CONTENTS

					Page
ACKNOWLED	GEMEN	ГS			iii
ABSTRACT (E	NGLISH)			iv
ABSTRACT (T	HAI)				v
LIST OF TABI	LES				xi
LIST OF FIGU	RES				xii
LIST OF ABBE	REVIATIO	ONS			xvi
CHAPTER I	INTRO	DUCTION	I		1
CHAPTER II	OBJEC	ΓΙΥΕ			6
CHAPTER III	LITERA	ATURE R	EVIEW		7
3.1	History o	of polyhydr	oxyalkanoat	es (PHAs) research	7
3.2	Chemical	structure a	and propertie	s of PHAs	7
3.3	PHAs bio	osynthesis			10
	3.3.1	PHAs bio	synthetic par	thways	11
	3.3.2	PHA-pro	ducing bacte	ria	12
		3.3.2.1	Ralstonia e	putropha	14
		3.3.2.2	Pseudomon	as spp.	17
		3.3.2.3	Aeromonas	spp.	17
		3.3.2.4	Recombina	nt Escherichia coli	19
			3.3.2.4.1	SCL-PHAs production	19
			3.3.2.4.2	MCL-PHAs production	20
			3.3.2.4.3	SCL-MCL-PHAs production	22
3.4	Biodegra	dation of P	HAs		23
3.5	Applicati	ons of PHA	As		23
	3.5.1	Industrial	applications		24
	3.5.2	Medical a	applications		24
	3.5.3	Agricultu	ral application	ons	24

			Page
3.6	Glycerol		26
	3.6.1	Glycerol from biodiesel production	26
	3.6.2	Glycerol catabolism in E. coli	28
	3.6.3	Conversion of glycerol to PHAs	29
CHAPTER IV	MATER	IALS	35
4.1	Bacterial	strains	35
	4.1.1	PHA-producing strains	35
	4.1.2	E. coli strains	35
4.2	Plasmid v	rectors	35
4.3	Synthetic	oligonucleotides	39
4.4	Culture m	nedia	39
	4.4.1	Culture media for native PHA-producing bacteria	39
	4.4.2	Culture media for <i>E. coli</i> harboring pTZ57R/T	
		vector (for cloning)	39
	4.4.3	Culture media for E. coli harboring pETDuet-1	
		and/or pCDFDuet-1 vector (for expression)	39
	4.4.4	Culture media for P(3HB) biosynthesis	40
	4.4.5	Culture media for SCL-MCL-PHAs biosynthesis	40
4.5	Chemical		40
4.6	Enzymes		40
4.7	Antibodie	28	41
4.8	Commerc	ial kits	41
CHAPTER V	METHO	DDS	42
5.1	Genomic	DNA extraction	42
5.2	Competer	nt cell preparation	43
5.3	Construct	ion of recombinant plasmids	43
	5.3.1	Construction of pETDuet-ABCs	43

viii

	5.3.2	Construct	tion of pCDI	FDuet-Js	45
5.4	Recombin	nant protei	n expression		51
5.5	Protein an	nalysis			51
	5.5.1	SDS-PAG	GE		51
	5.5.2	Western	blot analysis		53
5.6	Crude gly	cerol char	acterization		53
5.7	PHA proc	duction			54
	5.7.1	Culture n	nedia and co	nditions	54
		5.7.1.1	P(3HB) bio	osynthesis	54
		5.7.1.2	SCL-MCL	-PHAs biosynthesis	54
	5.7.2	Analytica	al methods		55
		5.7.2.1	Fluorescen	t dye staining	55
		5.7.2.2	High perfor	rmance liquid chromatography	55
			5.7.2.2.1	P(3HB) quantification	55
			5.7.2.2.2	SCL-MCL-PHAs	
				quantification and	
				compositions analysis	55
			5.7.2.2.3	Glycerol quantification	56
		5.7.2.3	PHAs extra	action and purification	56
		5.7.2.4	Nuclear ma	agnetic resonance	58
		5.7.2.5	Gel perme	ation chromatography	58
		5.7.2.6	Differentia	l scanning calorimetry	58
		5.7.2.7	Thermogra	vimetry analysis	58
CHAPTER VI	RESUL '	ТS			59

