กิตติกรรมประกาศ

คณะผู้วิจัยขอขอบคุณ สถาบันวิจัยและพัฒนา มหาวิทยาลัยสวนดุสิต ที่ให้การสนับสนุนการ วิจัย และท่านผู้ทรงคุณวุฒิอ่านประเมินผลการวิจัย ที่ได้กรุณาให้ข้อเสนอแนะ ตรวจสอบ แก้ไข ข้อบกพร่องต่างๆ พร้อมกันนี้ คณะผู้วิจัยต้องขอขอบคุณคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสวนดุสิต ที่ให้การสนับสนุน วัสดุอุปกรณ์ สถานที่ในการทำการวิจัย คณะวิจัยทุกท่าน วิทยาลัยนาโนเทคโนโลยีพระจอมเกล้าลาดกระบัง สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร ลาดกระบัง คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี รวมทั้ง สถาบันวิจัยแสง ซินโครตรอน (องค์การมหาชน) ที่ให้ความอนุเคราะห์เครื่องมือและสถานที่ในการวิจัย

> คณะผู้วิจัย 2558

สารบัญ

หน้า

29

บทคัดย่อภาษาไทย	ก
บทคัดย่อภาษาอังกฤษ	ค
กิตติกรรมประกาศ	
สารบัญ	
สารบัญตาราง	
สารบัญภาพ	លូ
บทที่ 1 บทนำ	1
ความเป็นมาและความสำคัญ	1
วัตถุประสงค์ของโครงการวิจัย	3
ขอบเขตการวิจัย	3
คำจำกัดความที่ใช้ในงานวิจัย	4
ประโยชน์ที่คาดว่าจะได้รับ	4
บทที่ 2 แนวคิด ทฤษฎี เอกสารและงานวิจัยที่เกี่ยวข้อง	7
อี. โคไล	7
สแตฟิโลค็อกคัส ออเรียส	7
Antimicrobial polymer	12
การสังเคราะห์โดยเทคนิค spray pyrolysis	15
เทคนิคการตกตะกอนร่วม	15
เทคนิคโซลิดสเตทรีแอคชั่น	16
สมบัติทั่วไปของซิงค์ออกไซด์ ZnO	16
คอปเปอร์ออกไซด์ (CuO)	18
งานวิจัยที่เกี่ยวข้อง	20

บทที่ 3 วิธีดำเนินการวิจัย

สารเคมีและอุปกรณ์ที่ใช้ในการวิจัย	29
สังเคราะห์อนุภาคนาโนซิงค์ออกไซด์และนาโนคอปเปอร์ออกไซด์ด้วยเทคนิค	30
สเปรย์ไพโรไลซีส	
สังเคราะห์อนุภาคนาโนซิงค์ออกไซด์และนาโนคอปเปอร์ออกไซด์ด้วยเทคนิค	31
การตกตะกอนร่วม	
สังเคราะห์อนุภาคนาโนซิงค์ออกไซด์และนาโนคอปเปอร์ออกไซด์ด้วยเทคนิค	33
โซลิดสเตทรีแอคชัน	
บทที่ 4 ผลการวิจัย	37
การเตรียมวัสดุของผสมนาโนซิงค์ออกไซด์และนาโนคอปเปอร์ออกไซด์	37
ลักษณะของตะกอนที่สังเคราะห์ได้ด้วยเทคนิคการตกตะกอนร่วม	37
ลักษณะของตะกอนที่สังเคราะห์ได้ด้วยเทคนิคการเกิดปฏิกิริยาที่สถาณะของแข็ง	39
การวิเคราะห์โครงสร้างทางจุลภาคของวัสดุของผสมนาโนซิงค์ออกไซด์และ	40
นาโนคอปเปอร์ออกไซด์	
ผลการสังเคราะห์ด้วยเทคนิคการตกตะกอนร่วม	41
เปรียบเทียบผลของตัวทำละลายในการสังเคราะห์ของผสมซิงค์ออกไซด์และ	51
คอปเปอร์ออกไซด์	
ผลการวิเคราะห์องค์ประกอบทางเคมี	65
ผลการสังเคราะห์ด้วยเทคนิคโซลิดเสตทรีแอคชัน	66
ผลการวิเคราะห์องค์ประกอบทางเคมีของสารตัวอย่างด้วยเทคนิคการเรืองแสงรังสีเอ็กร่	ช์ 67
ผลการวิเคราะห์ด้วยเทคนิคการกระเจิงแบบรามาน	68
ผลการวิเคราะห์ด้วยเทคนิคการแปลงฟูเรียร์ของการดูดกลืนรังสีอินฟราเรด	70
การพิสูจน์เอกลักษณ์ของวัสดุของผสมนาโนซิงค์ออกไซด์และนาโนคอปเปอร์ออกไซด์	74
ผลการพิสูจน์เอกลักษณ์ด้วยเทคนิคการเลี้ยวเบนกลืนรังสีเอกซ์	75
ผลการพิสูจน์เอกลักษณ์ของวัสดุของผสมนาโนซิงค์ออกไซด์และนาโนคอปเปอร์ออกไซเ	ด์ 79
ที่สังเคราะห์ได้ด้วยเทคนิคการดูดกลืนรังสีเอกซ์	
สมบัติในการยับยั้งเชื้อแบคทีเรียทั้งสองชนิดของวัสดุของผสมนาโนซิงค์ออกไซด์และ	94
นาโนคอปเปอร์ออกไซด์	

