

**EVALUATION OF PLANAR AND CYLINDRICAL DIODE ARRAYS FOR IMRT AND VMAT PLAN VERIFICATION****PORNPIROM LAOJUNUN 5236472 RAMP/M****M.Sc. (MEDICAL PHYSICS)****THESIS ADVISORY COMMITTEE: LALIDA TUNTIPUMIAMORN, M.Sc. (RADIATION SCIENCE), YAOWALAK CHALSILPA, M.D. (RADIOTHERAPY AND NUCLEAR MEDICINE)****ABSTRACT**

The aim of this study was to evaluate the use of the planar and cylindrical diode arrays for IMRT and VMAT plan verification. Two diode detector arrays were compared for their use in the patient-specific quality assurance of IMRT and VMAT treatment plans: one diode array is a flat panel of diodes (MapCHECK2) positioned with a MapPHAN phantom, while the other is a cylindrical phantom with the diodes placed in a spiral array (ArcCHECK). Both devices were tested for the dose linearity over a range of 20-400 MU and a repetition rate over the range of 100 to 600 MU/min of 6 and 10 MV, photons delivered via a static 10x10 cm<sup>2</sup> field. The dependence of the response of detectors on field size was measured and compared with Farmer-type ionization chamber. The short-term and long-term reproducibility and the array calibration were also examined to understand the stability and uncertainty of the systems and the angular dependence was studied. The performance of the dosimeter system was then evaluated using IMRT and VMAT plans. The study included the planning of 7 coplanar plans (head and neck, pelvic, abdominal region) and 3 non-coplanar plans (brain) with IMRT and VMAT which were performed using a Varian Clinac iX. The measured doses were compared to the TPS dose and analyzed using gamma analysis with criteria of 3%/3 mm. No repetition rate or field size dependence was observed within the range of the field sizes and dose rate used in the study for both 6 and 10 MV photon energies. Both detector arrays showed linearity of dose and a stable short-term and long-term reproducibility. We found relatively large discrepancies in angular response (up to 39%) for MapCHECK2 and 17% for ArcCHECK. For IMRT plans delivered at planned angles, MapCHECK2 results showed a lower average gamma passing rate (93.4%) compared to measurements (97.8%) delivered at fixed 0 degree gantry angles. The ArcCHECK results showed average differences between measured and calculated values of 93.8%. For VMAT plans, the average passing rate was 99.3% and 97.8% using MapCHECK2 and ArcCHECK respectively. The measured differences between IMRT and VMAT QA results for non-coplanar were small, except the MapCHECK2 results showed averages of 63.9% for the IMRT plans delivered at a planned angle. ArcCHECK is an efficient and valuable tool for both IMRT and VMAT QA, it achieved an above 95% pass rate. With MapCHECK2 an excellent agreement was observed between the measurement and the verification dose for VMAT and IMRT QA when measured at gantry zero degree. But the application of the array to planned gantry angle IMRT QA requires careful consideration.

**KEY WORDS: IMRT/ VMAT/ TREATMENT VERIFICATION/ QUALITY ASSURANCE/ DIODE ARRAY**

การประเมินคุณภาพหัววัดรังสีชนิดสารกึ่งตัวนำแบบรูบแบบและแบบทรงกระบอกเพื่อตรวจสอบแผนการรักษาในเทคโนโลยีรังสีปรับความเข้มชนิดแกนเครื่องฉายรังสีและหมุนต่อเนื่อง EVALUATION OF PLANAR AND CYLINDRICAL DIODE ARRAYS FOR IMRT AND VMAT PLAN VERIFICATION

พระภิรมย์ เหล่าจันอัน 52363472 RAMP/M

วท.ม. (พิสิตรส์การแพทย์)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์ : ลลิตา ตันติภูมิอมร, M.Sc. (RADIATION SCIENCE),  
夷瓦ลักษณ์ ชาญศิลป์, M.D. (RADIOTHERAPY AND NUCLEAR MEDICINE)

