A STUDY OF OVERCURRENT PROTECTION FOR MAE SARIANG MICRO-GRID SYSTEM

RESUAN SRIWATCHARIN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING (ELECTRICAL ENGINEERING) FACULTY OF GRADUATE STUDIES MAHIDOL UNIVERSITY 2014

COPYRIGHT OF MAHIDOL UNIVERSITY

Thesis entitled A STUDY OF OVERCURRENT PROTECTION FOR MAE SARIANG MICRO-GRID SYSTEM

.....

Mr. Resuan Sriwatcharin Candidate

.....

Thamvarit Singhavilai, Ph.D. (Electrical Engineering) Major advisor

.....

Chakphed Madtharad, Ph.D. (Electrical Engineering) Co-advisor

.....

Asst. Prof. Auemphorn Mutchimwong Ph.D. Acting Dean Faculty of Graduate Studies Mahidol University

Somnida Bhatranand,

Ph.D. (Electrical Engineering) Master of Engineering Program in Electrical Engineering Faculty of Engineering, Mahidol University

Thesis entitled A STUDY OF OVERCURRENT PROTECTION FOR MAE SARIANG MICRO-GRID SYSTEM

was submitted to the Faculty of Graduate Studies, Mahidol University for the degree of Master of Engineering (Electrical Engineering)

> on August 7, 2014

•••		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
-----	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Mr. Resuan Sriwatcharin Candidate

.....

Somnida Bhatranand, Ph.D. (Electrical Engineering) Chair

.....

Thamvarit Singhavilai, Ph.D. (Electrical Engineering) Member

.....

Umarin Sangpanich, Ph.D. (Electrical Engineering) Member

Chakphed Madtharad, Ph.D. (Electrical Engineering) Member

.....

Asst. Prof. Auemphorn Mutchimwong Ph.D. Acting Dean Faculty of Graduate Studies Mahidol University

Lect. Worawit Israngkul M.S. (Technical Management) Dean Faculty of Engineering Mahidol University

ACKNOWLEDGEMENTS

This thesis had been succeeded by the attentive support from my advisor Dr.Thamvarit Singhavilai and my co-advisor Dr.Chakphed Madtharad. I would like to express his appreciation for kind support, valuable guidance, dedication and encouragement in this research for them.

I would prefer to thank for all my family who have confident in time. They have accepted and understood for my working hard and support everything in my life. I also thank my friends whom always give good advice to me

Resuan Sriwatcharin

RESUAN SRIWATCHARIN 5538117 EGEE/M

M.Eng. (ELECTRICAL ENGINEERING)

THESIS ADVISORY COMMITTEE:THAMVARIT SINGHAVILAI, Ph.D., CHAKPHED MADTHARAD, Ph.D.

ABSTRACT

This thesis presents a study and a design of overcurrent protection for a distribution system in the Mae Saraing district. The Mae Saraing system has a plan to be connected with Distributed Generations (DGs) and to be operated as a micro-grid (i.e. grid-connected operation or islanding operation). The addition of DGs and the micro-grid operation will make a direction and magnitude of short-circuit currents widely change according to different operating scenarios of the system; hence a mis-coordination of the protection system. The overcurrent protection design applied in this thesis is based on a detection and correction scheme. The method starts with a design of protection for a fundamental scenario (i.e. a scenario without DG). Then, the mis-coordination will be checked. The correction will be done before moving to the next scenario. The study has been performed using DIgSILENT PowerFactory.

KEY WORDS: DISTRIBUTED GENERATION/ MICRO-GRID/ MIS –COORDINATION/OVERCURRENT PROTECTION

83 pages

การศึกษาระบบป้องกันกระแสเกินสำหรับระบบไมโครกริดแม่สะเรียง A STUDY OF OVERCURRENT PROTECTION FOR MAE SARIANG MICRO-GRID SYSTEM

เรศวร ศรีวัชรินทร์ 5538117 EGEE/M

วศม.(วิศวกรรมไฟฟ้า)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์: ธรรมวฤทธิ์ สิงหวิลัย, Ph.D., จักรเพชร มัทราช, Ph.D.