าหน้า
ทนเ

บทที่ 5 สรุปผลการวิจัย	101
สรุปผลการวิจัย	101
อภิปรายผล	101
ข้อเสนอแนะ	102
บรรณานุกรม	105
บรรณานุกรมภาษาต่างประเทศ	105
ภาคผนวก	123
ภาคผนวก ก	125
ภาคผนวก ข	149
ภาคผนวก ข ภาคผนวก ค	149 157
ภาคผนวก ข ภาคผนวก ค ภาคผนวก ง	149 157 171
ภาคผนวก ข ภาคผนวก ค ภาคผนวก ง ภาคผนวก จ	149 157 171 179
ภาคผนวก ข ภาคผนวก ค ภาคผนวก ง ภาคผนวก จ ภาคผนวก ฉ	149 157 171 179 185
ภาคผนวก ข ภาคผนวก ค ภาคผนวก ง ภาคผนวก ฉ ภาคผนวก ช	149 157 171 179 185 191

ประวัติผู้วิจัย	205

สารบัญตาราง

ตารางที่

4.1 ภาพถ่ายแสดงเทียบสเกล 50 นาโนเมตร และ 0.5 ไมโครเมตร	41	
4.2 ภาพถ่ายที่กำลังขยายสูงสุด แสดงผลของชนิดไอออนของเกลือ	43	
4.3 ผลของชนิดไอออนของเกลือที่สัดส่วนซิงค์และคอปเปอร์ตั้งต้น	44	
4.4 ภาพถ่าย แสดงผลของชนิดไอออนของเกลือ	47	
4.5 ภาพถ่ายแสดงผลของความเข้มข้นของเอทานอลในตัวทำละลาย	52	
4.6 ผลของความเข้มข้นของเอทานอลในตัวทำละลาย	53	
4.7 ภาพถ่ายที่กำลังขยายสูงสุด แสดงเปรียบเทียบผลของสัดส่วนเปอร์เซ็นต์ของซิงค์และ	56	
คอบเปอร์ตั้งต้น		
4.8 แสดงภาพรวมของอนุภาคเปรียบเทียบผลของสัดส่วนเปอร์เซ็นต์ของซึ้งค์และคอบเปอร์ตั้งต้น57		
4.9 แสดงภาพถ่ายผลการสังเคราะห์ด้วยเทคนิคโซลิดเสตทรีแอคชันที่เงื่อนไขต่างๆ	66	
4.10 ภาพถ่ายแสดงเปรียบเทียบผลรัสมีการยับยั้งเชื้อตามรูปร่างอนุภาค	96	
4.11 ผลรัสมีการยับยั้งเชื้อของอนุภาคที่ได้จากการสังเคราะห์ด้วยเทคนิคโซลิดเสตท	98	
4.12 เรียงลำดับของ clear zone ของเชื้อ <i>E. coli</i> จากมากไปน้อย	99	
4.13 เรียงลำดับของ clear zone ของเชื้อ <i>S. aureus</i> จากมากไปน้อย	99	