			I	Page
6.1	Establish	ment of PI	HA biosynthesis pathway in	
	recombin	ant <i>E. coli</i>		59
	6.1.1	Pathway	design and amino acid alignment	59
	6.1.2	Plasmid o	construction	65
	6.1.3	Protein e	xpression	67
6.2	Using put	re glycerol	as a carbon source for PHAs biosynthesis	74
	6.2.1	P(3HB) b	biosynthesis	74
		6.2.1.1	Effect of different PhaC types on growth	
			and P(3HB) biosynthesis by E. coli-ABCs	74
		6.2.1.2	Effect of glycerol concentration on growth	
			and P(3HB) biosynthesis by <i>E. coli</i> -ABC _{Ah}	78
		6.2.1.3	Effect of carbon and nitrogen source on	
			growth and P(3HB) biosynthesis by	
			$E. \ coli$ -ABC _{Ah}	80
		6.2.1.4	Effect of stage of cell at the induction	
			point on P(3HB) biosynthesis	83
	6.2.2	SCL-MC	L-PHAs biosynthesis	84
		6.2.2.1	Effect of different PhaC and PhaJ types	
			on SCL-MCL-PHAs biosynthesis	84
		6.2.2.2	Effect of cultivation time on the	
			P(3HB-co-3HHx) biosynthesis by	
			$E. \ coli$ -ABC _{Ah} J _{Ah}	90
		6.2.2.3	Effect of dodecanoate concentration on	
			the P(3HB-co-3HHx) biosynthesis by	
			E. $coli$ -ABC _{Ah} J _{Ah}	92

6.3 Using crude glycerol as a carbon source for PHAs biosynthesis 94

			Page
	6.3.1	Characterization of crude glycerol compositions	94
	6.3.2	P(3HB) biosynthesis by <i>E. coli</i> -ABC _{<i>Ah</i>}	97
	6.3.3	P(3HB-co-3HHx) biosynthesis by E. coli-ABC _{Ah} J _{Ah}	101
6.4	PHA prop	perties characterization	102
	6.4.1	Chemical structure analysis by NMR	102
	6.4.2	Molecular weight analysis by GPC	105
	6.4.3	Thermal properties analysis by DSC	105
	6.4.4	Degradation temperature analysis by TGA	105
CHAPTER VII	DISCUS	SION	107
7.1	Establish	ment of PHA biosynthesis pathway in	
	recombin	ant E. coli	107
7.2	Using pu	re glycerol as a carbon source for PHAs biosynthesis	108
7.3	Using cru	de glycerol as a carbon source for PHAs biosynthesis	112
7.4	PHA prop	perties characterization	114
CHAPTER VII	I CONCL	USIONS	116
REFERENCES			118
BIOGRAPHY			137

LIST OF TABLES

Table		Page
3.1	Properties of some PHAs and petroleum based plastic	9
3.2	Overview of bacterial strains used for PHAs production	13
3.3	List of enzymes which have been successfully expressed in recombinant	
	E. coli for PHA biosynthesis from fatty acid metabolism	22
3.4	PHAs production from glycerol	30
5.1	Oligonucleotide primers	48
5.2	Genomic DNA template for target PCR fragment	49
5.3	PCR condition used for amplifying target DNA fragment	50
5.4	Components of SDS-PAGE for protein determination	52
6.1	P(3HB) biosynthesis in recombinant E. coli harboring phaABCs	78
6.2	Effect of glycerol concentration on P(3HB) biosynthesis	80
6.3	PHA copolymers biosynthesis from glycerol and dodecanoate in	
	recombinant E. coli harboring phaABCs and phaABCsJs	89
6.4	Effect of sodium dodecanoate concentration on PHA production	93
6.5	Compositions of crude glycerol	95
6.6	The effect of crude glycerol concentration on P(3HB) biosynthesis in	
	$E. \ coli$ -ABC _{Ah}	98
6.7	PHA biosynthesis in <i>E. coli</i> -ABC _{<i>Ah</i>} J_{Ah} using pure glycerol (PG) and	
	crude glycerol (CG) with or without sodium dodecanoate (C12)	101
6.8	Molecular weight and thermal properties of PHAs	106