บทคัดย่อ

งานวิจัยนี้จุดประสงค์เพื่อประเมินประสิทธิภาพ และความถูกต้องของหัววัดรังสีชนิดสารกึ่งตัวนำที่เรียงตัวแบบรูบแบบ (MapCHECK2) และแบบทรงกระบอก (ArcCHECK) ในการตรวจสอบความถูกต้องของแผนการรักษาในเทคโนโลยีรังสีปรับความเข้มชนิดแกนเครื่องฉายรังสีที่ (static angle) และแกนเครื่องฉายหมุนต่อเนื่อง (VMAT) โดยการศึกษาจากค่าเบอร์เซ็นต์ของดัชนีแกมมา (Gamma index) ที่ผ่านเกณฑ์ระดับยอมรับได้ที่ 3% และ 3 mm. จากการเบริรย์เทียบค่าปริมาณรังสีที่ได้จากการคำนวณด้วยเครื่องคอมพิวเตอร์วางแผนการรักษาและจากการวัดด้วยหัววัดรังสีดังกล่าว รวมทั้งศึกษาคุณลักษณะของหัววัดทั้งสองในส่วนที่เกี่ยวข้องกับปริมาณรังสี อัตราปริมาณรังสีต่อหน่วยเวลา ขนาดลำดิรังสีและทิศทางการฉายของลำดิรังสี เพื่อนำมาตรวจสอบแผนการรักษา IMRT และ VMAT ในผู้ป่วยรวมเจ็ดแผนการรักษาในบริเวณอวัยวะต่างๆกัน และสามแผนการรักษาที่มีระนาบแตกต่างกัน (non-coplanar technique) ที่น้ำดีวัลรังสีไฟฟ่อนพลังงาน 6 และ 10 เมกกะ โวลต์ ผลการศึกษาพบว่าหัววัดรังสีทั้งสองไม่มีผลกระทบของรังสีเมื่อเปลี่ยนแปลงอัตราปริมาณรังสีต่อหน่วยเวลา และขนาดลำดิรังสีที่ใช้ทั้งสองพลังงาน มีการตอบสนองต่อรังสีปริมาณต่างๆได้ดี รวมทั้งมีความคงที่ของการวัดรังสีในระยะเวลาสั้นและยาว แต่สำหรับทิศทางการฉายรังสีในมุมต่างๆ พบความแตกต่างสูงมากถึง 39% ใน MapCHECK2 และ 17% ใน ArcCHECK สำหรับการตรวจสอบแผนการรักษา IMRT ของ MapCHECK2 ให้ผลความแตกต่างของค่าดัชนีแกมมาเฉลี่ย 93.4% เมื่อวัดที่ทุกมุมฉายรังสีตามแผนการรักษา ซึ่งน้อยกว่าเมื่อวัดที่มุมศูนย์องศา 97.8% ส่วน ArcCHECK ให้ผลค่าดัชนีแกมมาเฉลี่ย 93.8% สำหรับการตรวจสอบแผนการรักษา VMAT หัววัดรังสีแบบรูบแบบ และแบบทรงกระบอกให้ผลค่าดัชนีแกมมาเฉลี่ย 99.3% และ 97.8% ตามลำดับ ส่วนการตรวจสอบแผนการรักษา IMRT และ VMAT ที่มีระนาบแตกต่างกัน พบว่าหัววัดรังสีแบบรูบแบบให้ผลค่าดัชนีแกมมาเฉลี่ยต่ำอย่างมีนัยสำคัญ คือ 63.9% เมื่อวัดที่ทุกมุมฉายรังสีตามแผนการรักษา จากการศึกษานี้พบว่าหัววัดรังสีแบบรูบแบบและแบบทรงกระบอกมีความถูกต้องเหมาะสมสำหรับนำมาตรวจสอบความถูกต้องของแผนการรักษา IMRT และ VMAT แต่หัววัดรังสีแบบรูบแบบต้องระมัดระวังในการนำมาตรวจสอบเมื่อวัดที่มุมฉายรังสีตามแผนการรักษา โดยเฉพาะเมื่อมีระนาบการฉายรังสีแตกต่างกัน