สารบัญภาพ

ภาพที่	หน้า
1.1 ส่วนแบ่งมลค่าในตลาดโลกของพอลิเมอร์ในอตสาหกรรมต่างๆ	2
2.1 ภาพกล้องจลทรรศน์อิเล็กตรอน และแสดงผังโครงสร้างของเชื้อ <i>E. coli</i>	8
2.2 ภาพถ่ายเชื้อสแตฟิโลค็อกคัส ออเรียส	8
2.3 ฟิล์มยืดห่อหุ้มอาหาร	11
2.4 Polyethene หรือ Poly(methylene)	12
2.5 โครงสร้างผลึกทั้งสามแบบของซิงค์ออกไซด์	17
2.6 แสดงลักษณะโครงสร้างผลึกซิงค์ออกไซด์แบบ wurtzite hexagonal	17
2.7 แสดงลักษณะโครงสร้างผลึกแบบ face-centered cubic (fcc) และรูปของทองแดง	19
2.8 แสดงลักษณะโครงสร้างผลึกของ monoclinic CuO unit cell	19
2.9 แสดงกลไกการทำลายเชื้อโดยกลไกการสัมผัสที่ผิวและทำลายผนังเซลล์	21
3.1 แผนผังแสดงระบบรีแอคเตอร์ที่ใช้ในการสังเคราะห์	31
3.2 ลักษณะของสารละลายเกลือซิงค์และสังกะสีตั้งต้น	32
3.3 แสดงตัวอย่างลักษณะสีของสารละลายขณะผสม	32
3.4 แสดงตัวอย่างลักษณะสีของสารละลาย	32
3.5 แสดงตัวอย่างลักษณะสีของสารของผสมที่สังเคราะห์ได้ที่ทำการล้างด้วยน้ำกลั่น	33
3.6 แสดงตัวอย่างลักษณะของสารของผสมที่สังเคราะห์ได้หลังจากอบ	33
3.7 แสดงตัวอย่างลักษณะสีของสารของผสมที่สังเคราะห์ได้ที่เงื่อนไขต่างๆ	34
3.8 แสดงตัวอย่างลักษณะของตะกอนของผสมที่สังเคราะห์ได้	34
4.1 แสดงตัวอย่างตะกอนของสารของผสมตัวอย่างที่สังเคราห์ได้ที่เงื่อนไขต่างๆ	38
4.2 ตัวอย่างตะกอนของสารของผสมตัวอย่างที่สังเคราห์ได้ที่เงื่อนไขต่างๆ	38
4.3 ตัวอย่างตะกอนของสารของผสมตัวอย่างที่สังเคราะห์ได้ที่เงื่อนไขต่างๆ	39
4.4 ตัวอย่างตะกอนของสารของผสมตัวอย่างที่สังเคราะห์ได้ที่เงื่อนไขต่างๆ	40
4.5 ลักษณะผลึกของซิงค์ออกไซด์แบบมีรูกลาง ไกล้เคียง ZnO nanotubes	42
4.6 เติมเกลือโซเดียมคลอไรด์ในระบบ	45
4.7 แสดงลักษณะของ Hexagonal Bipods เปรียบเทียบกับที่ Marko Bitenc สังเคราะห์ได้	45
4.8 เติมเกลือโซเดียมอะซีเตท และลักษณะ hexagonal disks	45
4.9 ลักษณะรูปร่างแบบ hexagonal disk ที่มีลักษณะพื้นที่ผิวอนุภาคไม่เรียบ	46

