0.123	0.3697	0.5055	0.131	0.39375	0.5035	0.088	0.2645
60	0.5164	0.133	0.39976	0.5101	0.112	0.33664	0.5088	0.076	0.22843
600	0.5135	0.155	0.46589	0.5122	0.092	0.27653	0.5055	0.081	0.24346
1800	0.5049	0.117	0.35167	0.5076	0.085	0.25549	0.5163	0.091	0.27352
3600	0.5067	0.092	0.27653	0.508	0.098	0.29456	0.5111	0.079	0.23745
7200	0.5074	0.086	0.25849	0.5127	0.111	0.33363	0.5132	0.088	0.2645

Standard Rh curv 543 nm (UV-vis 1600)

Standard Rh curv 543 nm (UV-vis 1600)

	СВ			GCB			BGCB		
เวลาในการ									
ดูดซับ	(g)	СРМА	CPMB	(g)	СРМА	CPMB	(g)	СРМА	CPMB
0	0.2073	2886	2809	-	2886	2809		2886	2809
10	0.208	2466	2402	0.2075	2560	2496	0.2028	2046	1989
20	0.2131	2571	2503	0.2079	2484	2212	0.2057	2510	2436
30	0.2061	2269	2207	0.2152	2329	2267	0.212	2235	2160
60	0.2067	2114	2061	0.2068	2222	2164	0.2061	2321	2256
600	0.2067	2640	2573	0.2185	2326	2312	0.2049	2327	2211
1800	0.2031	2010	1982	0.206	1992	1897	0.2087	1932	1865
3600	0.2131	2000	1966	0.2056	2010	1970	0.2064	2102	2040
7200	0.2064	2115	2061	0.2049	1922	1871	0.2088	1928	1875

ผลการทคลอง การคูคซับ Thoriunnitrate ของไกโตซาน

	СВ			GCB			BGCB		
เวลาในการดูคซับ	(g)	CPMA	CPMB	(g)	CPMA	CPMB	(g)	CPMA	CPMB
0	0.2073	2886	2809	-	2886	2809		2886	2809
10	0.208	2466	2402	0.2075	2560	2496	0.2028	2046	1989
20	0.2131	2571	2503	0.2079	2484	2212	0.2057	2510	2436
30	0.2061	2269	2207	0.2152	2329	2267	0.212	2235	2160
60	0.2067	2114	2061	0.2068	2222	2164	0.2061	2321	2256
600	0.2067	2640	2284	0.2185	2326	2222	0.2049	2327	2182
1800	0.2031	2010	1982	0.206	1992	1897	0.2087	1932	1865
3600	0.2131	2000	1966	0.2056	2010	1970	0.2064	2102	2040
7200	0.2064	2115	2061	0.2049	1922	1871	0.2088	1928	1875

ผลการทคลอง การคูคซับ Thoriunnitrate ของไกโตซาน

	СВ			GCB			BGCB		
เวลาในการคูคซับ	(g)	CPMA	CPMB	(g)	CPMA	CPMB	(g)	CPMA	CPMB
0	0.2073	2886	2809	-	2886	2809		2886	2809
10	0.208	2466	2402	0.2075	2560	2496	0.2028	2046	1989
20	0.2131	2571	2503	0.2079	2484	2212	0.2057	2510	2436
30	0.2061	2269	2207	0.2152	2329	2267	0.212	2235	2160
60	0.2067	2114	2061	0.2068	2222	2164	0.2061	2321	2256
600	0.2067	2640	2573	0.2185	2326	2312	0.2049	2327	2211
1800	0.2031	2010	1982	0.206	1992	1897	0.2087	1932	1865

Standard curv Th test countrate

Stock Th 1g/5ml	cocktail	CPMA	CPMB
micro Lit	ml		
100	5	1361.8	1328.8
200	5	2981.6	2852.6
300	5	4285	4266
400	5	6236.6	6072
500	5	8091.8	7881.4
600	5	10164.6	9917.2

Absorption

This is a graph of the molar extinction coefficient of Rhodamine B dissolved in ethanol. It was measured by R. A. Fuh on 6/20/95 [H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," *Photochemistry and Photobiology* 68, 141-142, 1998]. Rhodamine B has a molar extinction coefficient of 106,000 M¹ cm⁻¹ at 542.75 nm [anonymous, "Eastman Laboratory Chemicals Catalog No," 1993].

