

EXHAUSTIVE SEPARATION OF FIBROIN, SERICIN AND PIGMENTS FROM YELLOW THAI SILK COCOON

RUCHIRA PINKAEW

MASTER OF SCIENCE IN CHEMISTRY

THE GRADUATE SCHOOL CHIANG MAI UNIVERSITY OCTOBER 2011 000256105

EXHAUSTIVE SEPARATION OF FIBROIN, SERICIN AND PIGMENTS FROM YELLOW THAI SILK COCOON

RUCHIRA PINKAEW

A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMISTRY

THE GRADUATE SCHOOL CHIANG MAI UNIVERSITY OCTOBER 2011

EXHAUSTIVE SEPARATION OF FIBROIN, SERICIN AND PIGMENTS FROM YELLOW THAI SILK COCOON

RUCHIRA PINKAEW

THIS THESIS HAS BEEN APPROVED TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMISTRY

EXAMINING COMMITTEE

THESIS ADVISOR

m. Kayenakom CHAIRPERSON

Associate Professor Dr. Mongkon Rayanakorn

Associate Professor Dr. Surasak Watanesk

Dr. Chumni Sangphagdee

26 October 2011 © Copyright by Chiang Mai University

Associate Professor Dr. Surasak Watanesk

ACKNOWLEDGEMENTS

The author would like to express her sincere thanks and appreciation to Assoc. Prof. Dr. Surasak Watanesk, her thesis advisor, and also Assoc. Prof. Dr. Ruangsri Watanesk, for their kindness on giving such invaluable guidance, grateful supervision and many suggestions, and also continual encouragement and discussions.

The acknowledgement is also extended to the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, for sponsoring the graduate scholarship. Thanks to the Graduate School, Chiang Mai University for additional financial supports to this research, and also to the Department of Chemistry, Faculty of Science, Chiang Mai University for supporting the facilities which enable this work to be carried out.

Thank to Queen Sirikit Sericulture Centre, Nan and Chiang Mai Province, Thailand, for the support of silk cocoon sample as raw material.

Thanks also to those who have one way or other contributions to the success of this work, especially members of the Chemical Modification of Natural Fibrous Materials Research Laboratory.

Finally, the author would like to greatly thank and express her appreciation to her parents for their love, encouragement, inspiration, understanding and support.

Ruchira Pinkaew

111

Thesis Title	Exhaustive Separation of Fibroin, Sericin and Pigments from	
	Yellow Thai Silk Cocoon	
Author	Ms. Ruchira Pinkaew	
Degree	Master of Science (Chemistry)	
Thesis Advisor	Associate Professor Dr. Surasak Watanesk	

ABSTRACT

E46270

At present, there have been widespread studies on the extraction of silk proteins consisting of sericin and fibroin as well as their various applications. Moreover, pigment components of the yellow silk cocoon are very interesting because they are mostly associated with carotenoids and flavonoids as highly efficient antioxidants. In this research, exhaustive separation of fibroin, sericin and pigments from vellow Thai silk cocoons from two sources (Chiang Mai and Nan provinces) were used in this study. Pigment extraction was conducted in order to investigate the suitable extraction conditions including type of solvent, acid-base condition, temperature and extraction time. The amount of pigment extracted was checked spectrophotometrically. Complete removal of the pigments of silk cocoon could be achieved by repeating reflux extraction 4 times with 0.80 M CH₃COONa in 80% (v/v) ethanol at 80 °C for 30 min. The total amounts of pigments of cocoon samples from Nan and Chiang Mai provinces were 24.0 ± 0.6 and 24.5 ± 0.4 mg/g, respectively. After removing the pigment, the sericin was extracted using a mixture of sodium carbonate (Na₂CO₃) and sodium hydrogen carbonate (NaHCO₃) in the presence of 2% (v/v) sodium dodecyl sulfate (SDS) at 95 °C for 30 min. In the purification step, the degumming solution was precipitated with 5 % (v/v) acetic acid to obtain sericin. For fibroin, the degummed silk was dissolved in a mixed solution of CaCl₂, ethanol and water. The results showed that the amounts of sericin and fibroin in the cocoons samples from Nan province were $67.7 \pm 4.9 \text{ mg/g}$ and $550 \pm 21 \text{ mg/g}$, respectively