4.10 แสดงผลของการเติ่มเกลือโซเดียมคลอไรด์ในระบบ	46
4.11 แสดงลักษณะ hexagonal prism ที่ได้ ซึ่งมีลักษณะของหน้าตัด (111)	48
4.12 แสดงกลไกการโตของผลึกในระนาบต่างๆที่ไม่เท่ากัน	49
4.13 ตัวอย่างภาพถ่าย SEM ของอนุภาค ZnO, Zn(Cu)O, T-Zn(Cu)O และ T-Zn(Cu)O/Ag	49
4.14 แสดงกลไกการควบคุมการโตของผลึกในระนาบต่างๆ ด้วยแอนไอออน	50
4.15 กลไกการโตของลักษณะผลึกของ twinned Zn(Cu)O crystals และ tubular structure	51
4.16 แสดงลักษณะของซิงค์ออกไซด์ hexagonal disk และกลไกการเกิดอนุภาค	54
4.17 ไดอะแกรมแสดงลักษณะของอนุภาคผลึกซิงค์ออกไซด์ที่มีลักษณะต่างๆ	54
4.18 เสนอกลไกการเกิดคอปเปอร์ออกไซด์ hierarchical dandelion-like ในงานวิจัยนี้	59
4.19 แสดงลักษณะของกลุ่มอนุภาคคอปเปอร์ออกไซด์ที่สังเคราะห์ได้ที่เงื่อนไขแตกต่าง	60
4.20 แสดงภาพถ่าย SEM ของ CuO ที่ได้จากการบ่ม	61
4.21 แสดงแผนภาพกลไกการเกิดอนุภาคที่มีลักษณะโครงสร้างแบบ Hierarchical และ	61
โครงสร้างแบบ Pores	
4.22 แสดงลักษณะอนุภาค CuO ที่มีโครงสร้างลักษณะ straw sheaves	62
4.23 ไดอะแกรมแสดงกลไกการเกิดอนุภาคของ Zailei Zhang และคณะ	62
4.24 กลไกที่เป็นไปได้ในการเกิดอนุภาคคอปเปอร์ออกไซด์ของ Zhiqiang Zhang และคณะ	63
4.25 แสดงแผนผังกลไกในการเกิดอนุภาค CuO แบบ hollow sphere	63
4.26 เปรียบเทียบภาพถ่ายความละเอียดต่ำและความละเอียดสูงของอนุภาค CuO dandelion	64
4.27 กราฟรูปแบบการกระเจิงแบบรามานของสารประกอบอะซีเตทที่เตรียมได้	68
4.28 กราฟขยายรูปแบบการกระเจิงแบบรามานโหมดสัญญาณของอะซีเตท	69
4.29 กราฟแสดงสัญญาณการแปลงฟูเรียร์การดูดกลืนรังสีเอกซ์ของสารตั้งต้น	70
4.30 กราฟแสดงสัญญาณการแปลงฟูเรียร์การดูดกลืนรังสีเอกซ์ของสารตั้งต้น	71
4.31 กราฟแสดงสัญญาณการแปลงฟูเรียร์การดูดกลืนรังสีเอกซ์ของสารตั้งต้น	72
4.32 แสดงโครงสร้างมาตรฐานของซิงค์อะซีเตทโคออดิเนชันชนิด unidentate	73
4.33 แสดงโครงสร้างมาตรฐานของซิงค์อะซีเตทโคออดิเนชันแบบ bridging	73
4.34 แสดงโครงสร้างมาตรฐานของ copper(II) acetate (a) และ Hoganite (b)	73
4.35 กราฟแสดงสัญญาณการแปลงฟูเรียร์การดูดกลืนรังสีเอกซ์ของสารตั้งต้น	74
4.36 กราฟแสดงรูปแบบการเลี้ยวเบนรังสีเอกซ์ของวัสดุของผสมนาโนซิงค์ออกไซด์และ	75
นาโนคอปเปอร์ออกไซด์ที่สังเคราะห์ด้วยเทคนิคการตกตะกอนร่วม	

