

บทคัดย่อ

งานวิจัยนี้ศึกษาคุณสมบัติของโลหะออกไซด์ผสม และความสามารถในการเร่งปฏิกิริยา ปัจจัยที่ต้องการศึกษาได้แก่ ผลกระทบของสัดส่วนนิกเกิลออกไซด์และซีเรียมออกไซด์ที่มีผลต่อความสามารถในการเร่งปฏิกิริยา ของคوبเปอร์ออกไซด์ เพื่อใช้กับปฏิกิริยาการรีฟอร์มมิ่งเมทานอลด้วยไอน้ำ ตัวเร่งปฏิกิริยาเตรียมด้วยวิธีการตักตะกอนร่วม โดยมีปริมาณคوبเปอร์ออกไซด์คงที่ที่ ร้อยละ 30 โดยน้ำหนัก ปริมาณสัดส่วนคوبเปอร์ออกไซด์ ต่อนิกเกิลออกไซด์ ต่อซีเรียมออกไซด์ ที่ศึกษา ได้แก่ 30:0:70, 30:7:63, 30:10:60, 30:14:56, 30:21:49, 30:28:42, 30:30:40, 30:70:0 ผลจากการทดลอง พบว่า ตัวเร่งปฏิกิริยาที่สัดส่วนร้อยละของโลหะออกไซด์ผสมระหว่างนิกเกิลออกไซด์ และซีเรียมออกไซด์ที่แตกต่างกัน จะมีพื้นที่ผิวจำเพาะและขนาดรูพรุนของตัวเร่งปฏิกิริยาที่แตกต่างกัน ซึ่งที่สัดส่วนโดยน้ำหนักระหว่างของคوبเปอร์ออกไซด์ นิกเกิลออกไซด์และซีเรียมออกไซด์เป็นร้อยละ 30:21:49 ได้พื้นที่ผิวจำเพาะ 393.1 ตารางเมตรต่อกรัม เป็นขนาดที่มากที่สุด การเพิ่มปริมาณของนิกเกิลออกไซด์ลดปริมาณของซีเรียมออกไซด์ยังทำให้ขนาดผลึกของตัวเร่งปฏิกิริยาขนาดใหญ่ขึ้น ตามลำดับ และการทดสอบความสามารถในการเร่งปฏิกิริยาของตัวเร่งปฏิกิริยาพบว่าตัวเร่งปฏิกิริยาที่อัตราส่วนร้อยละโดยน้ำหนักของคوبเปอร์ออกไซด์ นิกเกิลออกไซด์และซีเรียมออกไซด์ ร้อยละ 30:21:49 มีความว่องไวในเร่งปฏิกิริยาเริฟอร์มมิ่งเมทานอลด้วยไอน้ำสูงที่สุด คือ 53.9 ที่อุณหภูมิ 300 องศาเซลเซียส และมีค่าร้อยละการเลือกเกิดของก๊าซคาร์บอนไดออกไซด์เป็น 34.7 ดังนั้นอาจกล่าวได้ว่า ปริมาณสารนิกเกิลออกไซด์และสารรองรับซีเรียมออกไซด์ในโลหะผสมออกไซด์ ส่งผลกระทบต่อกลุ่มสมบัติของตัวเร่งปฏิกิริยาโลหะออกไซด์ผสมและความสามารถในการเร่งปฏิกิริยา

คำสำคัญ : วิธีการตักตะกอนร่วม, นิกเกิลออกไซด์, ซีเรียมออกไซด์, คوبเปอร์ออกไซด์, ปฏิกิริยาเริฟอร์มมิ่งเมทานอลด้วยไอน้ำ, การเลือกเกิดของก๊าซคาร์บอนไดออกไซด์

Abstract

The objective of this project is to study physical properties and catalytic activity of mixed oxide, containing copper oxide, nickel oxide and cerium oxide, as a catalyst. The effect of weight ratios of nickel oxide and cerium oxide to physical properties and catalytic activity to methanol steam reforming reaction was investigated. Co-precipitation was used as a catalyst preparation. In this work, the amount of copper oxide was kept at 30% by weight. The ratios of copper oxide to nickel oxide and cerium oxide were 30:0:70, 30:7:63, 30:10:60, 30:14:56, 30:21:49, 30:28:42, 30:30:40, 30:70:0. The BET results indicated that mixed oxides contained varying amounts of each component would have different specific surface areas and average pore sizes. It was also found that mixed oxide contained oxides with the ratio of 30:21:49 gave the highest specific surface area of $393.1 \text{ m}^2/\text{g}$. An increase in an amount of nickel in the oxides affected to an increasing in average crystallite sizes of each oxide. For catalytic tests, it was found that the mixed oxide having the highest specific surface area showed the best catalytic activity for methanol steam reforming reaction. Methanol conversion reached 53.9 % at 300 °C with high CO₂ selectivity of 34.7 %. It can be concluded that different amounts of nickel oxide and cerium oxide in the catalyst have strong effects to both physical and catalytic properties of the mixed oxide catalysts.

Keywords: Co-precipitation method, Nickel oxide, cerium oxide, CuO, methanol steam reforming reaction, Selectivity of CO₂