บทคัดย่อ

วิทยานิพนธ์นี้ศึกษาวิธีการออกแบบระบบป้องกันกระแสเกินสำหรับระบบงำหน่ายที่ อ.แม่สะเรียง เนื่องจากระบบนี้มีความด้องการที่จะเพิ่มโรงไฟฟ้าขนาดเล็กเข้าสู่ระบบ และยัง ด้องการพัฒนาระบบให้สามารถทำงานแบบไมโครกริดได้ กล่าวคือ เป็นระบบไฟฟ้าที่สามารถ จ่ายไฟแบบอิสระได้โดยไม่ด้องเชื่อมโยงกับระบบโครงข่ายไฟฟ้าหรือทำงานโดยขนานกับระบบ โครงข่ายไฟฟ้าเดิม แต่การเพิ่มโรงไฟฟ้าขนาดเล็กและการทำงานแบบไมโครกริดนั้นจะทำให้ขนาด และทิศทางของกระแสลัดวงจรในระบบเกิดการเปลี่ยนแปลงตามสถานการณ์การทำงานของระบบที่ มีได้หลายรูปแบบ และอาจส่งผลให้ระบบป้องกันที่ออกแบบอิงกับสถานการณ์พื้นฐานไม่สามารถ ทำงานได้อย่างถูกต้องกับสถานการณ์อื่นๆ การออกแบบระบบป้องกันกระแสเกินจะทำโดยการ ตรวจสอบและแก้ไขปัญหาไปทีละสถานการณ์ โดยเริ่มออกแบบจากสถานการณ์พื้นฐาน หรือ สถานการณ์ที่ระบบที่ยังไม่มีการเชื่อมต่อโรงไฟฟ้าขนาดเล็ก หลังจากนั้นจะมีการตรวจสอบหา ปัญหาการทำงานผิดพลาดของระบบป้องกันและแก้ไขทันที เมื่อเสร็จสิ้นจะไปทำการทดสอบใน สถานการณ์ถัดไปจนครบทุกสถานการณ์ โดยกรศึกษานี้ได้ใช้โปรแกรมDIgSILENT PowerFactory ในการจำลองระบบ

83 หน้า

CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	v
LIST OF TABLES	viii
LIST OF FIGURES	X
CHAPTER I INTRODUCTION	1
1.1 Introduction	1
1.2 Objective	2
1.3 Research Methodology	2
1.4 Scope of the Thesis	3
1.5 Outline of the Thesis	3
CHAPTER II LITERATURE REVIEW	4
2.1 Introduction	4
2.2 Protection Problems	4
2.2.1 Blinding of Protection	5
2.2.2 False Tripping	5
2.2.3 Recloser-fuse Mis-coordination	7
2.3 Researches Related to Design and Improvement of Overcurrent	8
Protection System	
2.3.1 Solutions for Blinding of Protection	8
2.3.2 Solutions for False Tripping	10
CHAPTER III DESIGN OF OVERCURRENT PROTECTION	14
FOR MICRO-GRID SYSTEM	
3.1 Introduction	14
3.2 Determination of a Base Case for Micro-grid	15

CONTENTS (cont.)

	Page
3.3 Protection Design for a Traditional Distribution System	15
3.4 Determination of Feasible Scenarios for the Base Case System	17
3.5 Detcetions of Blinding and of False Trippng	19
3.6 Solutions of Blinding and False tripping	19
CHAPTER IV MODELING AND SIMULATION RESULTS	21
4.1 Introduction	21
4.2 Model of Mae Sariang Micro-grid System	22
4.3 Scenarios and Design of Protection for Base case	23
4.4 Simulations of Grid-connected Mode	29
4.4.1 Scenario 1	29
4.4.2 Scenario 2	37
4.4.3 Scenario 3	41
4.4.4 Scenario 4	45
4.4.5 Scenario 5	49
4.4.6 Scenario 6	54
4.4.7 Scenario 7	58
4.5 Simulations of Islanding Mode	63
4.5.1 Scenario 8	63
4.5.2 Scenario 9	65
4.5.3 Scenario 10	67
4.5.4 Scenario 11	71
4.5.5 Scenario 12	74
CHAPTER V CONCLUSION	78
REFERENCES	80
BIOGRAPHY	83