4.37 กราฟแสดงรูปแบบการเลี้ยวเบนรังสีเอกซ์ของวัสดุของผสมนาโนซิงค์ออกไซด์และ	76
นาโนคอปเปอร์ออกไซด์ที่สังเคราะห์ด้วยเทคนิคการเกิดปฏิกิริยาที่สถานะของแข็ง	
4.38 แสดงลักษณะโครงสร้างผลึกซิงค์ออกไซด์แบบ zincite และคอปเปอร์ออกไซด์	77
4.39 กราฟแสดงรูปแบบการเลี้ยวเบนรังสีเอกซ์ของอนุภาคที่สังเคราะห์ได้	77
4.40 กราฟแสดงรูปแบบการเลี้ยวเบนรังสีเอกซ์ของอนุภาคที่สังเคราะห์ได้	78
4.41 กราฟแสดงรูปแบบการเลี้ยวเบนรังสีเอกซ์ของอนุภาคที่สังเคราะห์ได้	78
4.42 กราฟแสดงรูปแบบการเลี้ยวเบนรังสีเอกซ์ของอนุภาคที่สังเคราะห์ได้	79
4.43 สเปกตรัมการดูดกลืนรังสีเอกซ์ช่วงใกล้ขอบการดูดกลืนพลังงานขอบ (XANES) K ของซิงค์	80
(Zn K-edge)	
4.44 ขยายสเปกตรัมการดูดกลืนรังสีเอกซ์ช่วงใกล้ขอบการดูดกลืนพลังงานขอบ (XANES) K	80
จาก 9656 ถึง 9675 eV ของซิงค์	
4.45 กราฟสเปคตรัมของ Zn K edge XAS ที่ผ่านการทำ Normalization แล้ว	81
4.46 กราฟการแปลง first order derivative สเปคตรัมการดูดกลื่นของ Zn K edge	82
4.47 กราฟแสดงสเปกตรัมของสัญญาณ EXAFS ของอะตอมซิงค์ในสารตัวอย่าง	82
4.48 แสดงกราฟของสัญญาณ EXAFS ของอะตอมซิงค์ในซิงค์ออกไซด์มาตรฐาน	83
4.49 แสดงกราฟของสัญญาณ EXAFS Zn K-edge เปรียบเทียบผลของคอปเปอร์	83
4.50 EXAFS Zn K-edge เปรียบเทียบผลของการแคลไซน์	84
4.51 กราฟแสดงการแปลงฟูเรียร์สัญญาณการดูดกลื่นรังสีเอกซ์ EXAFS ของอะตอมซิงค์	84
4.52 กราฟแสดงการแปลงฟูเรียร์สัญญาณการดูดกลืนรังสีเอกซ์ EXAFS ของอะตอมซิงค์	85
ในซิงค์ออกไซด์มาตรฐาน	
4.53 กราฟแสดงการแปลงฟูเรียร์สัญญาณการดูดกลืนรังสีเอกซ์ EXAFS ของอะตอมซิงค์	85
4.54 กราฟแสดงการแปลงฟูเรียร์สัญญาณ EXAFS ของอะตอมซิงค์ในสารตัวอย่าง	86
4.55 กราฟแสดงการแปลงฟูเรียร์สัญญาณ EXAFS ของอะตอมซิงค์ในสารตัวอย่าง	87
4.56 แสดงลักษณะโครงสร้างมาตรฐานของผลึกซิงค์ออกไซด์แบบ zincite และระยะ	88
ระหว่างอะตอมกลางซิงค์กับอะตอมไกล้เคียง	
4.57 กราฟสเปคตรัมของ Cu K-edge XAS ที่ผ่านการทำ Normalization	89
4.58 แสดงแผลภาพแสดงการจัดเรียงระดับพลังงานของคอปเปอร์ออกไซด์โคเวเลนซ์	89
4.59 กราฟสเปคตรัมของ Cu K edge XAS ที่ผ่านการทำ Normalization	90
4.60 กราฟการแปลง first order derivative สเปคตรัมการดูดกลื่นของ Cu K-edge	91