The fluorescence yield is reported to be 0.65 in basic ethanol [R. F. Kubin and A. N. Fletcher, "Fluorescence quantum yields of some rhodamine dyes.," *J. Luminescence*, 27, 455-462, 1982], 0.49 in ethanol [K. G. Casey and E. L. Quitevis, "Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols," *J. Phys. Chem.*, 92, 6590-6594, 1988], 1.0 [R. E. Kellogg and R. G. Bennett, "Radiationless intermolecular energy transfer. III. Determination of phosphorescence efficiencies.," *J. Chem. Phys.*, 41, 3042-3045, 1964], and 0.68 in 94% ethanol [M. J. Snare, F. E. Treloar, K. P. Ghiggino, and P. J. Thistlethwaite, "The photophysics of rhodamine B.," *J. Photochem.*, 18, 335-346, 1982]. The fluorescence yield is temperature dependent [T. Karstens and K. Kobs, "Rhodamine B and Rhodamine 101 as reference substances for fluorescence quantum yield measurements.," *J. Phys. Chem.*, 84, 1871-1872, 1980].

ABSTRACT SUBMISSION

Presentation

Both oral and poster presentations are welcome. The official language of the Congress is English. Submission of an abstract is required in the same format for oral and poster presentations.

Oral presentations

Time limits of 15 minutes will be strictly enforced: 12 minutes for presentation and 3 minutes for questions. Computers, overhead and LCD projectors will be provided. If you are making a Powerpoint presentation, please bring a CD with your presentation on it to the staff. We will load your file onto a computer to ensure that it works.

Poster presentations

Posters will be on display for the duration of the Congress. Maximum size of poster is 1.0 m (h) by 0.7 m (w). The following guidelines are offered for preparation of posters:

- Information should be mainly visual;
- Posters should include the title, author(s) names & organizations;
- Methods should be kept to a minimum;
- Objectives and conclusions must be clear; and Text should be kept to a minimum

Abstract Submission

Preparation of Abstracts

Abstracts must be submitted in the required format, which can be downloaded from the website: <u>http://www.biology.sc.chula.ac.th/bsgc11</u>

An example is enclosed below.

- Abstracts must be written in English (use .doc file format).
- The format is a single A4 page, with 2.5 cm margins
- Abstract must not exceed 300 words.
 - Use font Times New Roman 11 pt. and single-space throughout the whole document.
 - Underline the name and email address of presenting author.
 - No references should be cited in the abstract.

Submission

The abstract format can be downloaded from the website. Abstracts will not be included in the Book of Abstracts unless they are accompanied by a complete and paid registration fee, and submitted electronically in the requires format by **September 30, 2006**.

Abstracts will not be accepted after the deadline.

Abstract should be submitted by e-mail to the Congress secretariat: bsgc11@yahoo.com.

I am submitting an abstract for the 11th Biological Science Graduate Congress.

Title: Derivatization of Chitosan with Benzaldehyde and Its Use in Removing Copper(II) and Phosphate from Water

Authors (include full list): <u>Sang-urai, S.</u> , Kamolchote, K., and Pewnim, T.							
I prefer my presentation to be:	Oral	x	Poster	Session:			
I need special audio/ visual equipment- specify:							

(All Congress rooms will have standard equipment for Powerpoint and Overhead transparencies)

บหาวิทยาลัยศึลปากร สงวนสิบสิทธิ์

ABSTRACT SUBMISSION FORM

(Please use 11 pt. Times New Roman font. Follow example below)

Name: Sarawoot Sang-urai

Education (degree/field/institution):M.Sc. in Chemical Education, Silpakorn University Present Research Topic(s): Isolation of a biopolymer from crustaceans, its derivatization and uses in adsorption of some chemicals

Contact Address: Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom, 7300, Thailand

Title: Derivatization of Chitosan with Benzaldehyde and Its Use in Removing Copper(II) and Phosphate from Water

Sang-urai, S.¹, Kamolchote, K.¹, and Pewnim, T.¹

¹Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom, 7300, Thailand <u>research.sensei@gmail.com</u>

Text: Maximum 300 words.