vii

LIST OF TABLES

Table		Page
3.1	Scenario in Grid-connected Mode	18
3.2	Scenario in Islanding Mode	18
4.1	Parameter of protective devices in the Base Case system	26
4.2	Operating time of protective devices of base case	28
	with IEC 60909 method	
4.3	Operating time of protective devices of scenario	32
	with IEC 60909 method	
4.4	Operating time of protective devices of scenario1	34
4.5	Parameter of protective devices in the scenario1 system	36
4.6	Operating time of protective devices of scenario2	39
	with IEC 60909 method	
4.7	Parameter of protective devices in the scenario2 system	40
4.8	Operating time of protective devices of scenario3	43
	with IEC 60909 method	
4.9	Parameter of protective devices in the scenario3 system	44
4.10	Operating time of protective devices of scenario4	47
	with IEC 60909 method	
4.11	Parameter of protective devices in the scenario4 system	48
4.12	Operating time of protective devices of scenario5 with IEC 60909	51
	method	
4.13	Parameter of protective devices in the scenario5 system	53
4.14	Operating time of protective devices of scenario6 with IEC 60909	56
	method	
4.15	Parameter of protective devices in the scenario6 system	57

LIST OF TABLES (cont.)

Table		Page
4.16	Operating time of protective devices of scenario7 with IEC 60909	60
	method	
4.17	Parameter of protective devices in the scenario7 system	62
4.18	Protective devices coordination stages	62
4.19	Operating time of protective devices of scenario8 with IEC 60909	64
	method	
4.20	Parameter of protective devices in the scenario8 system	64
4.21	Operating time of protective devices of scenario9 with IEC 60909	66
	method	
4.22	Parameter of protective devices in the scenario9 system	66
4.23	Operating time of protective devices of scenario1 with IEC 60909	69
	method	
4.24	Parameter of protective devices in the scenario10 system	70
4.25	Operating time of protective devices of scenario11 With IEC 60909	72
	method	
4.26	Parameter of protective devices in the scenario11 system	73
4.27	Operating time of protective devices of scenario12 with IEC 60909	76
	method	
4.28	Parameter of protective devices in the scenario12 system	77

LIST OF FIGURES

Figure		Page
2.1	Blinding of protection When DG is added i the distribution system	5
	installed	
2.2	False Tripping When DG is added in the distribution system	5
	installed	
2.3	Recloser-fuse mis-coordination	7
2.4	flowchart to illustrate the repetitive calculations	9
2.5	Test feeder blinding of protection	9
2.6	Protection design for micro-grid	11
2.7	Show the design framework for distributed systems that are	12
	installed DG	
3.1	Base case system	15
3.2	the structure of distribution system of PEA	16
3.3	Relay, Recloser and Fuse Characteristic curves shows the	17
	coordination for a traditional distribution system	
3.4	Flow chart shows the adjusted parameters in the Recloser/ Relay	20
4.1	Flowchart summarizes the procedure of protection design	22
	mentioned in Chapter 3	
4.2	Mae Sariang micro-grid System	23
4.3	Group related to grid connected and islanding mode	24
4.4	The Base Case system	25
4.5	characteristic curves of the protective devices show their operating	27
	times when there are a fault at F3 feeder	
4.6	the scenario1 system	29
4.7	characteristic curves of the protective devices show their	30
	operating times when there are a fault at HOA_MSR_2	

LIST OF FIGURES (cont.)

Figure		Page
4.9	characteristic curves of the protective devices show their operating	33
	times when there are a fault at HOA_MSR	
4.10	The scenario 1 system after modify protective devices	35
4.11	the scenario2 system	37
4.12	characteristic curves of the protective devices show their operating	38
	times when there are a fault at F2 feeder	
4.13	the scenario3 system	41
4.14	characteristic curves of the protective devices show their operating	42
	times when there are a fault at MSR_Dam feeder	
4.15	the scenario4 system	45
4.16	characteristic curves of the protective devices show their operating	46
	times when there are a fault at F2 feeder	
4.17	the scenario5 system	49
4.18	characteristic curves of the protective devices show their operating	50
	times when there are a fault at F1 feeder	
4.19	the scenario6 system	54
4.20	characteristic curves of the protective devices show their operating	55
	times when there are a fault at Feeder 11	
4.21	the scenario7 system	58
4.22	characteristic curves of the protective devices show their operating	59
	times when there are a fault at F4 feeder	
4.23	the scenario8 system	63
4.24	the scenario9 system	65
4.25	the scenario10 system	67
4.8	characteristic curves of the protective devices show their operating	31
	times when there are a fault at HOA_MSR_2	

LIST OF FIGURES (cont.)

Figure		Page
4.26	characteristic curves of the protective devices show their operating	68
	times when there are a fault at feeder	
4.27	the scenario11 system	71
4.28	the scenario12 system	77
4.29	characteristic curves of the protective devices show their operating	75
	times when there are a fault at feeder11	