หน้า

ຈົ

4.61 กราฟ Cu K-edge EXAFS ของสัญญาณการดูดกลืนรังสีเอกซ์ในปริภูมิ k space	91
4.62 กราฟ Cu K-edge EXAFS ของสัญญาณการดูดกลืนรังสีเอกซ์ในปริภูมิ k space	92
4.63 กราฟแสดงการแปลงฟูเรียร์สัญญาณการดูดกลืนรังสีเอกซ์ Cu K-edge EXAFS	92
4.64 กราฟแสดงการแปลงฟูเรียร์สัญญาณการดูดกลืนรังสีเอกซ์ EXAFS ของอะตอมคอปเปอร์	93
4.65 แสดงขนาดของ clear zone ตามลักษณะรูปร่างของอนุภาคคอปเปอร์ออกไซด์	94
4.66 แสดงเปรียบเทียบผลของสัดส่วนเปอร์เซ็นต์ของซิงค์และคอบเปอร์ตั้งต้นและขนาดของ	95
clear zone	
4.67 แสดงเปรียบเทียบผลของสัดส่วนเปอร์เซ็นต์ของซิงค์และคอบเปอร์ตั้งต้นและขนาดของ	95
clear zone	
4.68 แสดงขนาดของ clear zone ตามลักษณะอนุภาคของซิงค์ออกไซด์	95
5.1 แสดงตัวอย่างกลไกการออกฤทธิ์ยับยั้งเชื้อโดยการเป็นตัวเร่งปฏิกิริยาทางแสง	104
ก.1 แสดงลักษณะโดยรวมทั้งหมดที่กำลังขยายหนึ่งพันเท่า	126
ก.2 แสดงลักษณะของอนุภาคอนุภาคคอปเปอร์ออกไซด์ที่กำลังขยายหนึ่งหมื่นเท่า	126
ก.3 แสดงลักษณะของอนุภาคอนุภาคคอปเปอร์ออกไซด์ที่กำลังขยายหนึ่งหมื่นเท่า	127
ก.4 ขยายพื้นผิวของอนุภาคคอปเปอร์ออกไซด์ที่กำลังขยายห้าหมื่นเท่า	127
ก.5 ขยายพื้นผิวของอนุภาคคอปเปอร์ออกไซด์ที่กำลังขยายห้าหมื่นเท่า	128
ก.6 ขยายพื้นผิวของอนุภาคคอปเปอร์ออกไซด์ที่กำลังขยายหนึ่งแสนเท่า	129
ก.7 แสดงบริเวณที่ทำการตรวจวัดการเรืองแสงรังสีเอ็กซ์ และสเปคตรัมที่ทำการตรวจวัดได้	130
ก.8 แสดงบริเวณที่ทำการตรวจวัดการเรืองแสงรังสีเอ็กซ์ และสเปคตรัมที่ทำการตรวจวัดได้	130
ก.9 แสดงบริเวณที่ทำการตรวจวัดการเรืองแสงรังสีเอ็กซ์ และสเปคตรัมที่ทำการตรวจวัดได้	131
ก.10 แสดงบริเวณที่ทำการตรวจวัดการเรืองแสงรังสีเอ็กซ์ และสเปคตรัมที่ทำการตรวจวัดได้	131
ก.11 แสดงบริเวณที่ทำการตรวจวัดการเรืองแสงรังสีเอ็กซ์ และสเปคตรัมที่ทำการตรวจวัดได้	132
ก.12 แสดงบริเวณที่ทำการตรวจวัดการเรืองแสงรังสีเอ็กซ์ และสเปคตรัมที่ทำการตรวจวัดได้	132
ก.13 แสดงบริเวณที่ทำการตรวจวัดการเรืองแสงรังสีเอ็กซ์ และสเปคตรัมที่ทำการตรวจวัดได้	133
ก.14 แสดงบริเวณที่ทำการตรวจวัดการเรืองแสงรังสีเอ็กซ์ และสเปคตรัมที่ทำการตรวจวัดได้	133
ก.15 แสดงบริเวณที่ทำการตรวจวัดการเรืองแสงรังสีเอ็กซ์ และสเปคตรัมที่ทำการตรวจวัดได้	134
ก.16 แสดงรายละเอียดลักษณะของอนุภาคที่สังเคราะห์ได้ที่กำลังขยายหนึ่งแสนเท่า	135
ก.17 ที่กำลังขยายหนึ่งหมื่นและหนึ่งแสนเท่า	136
ก.18 ที่กำลังขยายหนึ่งหมื่นและหนึ่งแสนเท่า	137

