

หัวข้อวิทยานิพนธ์	การใช้อะคูสติกอิมิชั่นสำหรับทดสอบการรั่วของท่อ
หน่วยกิต	12
ผู้เขียน	นายวัชรพันธ์ แสงห้าว
อาจารย์ที่ปรึกษา	รศ.ดร.อ亚马 ประทีปเสน
หลักสูตร	วิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชา	วิศวกรรมการเชื่อม
ภาควิชา	วิศวกรรมอุตสาหการ
คณะ	วิศวกรรมศาสตร์
พ.ศ.	2549

บทคัดย่อ

วิทยานิพนธ์นี้ เสนอวิธีการในการวัดอัตรารั่วที่เกิดจากการรั่วภายในท่อในระบบส่งก๊าซ ด้วยการตรวจสอบแบบไม่ทำลายด้วยวิธีอะคูสติกอิมิชั่น โดยท่อที่นำมาใช้เป็นท่อเหล็กไร้ตะเข็บ Schedule 40 จำนวน 3 ขนาดคือ 1, 2 และ 3 นิ้ว ตามลำดับและความดันของท่อที่ใช้ทดสอบอยู่ระหว่าง 0 ถึง 80 Psi โดยอาศัยหลักการความดันแตกต่างที่เข้าไปในภาชนะปิดซึ่งทำหน้าที่วัดอัตรารั่วของท่อเพื่อเทียบกับวิธีอะคูสติกอิมิชั่น จากการศึกษาทางทฤษฎีพบว่าแหล่งกำเนิดเชิงกลของสัญญาณอะคูสติกที่เกิดจากการรั่วของท่อมีสาเหตุมาจากการไฟลแบบปั่นปวนของของไฟลตรงบริเวณรอยรั่ว จากการวิจัยพบว่าวิธีอะคูสติกอิมิชั่นมีความไวในการตรวจจับสัญญาณการรั่วได้ดี ซึ่งเป็นสัญญาณอะคูสติกแบบต่อเนื่องและเมื่อพิจารณาสัญญาณในรูปของอะคูสติกพารามิเตอร์คือ ระดับสัญญาณเฉลี่ย (Average Signal Level: ASL) พบว่าอะคูสติกพารามิเตอร์มีความสัมพันธ์เป็นอย่างสูงกับอัตรารั่วของท่อ ขนาดของท่อ และความดันในระบบ ซึ่งในงานวิจัยนี้ใช้โปรแกรม Minitab วิเคราะห์ความสัมพันธ์ดังกล่าวออกแบบในรูปของสมการสำหรับทำนายอัตรารั่ว ผลการเปรียบเทียบอัตรารั่วของท่อ ที่ได้จากการวัดในภาชนะปิดกับอัตรารั่วที่คำนวณได้จากการทำนายอัตรารั่ว ได้ค่าความคลาดเคลื่อนอยู่ในช่วง 5.14 – 63.06 เปอร์เซ็นต์ นอกจากนี้วิธีอะคูสติกอิมิชั่นยังสามารถหาตำแหน่งการรั่วได้โดยการทดลองใช้หลักการสหสัมพันธ์ส่วนทาง(Cross Correlation) คือการตรวจจับคลื่นเสียงที่เกิดจากการอยู่รั่วที่เคลื่อนที่ไปยังหัวตรวจจับสัญญาณแล้วคำนวณผลต่างของเวลาเพื่อหาตำแหน่ง ผลการตรวจวัดให้ค่าความคลาดเคลื่อนอยู่ในช่วง 1.15- 47.8 เปอร์เซ็นต์

คำสำคัญ : อะคูสติกอิมิชั่น / อัตรารั่ว / ท่อ / การทดสอบแบบไม่ทำลาย/ ตำแหน่ง

Thesis Title	Acoustic Emission for Leak Detection on Pipeline
Thesis Credits	12
Candidate	Mr. Watcharapan Sanghaw
Thesis Advisor	Assoc. Prof. Dr. Asa Prateepasen
Program	Master of Engineering
Field of Study	Welding Engineering
Department	Production Engineering
Faculty	Engineering
B.E.	2006

Abstract

This thesis presents a method to measure leakage rate of gas through pipeline using Acoustic Emission (AE) techniques. Various sizes of steel pipe schedule 40 , ranging from one to three inches, were used and tested with pipe-inlet pressure of range from 0 to 80 psi. Leakage rates through artificial leak source was measured by calculating the pressure difference within the chamber and compared to AE technique. We found that the source mechanism generating AE signal in a leaking pipe was the decay of turbulence from fluid flow at the leaking area. In our experiment, we found that AE technique had high sensitivity to detect leakage signal. Typically, these signals were continuous AE signal and were converted to a set of AE parameters. The most signal used AE parameters which is the Average Signal Level (ASL) was employed in this work. The AE parameter exhibited high correlation with the leakage rates, pipe sizes and inlet pressures. Minitab program was used to analyze the correlation and to from an equation in order to predict the leakage rate. Our experiments showed that the error of the leakage rates from the equations was compared with the leakage rates from the chamber was in variation of 5.14 - 63.06 %. Beside, AE can find leakage location by using Cross Correlation technique which detects sound wave caused by leakage moving towards the sensor head, then calculate the difference approach time to find the location. The detection resulted in error variation of 1.15 – 47.8 %.

Keywords : Acoustic Emission / AE / Leakage Rate / Pipe / NDT/ Cross Correlation / Location