LIST OF FIGURES

Figure		Page
1.1	Three metabolic pathways that provide various hydroxyalkanoate	
	(HA) monomers for PHAs biosynthesis	4
1.2	The hybrid pathways for biosynthesis of SCL-MCL-PHA copolymers	
	in recombinant E. coli	5
3.1	General structure of polyhydroxyalkanoates (PHAs) and their	
	examples	9
3.2	PHA granule characteristic	10
3.3	The elements involved in P(3HB) metabolism in R. eutropha H16	15
3.4	The organization of <i>pha</i> genes in three native PHA-producing bacteria	16
3.5	Proposed pathway of P(3HB-co-3HHx) biosynthesis in A. caviae from	
	alkanoic acids or oils	18
3.6	Schematic of various strategies for metabolic engineering	20
3.7	Applications of PHAs	25
3.8	Biodiesel reaction	26
3.9	Flow chart of alkaline catalyzed biodiesel production	27
3.10	Glycerol catabolism in <i>E. coli</i>	28
3.11	Overview of the pathways and products converted from glycerol	29
4.1	A physical map of pTZ57R/T vector	36
4.2	A physical map of pETDuet-1 vector	37
4.3	A physical map of pCDFDuet-1 vector	38
5.1	A schematic representation of overall procedure for construction of	
	pETDuet-ABCs	46
5.2	Physical map of recombinant plasmids constructed in this study	47
5.3	PHA extraction and purification flowchart	57
6.1	Amino acid sequence alignment of PhaCs	61

LIST OF FIGURES (cont.)

Figure		Page
6.2	Amino acid sequence alignment of PhaC from A. hydrophila	62
	ATCC 7966 and from A. caviae	
6.3	Amino acid sequence alignment of PhaC1 and PhaC2 from	
	P. putida KT2440	63
6.4	Amino acid sequence alignment of PhaJs	64
6.5	Amino acid sequence alignment of PhaJ from A. hydrophila	
	ATCC 7966 and from A. caviae	64
6.6	Genomic DNA extracted from wild type PHA-producing bacteria	65
6.7	PCR amplification of β -ketothiolase (<i>phaA</i>), NADPH-dependent	
	acetoacetyl-CoA reductase (phaB), and PHA synthase (phaC) genes	
	from genomic DNA of wild type PHA-producing bacteria	66
6.8	PCR amplification of (<i>R</i>)-specific enoyl-CoA hydratase (<i>phaJ</i>) genes	
	from genomic DNA of wild type PHA-producing bacteria	66
6.9	Heterologous protein expression of β -ketothiolase (PhaA), NADPH-	
	dependent acetoacetyl-CoA reductase (PhaB), and PHA synthase	
	(PhaC) proteins in <i>E. coli</i> BL21(DE3)	68
6.10	SDS-PAGE and western blot analysis of heterologous protein	
	expression of (R)-specific enoyl-CoA hydratase (PhaJ) proteins in	
	E. coli BL21(DE3)	69
6.11	Co-expression of β -ketothiolase (PhaA), NADPH-dependent	
	acetoacetyl-CoA reductase (PhaB), PHA synthase (PhaC) and	
	(<i>R</i>)-specific enoyl-CoA hydratase (PhaJ1 _{<i>Pp</i>}) proteins in <i>E. coli</i>	
	BL21(DE3)	71
6.12	Co-expression of β -ketothiolase (PhaA), NADPH-dependent	
	acetoacetyl-CoA reductase (PhaB), PHA synthase (PhaC) and	
	(<i>R</i>)-specific enoyl-CoA hydratase (PhaJ4 _{<i>Pp</i>}) proteins in <i>E. coli</i>	
	BL21(DE3)	72

LIST OF FIGURES (cont.)

