

สูโดโมนาส แอนุจิโนชา (*Pseudomonas aeruginosa*) เป็นแบคทีเรียจุลทรรศน์ที่ทำให้เกิดการติดเชื้อได้ทั้งในคนและสัตว์ เชื้อชนิดนี้ดื้อต่อยาหลายชนิดพร้อมกันรวมถึงยา抗ลุ่มอะมิโนไกลโคลไซด์ ระบบ MexXY เป็นระบบ multidrug efflux systems เพียงระบบเดียวที่สามารถขับออกยาปฏิชีวนะในยา抗ลุ่มอะมิโนไกลโคลไซด์ MexXY ไม่มี outer membrane protein (OMP) เป็นของระบบเอง ในการวิจัยได้ศึกษาความเป็นไปได้ว่า MexXY จะใช้ OpmG ในการทำงานแบบ tripartite พบว่า การตัด OpmG ไม่มีผลต่อค่า MICs ของยา抗ลุ่มอะมิโนไกลโคลไซด์ไม่ว่าจะมีการแสดงออกของ OprM แสดงว่า MexXY ไม่สามารถทำงานร่วมกับ OpmG ในการขับออกยา抗ลุ่มอะมิโนไกลโคลไซด์ ใน clinical isolate พบว่า $\Delta(mexXY)$ ส่งผลให้เชื้อไวต่อยาสเตรปโตมัยซินมากขึ้น แต่ $\Delta oprM$ และ $oprM$ ไม่มีผลให้เกิดการเปลี่ยนแปลง แสดงว่า MexXY สามารถทำงานร่วมกับ outer membrane protein ชนิดอื่น ได้ทำการศึกษาบทบาทของ MexXY ต่อการดื้อยา抗ลุ่มอะมิโนไกลโคลไซด์ในเชื้อที่แยกได้จากแม่โคที่เป็น *Pseudomonas mastitis* จำนวน 18 เชื้อ เชื้อทุกตัวมีการแสดงออกของ MexXY ซึ่งทดสอบด้วย reverse transcription-PCR การสูญเสีย *mexXY* ส่งผลให้เชื้อไวต่อยา抗ลุ่มอะมิโนไกลโคลไซด์มากขึ้น (2-16 เท่า) และว่าระบบมีส่วนร่วมในการทำให้เชื้อดื้อยา抗ลุ่มนี้ อิทธิพลของ $\Delta(mexXY)$ แตกต่างกันและระบบนี้เพียงระบบเดียวไม่สามารถอธิบายการดื้อยา抗ลุ่มอะมิโนไกลโคลไซด์ได้ทั้งหมด ระดับการแสดงออกของระบบนี้ไม่สัมพันธ์กับระดับความดื้อต่อยา และไม่สอดคล้องกับ glycan phophatase ใน *mexZ* แสดงว่ายังมีอีกหนึ่ง ที่ควบคุมการแสดงออกของระบบนี้นอกเหนือจาก *mexZ*.

Pseudomonas aerugiosa is an opportunistic pathogen that inflicts diseases in both humans and animals. This bacterium is highly resistance to multiple drugs including aminoglycosides. MexXY is the only multidrug efflux system that is involved in aminoglycoside resistance. MexXY does not have its own outer membrane protein as it needs this third component to complete its function as a tripartite system. In this study the possibility that MexXY functionally associates with OpmG was investigated. Deletion of *opmG* did not have an impact on MICs for AMGs regardless of the presence of *oprM*, indicating that MexXY does not interact with OpmG in AMG efflux. However, in clinical isolate, $\Delta(\text{mexXY})$ enhanced streptomycin susceptibility but neither ΔoprM nor *opmG* did. This data confirms that MexXY does functionally associate with unidentified outer membrane protein (s) for AMG efflux. In addition, the contribution of the MexXY multidrug efflux system in aminoglycoside resistance was also investigated in 18 clinical isolates of *Pseudomonas aeruginosa* obtained from dairy cows with *Pseudomonas* mastitis. All of the isolates expressed MexXY determined by reverse transcription-PCR. The loss of *mexXY* resulted in increased susceptibility (2- to 16-fold decline in MICs) to aminoglycosides, confirming the contribution of this system in amimoglycoside resistance in these isolates. As the impact of $\Delta(\text{mexXY})$ varied, overexpression of MexXY alone is not sufficient for aminoglycoside resistance. Expression of *mexXY* also varied and did not correlate with aminoglycoside insusceptibility. Transcription level of *mexY* is independent on mutations in *mexZ*, suggesting the existence of additional regulatory gene (s) other than *mexZ*.