E46270

while those samples from Chiang Mai province were 77.8 ± 7.1 mg/g and 576 ± 33 mg/g, respectively. The analysis revealed that the amounts of pigment, sericin and fibroin extracted from silk cocoon raised in Chiang Mai province were not significantly different from those raised in Nan province. Hence, this result indicated that the differences in weather, and harvesting conditions did not affect the qualities of mulberry leaves used for feeding the silkworms, thus they did not cause any differences in the amounts of the compounds under study. However, the identities of the extracted products i.e., pigment, sericin and fibroin, were finally verified through their functional groups using Fourier Transform Infrared Spectroscopy.

V

ชื่อเรื่องวิทยานิพนซ์

ผู้เขียน ปริญญา อาจารย์ที่ปรึกษาวิทยานิพนธ์ การแยก ไฟโบรอิน เซริซิน และสารสี ออกให้หมดจาก รังไหมไทยสีเหลือง นางสาวรุจิรา ปิ่นแก้ว วิทยาศาสตรมหาบัณฑิต (เกมี) รองศาสตราจารย์ ดร. สุรศักดิ์ วัฒเนสก์

บทคัดย่อ

E46270

ปัจจุบัน มีการศึกษาการสกัดโปรตีนไหมที่ประกอบด้วยเซริซิน และไฟโบรอินกันอย่าง แพร่หลาย เช่นเดียวกับการนำไปประยุกต์ ยิ่งไปกว่านั้น องค์ประกอบที่เป็นสารสีของรังไหมสี เหลืองยังน่าสนใจ เพราะว่ามีสารจำพวกแคโรทีนอยค์ และฟลาโวนอยค์ที่มีฤทธิ์ในการต่อต้าน อนุมูลอิสระที่ดี ในงานวิจัยนี้ ได้ทำการแยกไฟโบรอิน เซริซิน และสารสีออกให้หมดจากรังไหม ไทยสีเหลืองที่มาจากสองแหล่ง (จังหวัดเชียงใหม่และน่าน) การสกัดสารสีได้ดำเนินการเพื่อหา สภาวะการสกัดที่เหมาะสม เช่น ชนิดของตัวทำละลาย สภาพกรด-เบส อุณหภูมิ และเวลาที่ใช้ใน การสกัด ได้มีการตรวจวัดปริมาณของสารสีที่สกัดได้โดยวิธีสเปกโทรโฟโตเมทรี การแยกที่ สมบูรณ์ของสารสีจากรังไหมทำได้โดยการสกัดแบบรีฟลักซ์ซ้ำ 4 ครั้ง ด้วยตัวทำละลายที่ ประกอบด้วย 0.80 โมลาร์โซเดียมแอซิเทต ในเอทานอล 80 เปอร์เซ็นต์โดยปริมาตร ที่อุณหภูมิ 80 ° ซ เป็นเวลา 30 นาที ซึ่งปริมาณสารสีทั้งหมดที่สกัดได้ คือ 24.0 ± 0.6 และ24.5 ± 0.4 มิลลิกรับต่อกรับของตัวอย่างรังใหมจากจังหวัดน่าน และเชียงใหม่ ตามลำดับ สำหรับการสกัด เซริซิน หลังจากที่เอาสารสีออกแล้ว นำมาลอกกาวโคยใช้สารละลายผสมของ โซเคียมคาร์บอเนต โซเดียมไฮโดรเจนการ์บอเนตและ สารละลายโซเดียมโคเคซิลซัลเฟต เข้มข้น 2 เปอร์เซ็นต์โคย ปริมาตร โดยด้มที่ 95 °ซ เป็นเวลา 30 นาที ในขั้นตอนการทำเซริซินให้บริสุทธิ์นั้น ทำได้โดยนำ สารละลายที่ได้จากกระบวนการลอกกาวไหม มาตกตะกอนด้วยกรดแอซีติก เข้มข้น 5 เปอร์เซ็นต์ สำหรับไฟโบรอิน ได้นำไหมที่ผ่านการลอกกาวแล้ว มาละลายในสารละลายผสมของ แคลเซียม คลอไรค์ เอทานอล และน้ำ สำหรับปริมาณเซริซิน และไฟโบรอิน ที่มีในตัวอย่างรังไหมจากจังหวัด น่าน คือ 67.7 ± 4.9 และ550 ± 21 มิลลิกรัมต่อกรัม ตามลำคับ ขณะที่ปริมาณเซริซิน และ ไฟโบรกินในตัวกย่างจากจังหวัดเชียงใหม่ คือ 77.8 ± 7.1 และ576 ± 33 มิลลิกรัมต่อกรัม