Figure		Page
6.13	Co-expression of β -ketothiolase (PhaA), NADPH-dependent	
	acetoacetyl-CoA reductase (PhaB), PHA synthase (PhaC) and	
	(R)-specific enoyl-CoA hydratase (PhaJ _{Ah}) proteins in E. coli	
	BL21(DE3)	73
6.14	Growth profiles of recombinant E. coli-ABCs strains cultured in	
	minimum medium (M9) containing 2% (v/v) glycerol as a sole carbon	
	source	75
6.15	Protein expression profiles of <i>E. coli</i> -ABC _{<i>Re</i>} , <i>E. coli</i> -ABC _{<i>Ah</i>} , and	
	<i>E. coli</i> -ABC2 _{<i>Pp</i>} analyzed by SDS-PAGE	76
6.16	Nile blue A fluorescent dye staining of P(3HB) granules in	
	recombinant E. coli-ABCs	77
6.17	Nile blue A fluorescent dye staining of P(3HB) granules in	
	recombinant E. coli-ABCs as observed by confocal laser scanning	
	microscope	77
6.18	Effect of glycerol concentration on the growth profiles of	
	$E. \ coli$ -ABC _{Ah}	79
6.19	Effect of carbon and nitrogen source on the growth profiles of	
	$E. \ coli$ -ABC _{Ah}	81
6.20	Effect of carbon and nitrogen source on pH profiles of E. coli-ABC _{Ah}	81
6.21	Effect of carbon and nitrogen source on the P(3HB) biosynthesis	82
6.22	Effect of stage of cell at the induction point on P(3HB) biosynthesis	83
6.23	Protein expression profiles of <i>E. coli</i> -ABC _{<i>Re</i>} J1 _{<i>Pp</i>} , <i>E. coli</i> -ABC _{<i>Ah</i>} J1 _{<i>Pp</i>} ,	
	and <i>E. coli</i> -ABC2 _{<i>Pp</i>} J1 _{<i>Pp</i>} as analyzed by SDS-PAGE	85
6.24	Protein expression profiles of <i>E. coli</i> -ABC _{<i>Re</i>} J4 _{<i>Pp</i>} , <i>E. coli</i> -ABC _{<i>Ah</i>} J4 _{<i>Pp</i>} ,	
	and <i>E. coli</i> -ABC2 _{<i>Pp</i>} J4 _{<i>Pp</i>} as analyzed by SDS-PAGE	86
6.25	Protein expression profiles of <i>E. coli</i> -ABC _{<i>Re</i>} J_{Ah} , <i>E. coli</i> -ABC _{<i>Ah</i>} J_{Ah} ,	
	and <i>E. coli</i> -ABC2 _{<i>Pp</i>} J _{<i>Ah</i>} as analyzed by SDS-PAGE	87

LIST OF FIGURES (cont.)

Figure		Page
6.26	HPLC analysis of P(3HB-6.9 mol% 3HHx)	88
6.27	Time-dependent change in OD600, pH, % PHA content, and	
	mol% 3HHx	91
6.28	The characteristic of crude glycerol produced from biodiesel	
	production as a by-product	95
6.29	Growth profiles of recombinant E. coli cultured in crude glycerol	96
6.30	SDS-PAGE analysis of protein expression levels in $E. \ coli$ -ABC _{Ah}	
	cultured in crude glycerol	99
6.31	Densitometry analysis of protein band intensity	100
6.32	Chemical structure analysis of P(3HB) and P(3HB-3 mol% 3HHx)	
	by ¹ H NMR	103
6.33	Chemical structure analysis of P(3HB) and P(3HB-3 mol% 3HHx)	
	by ¹³ C NMR	104
6.34	DSC thermogram of PHAs	106

LIST OF ABBRIVIATIONS

DSC	differential scanning calorimetry
EDTA	ethylenediaminetetraacetic acid
g	gram (s)
x g	centrifugal force
h	hour (s)
HPLC	high performance liquid chromatography
IPTG	isopropyl-thio-β-D-galactopyranoside
kb	kilobase (s)
kDa	kilodalton (s)
LB	Luria-Bertani
$M_{ m w}$	weight average molecular weight
MCL-PHA	Medium-Chain-Length polyhydroxyalkanoate
mM	millimolar
mg	milligram (s)
min	minute (s)
mL	milliliter (s)
NADH	nicotinamide adenine dinucleotide (reduced form)
NADPH	nicotinamide adenine dinucleotide phosphate (reduced form)
ng	nanogram (s)
nm	nanometer (s)
NMR	nuclear magnetic resonance
OD	optical density
PAGE	polyacrylamide gel electrophoresis
PCR	polymerase chain reaction
PDI	polydispersity index
PHA	polyhydroxyalkanoate

LIST OF ABBRIVIATIONS (cont.)

rpm	revolution per minute
SCL-PHA	Short-Chain-Length polyhydroxyalkanoate
SDS	sodium dodecyl sulfate
T _d	degradation temperature
$T_{ m g}$	glass transition temperature
$T_{ m m}$	melting temperature
TEMED	N,N,N',N'-tetramethyl-ethylenediamine
TGA	thermogravimetric analysis
μg	microgram (s)
μL	microliter (s)
v/v	volume/volume
w/v	weight/volume
w/w	weight/weight