a	
กาพท่	
0 1 1 1 1 1 1	

ก.19 ที่กำลังขยายหนึ่งหมื่นและหนึ่งแสนเท่า	138
ก.20 ภาพถ่ายที่กำลังขยายหนึ่งหมื่นและหนึ่งแสนเท่า	139
ก.21 ภาพถ่ายที่กำลังขยายหนึ่งหมื่นและหนึ่งแสนเท่า	140
ก.22 ภาพถ่ายที่กำลังขยายหนึ่งหมื่นและหนึ่งแสนเท่า	141
ก.23 ภาพถ่ายที่กำลังขยายหนึ่งหมื่นและหนึ่งแสนเท่า	142
ก.24 ภาพถ่ายที่กำลังขยายหนึ่งหมื่นและหนึ่งแสนเท่า	143
ก.25 ภาพถ่ายที่กำลังขยายหนึ่งหมื่นและหนึ่งแสนเท่า	144
ก.26 ภาพถ่ายที่กำลังขยายหนึ่งหมื่นและนึ่งแสนเท่า	145
ก.27 ภาพถ่ายที่กำลังขยายหนึ่งแสนเท่า	146
ก.28 ภาพถ่ายแสดงบริเวณที่ทำการตรวจวัดการเรืองแสงรังสีเอ็กซ์	146
ก.29 ซิงค์ออกไซด์เกรดการค้า(ก) เกรดความบริสุทธิสูงไมโครไนซ์(ข)	147
และเกรดนาโนไซส์(ค)	
ข.1 รูปแบบการเลี้ยวเบนรังสีเอกซ์ของของผสมที่สังเคราะห์ด้วยเทคนิคการตกตะกอนร่วม	150
ข.2 แสดงค่า d-spacing	151
ข.3 แสดงค่า d-spacing ของสารตัวอย่าง	152
ข.4 แสดงค่า d-spacing ของสารตัวอย่าง	153
ข.5 แสดงรูปแบบการเลี้ยวเบนรังสีเอกซ์เทียบกับรูปแบบมาตรฐาน	153
ข.6 แสดงรูปแบบการเลี้ยวเบนรังสีเอกซ์เทียบกับรูปแบบมาตรฐาน	154
ข.7 แสดงค่า d-spacing ของสารตัวอย่างที่มุม 2 0 ระหว่าง 30° ถึง 35°	154
ข.8 แสดงระนาบผลึกของสารตัวอย่างที่มุม 2 0 ระหว่าง 30° ถึง 35°	155
ข.9 แสดงค่า d-spacing และระนาบของสารตัวอย่าง	155
ค.1 แสดงกราฟ XAS Zn K-edge spectra ที่ทำการนอมัลไลซ์แล้ว	158
ค.2 กราฟเปรียบเที่ยบ จากการแปลงฟูเรียร์ Zn K-edge EXAFS	158
ค.3 กราฟเปรียบเที่ยบ จากการแปลงฟูเรียร์ Zn K-edge EXAFS ของสารตัวอย่าง	159
ค.4 กราฟเปรียบเที่ยบ จากการแปลงฟูเรียร์ Zn K-edge EXAFS ของสารตัวอย่าง	159
ค.5 กราฟแสดงการแปลงฟูเรียร์ของสัญญาณการดูดกลืนรังสีเอกซ์	160
ค.6 แสดงกราฟ Cu K-edge XAS ของตัวอย่างและสารมาตรฐาน	161
ค.7 กราฟ Cu K-edge XAS ของตัวอย่างและสารมาตรฐานที่ทำการนอมอลไลแล้ว	161
ค.8 แสดงกราฟ normalized XAS และนำมาสร้างกราฟ EXAFS และกราฟ EXAFS	162