Derivatization of Chitosan with Benzaldehyde and Its Use in Removing Copper(II) and Phosphate from Water

Sang-urai, S.¹, Kamolchote, K.¹, and Pewnim, T.¹

¹Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom, 7300,

Thailand research.sensei@gmail.com

Chitin is a natural biopolymer found abundantly as a major constituent of the exoskeleton of crustaceans and insects. Deacetylation of chitin into chitosan results in a modified polymer having wide applications. These include agriculture, food industry, biotechnology, pharmaceutical industry, textiles, polymers, and water treatment. Once the acetyl group is removed from each building block of chitin, the N-acetyl-β-glucosamine, the new polymer has a large number of amino groups available for derivatization. In this study chitosan was first dissolved in 1.0 % (w/v) acetic acid before being forced to drop from a syringe tip into a solution of 0.2M NaOH to obtain chitosan beads (CB). The size of chitosan beads could be controlled by using different syringe sizes as well as varying the speed in which chitosan flowed from the syringe. The polymers of chitosan beads were cross-linked using glutaraldehyde, whereby one aldehyde group of glutaraldehyde formed a covalent bond to an amino group of chitosan while another aldehyde group of the glutaraldehyde formed another covalent bond to another amino group of chitosan. Scanning electron microscopy revealed that the glutaraldehyde cross-linked chitosan beads (GCB) were more compact. Some of the GCB beads were further derivatized using benzaldehyde to form benzaldehyde derivatized-glutaraldehyde cross-linked chitosan beads (BGCB). In this case the aldehyde groups of benzaldehyde molecules formed covalent bonds to the remaining amino groups of chitosan, leaving the many aromatic groups protruding out from the polymer chains. When CB, GCB, and BGCB were tested for their abilities to remove copper(II) and phosphate ions from water it was found that BGCB could remove both ions relatively well while CB and GCB had little effect. This result implicated the role of an additional functional group in chitosan for the removal of copper(II) and phosphate ions.

Derivatization of Chitosan with Benzaldehyde and Its Use in Removing Copper(II) and Phosphate from Water

P25

Sang-urai, S., Kamolchote, K. and Pewnim, T.

Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom, 73000, Thailand. E-mail: research.sensei@gmail.com

Chitin is a natural biopolymer found abundantly as a major constituent of the exoskeleton of crustaceans and insects. Deacetylation of chitin into chitosan results in a modified polymer having wide applications. These include agriculture, food industry, biotechnology, pharmaceutical industry, textiles, polymers, and water treatment. Once the acetyl group is removed from each building block of chitin, the N-acetyl-β-glucosamine, the new polymer has a large number of amino groups available for derivatization. In this study chitosan was first dissolved in 1.0 % (w/v) acetic acid before being forced to drop from a syringe tip into a solution of 0.2M NaOH to obtain chitosan beads (CB). The size of chitosan beads could be controlled by using different syringe sizes as well as varying the speed in which chitosan flowed from the syringe. The polymers of chitosan beads were cross-linked using glutaraldehyde, whereby one aldehyde group of glutaraldehyde formed a covalent bond to an amino group of chitosan while another aldehyde group of the glutaraldehyde formed another covalent bond to another amino group of chitosan. Scanning electron microscopy revealed that the glutaraldehyde cross-linked chitosan beads (GCB) were more compact. Some of the GCB beads were further derivatized using benzaldehyde to form benzaldehyde derivatized-glutaraldehyde cross-linked chitosan beads (BGCB). In this case the aldehyde groups of benzaldehyde molecules formed covalent bonds to the remaining amino groups of chitosan, leaving the many aromatic groups protruding out from the polymer chains. When CB, GCB, and BGCB were tested for their abilities to remove copper(II) and phosphate ions from water it was found that BGCB could remove both ions relatively well while CB and GCB had little effect. This result implicated the role of an additional functional group in chitosan for the removal of copper(II) and phosphate ions.

- 70 -

ประวัติผู้วิจัย

ชื่อ นายศราวุทธ แสงอุไร วัน เดือน ปีเกิด 7 กุมภาพันธ์ 2517 สถานที่เกิด จังหวัดราชบุรี ประวัติการศึกษา อนุปริญญาวิทยาศาสตร สาขาเคมีปฏิบัติ กณะวิทยาศาสตร์ วิทยาลัยครูหมู่บ้านจอมบึง พ.ศ. 2537 ปริญญาวิทยาศาสตรบัณฑิต สาขาเคมี กณะวิทยาศาสตร์

บหาวิทยาลัยศึลปากร สังวนลิบส์ทธิ์

สถาบันราชภัฏสวนดุสิต พ.ศ. 2540