Figure Content

Figure		Page
2.1	Sangyod rice	5
2.2	Composition of rice bran	7
2.3	Structure of Oryzanol	9
2.4	Structure of tocopherol and tocotrienol	10
2.5	Cold pressing process of rice bran oil in Southern Thailand	13
2.6	Oil in water nanoenulsion	15
4.1	Effect of the stabilization of rice bran by domestic heating on DPPH	40
	scavenging effect (%) and inhibition on linoleic acid peroxidation (%)	
	of cold-pressed rice bran oil. The different index letters are statistically	
	significantly different $(P < 0.05)$	
4.2	Influence of cold-pressed rice bran oil concentration on the particle	56
	diameter, mean particle diameter and zeta potential of diluted	
	cold-pressed rice bran oil nanoemulsions stabilized by 3% glyceryl	
	monostearate (GMS)	
4.3	Influence of glyceryl monostearate (GMS) concentration on the	56
	particle diameter (a), mean particle diameter and zeta potential (b)	
	of diluted 30% cold-pressed rice bran oil nanoemulsions	
4.4	Influence of cold-pressed rice bran oil concentration (a) and glyceryl	57
	monostearate concentration (b) on color of cold-pressed rice bran	
	oil nanoemulsions	

4.5	Influence of cold-pressed rice bran oil concentration (a) and glyceryl	60
	monostearate concentration (b) on phytochemical contents and	
	antioxidant activity of cold-pressed rice bran oil nanoemulsions.	
4.6	Changes of lipid oxidation, phytochemical contents and antioxidant	61
	activity of cold-pressed rice bran oil nanoemulsion during storage	
	at 25 °C for 90 days	
4.7	Influence of pH on physicochemical properties of cold-pressed	63
	rice bran oil nanoemulsions	
4.8	Influence of salt, pH and heat on the creaming index of cold-pressed	64
	rice bran oil nanoemulsions	
4.9	Influence of salt concentration on physicochemical properties of	66
	cold-pressed rice bran oil nanoemulsions	
4.10	Influence of heat on physicochemical properties of cold-pressed	68
	rice bran oil nanoemulsions	