หน้า

ମ୍ଭା

ค.9 แสดงกราฟ normalized XAS ที่ทำการปรับค่าแบลคกราวแล้ว	163
ค.10 แสดงกราฟ normalized XAS ที่ทำการปรับค่าแบลคกราวแล้ว	164
ค.11 แสดงกราฟ normalized XAS ที่ทำการปรับค่าแบลคกราวแล้ว	165
ค.12 แสดงกราฟ normalized XAS ที่ทำการปรับค่าแบลคกราวแล้ว	166
ค.13 แสดงกราฟ normalized XAS ที่ทำการปรับค่าแบลคกราวแล้ว	167
ค.14 แสดงกราฟ normalized XAS ที่ทำการปรับค่าแบลคกราวแล้ว	168
ค.15 แสดงลักษณะโครงสร้างมาตรฐานของผลึกคอปเปอร์ออกไซด์	170
และระยะระหว่างอะตอม	
ง.1 ผลการศึกษา clear zone ของคอปเปอร์ออกไซด์เกรดการค้า	172
ง.2 ผลการศึกษา clear zone ของซิ้งออกไซด์เกรดการค้า	172
ง.3 ผลการศึกษา clear zone ของซิ้งออกไซด์เกรดไมโครไนซ์ความบริสุทธิ์สูง	173
ง.4 ผลการศึกษา clear zone ของซิ้งออกไซด์เกรดนาโนเมตร nanoZnO	173
ง.5 ผลการศึกษา clear zone ของซิ้งออกไซด์ที่สังเคราะห์โดยไม่ได้เจือคอปเปอร์	174
ง.6 ผลการศึกษา clear zone ของวัสดุของผสมซิ้งออกไซด์คอปเปอร์ออกไซด์	174
ง.7 ผลการศึกษา clear zone ของวัสดุของผสมซิ้งออกไซด์คอปเปอร์ออกไซด์	174
ง.8 ผลการศึกษา clear zone ของวัสดุของผสมซิ้งออกไซด์คอปเปอร์ออกไซด์	175
ง.9 ผลการศึกษา clear zone ของวัสดุของผสมซิ้งออกไซด์คอปเปอร์ออกไซด์	175
ง.10 ผลการศึกษา clear zone ของวัสดุของผสมซิ้งออกไซด์คอปเปอร์ออกไซด์	175
ง.11 ผลการศึกษา clear zone ของวัสดุของผสมซิ้งออกไซด์คอปเปอร์ออกไซด์	176
ง.12 ผลการศึกษา clear zone ของวัสดุของผสมซิ้งออกไซด์คอปเปอร์ออกไซด์	177
ง.13 ผลการศึกษา clear zone ของวัสดุของผสมซิ้งออกไซด์คอปเปอร์ออกไซด์	178
จ.1 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดชนิดฟิลด์อิมิสชัน	181
จ.2 แสดงลักษณะภาพถ่ายที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดชนิดฟิลด์อิมิสชัน	182
จ.3 ส่วนประกอบและการทำงานโดยทั่วไปของเครื่อง SEM	183
ฉ.1 ตัวอย่างการจัดโครงสร้างของผลึกแบบต่างๆ	186
ລ.2 Bragg 's Law	187
ฉ.3 ส่วนประกอบโดยทั่วไปของหลอดรังสีเอ็กซ์	188
ฉ.4 แสดงไออะแกรมของเครื่อง XRD	189
ฉ.5 แสดงส่วนประกอบภายในของเครื่อง XRD ที่ใช้	189

ฉ.6 แสดงเครื่อง XRD ที่ใช้	190
ช.1 แสดงภาพเครื่องเร่งอนุภาคทางตรง (LINAC)และบูสเตอร์ซินโครตรอน (SYN)	193
ช.2 ในวงกักเก็บอิเล็กตรอนของเครื่องกำเนิดแสงสยาม มีแม่เหล็กบังคับเลี้ยว	194
ช.3 เปรียบเที่ยบความยาวคลื่นชนิดต่างๆ เครื่องกำเนิดแสงซินโครตรอน	194
ช.4 ตัวอย่างระบบการคัดเลือกแสง	196
ช.5 ผลึก (crystal) ใช้สำหรับการคัดเลือกพลังงานแสงในย่านรังสีเอกซ์	196
୪.6 Double crystal monochromator	197
ช.7 ตารางธาตุแสดง absorption edge ที่สามารถวัดได้ที่ BL8	198
ช.8 แสดงโครงสร้าง XANES และ EXAFS	200
ช.9 รูปแบบการทดลองสามชนิดของเทคนิคการทดลองการดูดกลืนรังสีเอ็กซ์	200
ช.10 สเปกตรัมการดูดกลืนรังสีเอ็กซ์ของสารเคลือบเงาบนภาชนะลงเงา	201
ช.11 สเปกตรัม XANES ของลูกปัดเปรียบเทียบกับสารมาตรฐาน	202