E46270 ตามลำคับ จะเห็นว่า สารสี เซริซิน และไฟโบรอินที่สกัดจากรังไหมไทยสีเหลืองที่เลี้ยงในจังหวัด เชียงใหม่ มีปริมาณที่ไม่แตกต่างไปกว่าสารต่างๆในรังไหมที่เลี้ยงในจังหวัดน่านอย่างเป็นนัยสำคัญ งากผลลัพธ์ที่ได้นี้ แสดงให้เห็นว่าความแตกต่างของสภาพอากาศ และการเก็บเกี่ยว ไม่มีผลต่อ คุณภาพของใบหม่อนที่ใช้เลี้ยงหนอนไหม จึงทำให้ไม่เกิดความแตกต่างของปริมาณของสารต่างๆ ที่ทำการศึกษา แต่อย่างไรก็ตาม ได้มีการยืนยันเอกลักษณ์ของสารที่สกัดได้จากหมู่ฟังก์ชันต่างๆ ของสารสี เซริซิน และไฟโบรอิน โดยใช้เทกนิกฟูเรียทรานสฟอร์มอินฟราเรดสเปกโทรสโกปี อีก ด้วย

TABLE OF CONTENTS

			Page
ACKNOWLE	GEMEN	TS	iii
ABSTRACT (I	ENGLIS	H)	iv
ABSTRACT (ГНАІ)		vi
LIST OF TAB	LES		xiii
LIST OF FIG	URES		xiv
ABBREVIAT	IONS AI	ND SYMBOLS	xix
CHAPTER 1	INTRO	DUCTION	1
1.1 Metho	ds of sep	aration	1
1.1.1	Separat	on of a Solid-Solid Mixture	4
	1.1.1.1	Sublimation	4
	1.1.1.2	Magnetic Separation	4
	1.1.1.3	Solvent Extraction	5
1.1.2	Separat	ion of a Solid-Liquid Mixture	5
	1.1.2.1	Suspension	6
		1) Sedimentation or Decantation	6
		2) Centrifugation	6
		3) Filtration	7

		1.1.2.2	Solu	ition	8
			1)	Evaporation	8
			2)	Crystallization	9
			3)	Simple Distillation	9
		1.1.2.3	Coll	loid	10
			Chr	omatography	10
	1.1.3	Separat	ion o	f a Liquid – Liquid Mixture	11
		1.1.3.1	Frac	ctional distillation	11
		1.1.3.2	Fun	nel separation	12
1.2	Solver	nt Extrac	tion l	Method	12
	1.2.1	Heat Re	eflux	Extraction (HRE)	13
	1.2.2	Soxhlet	t Extr	raction (SE)	13
	1.2.3	Ultraso	und-a	assisted Extraction (UAE)	14
	1.2.4	Microw	vave-	assisted Extraction (MAE)	15
	1.2.5	Subcrit	ical V	Water Extraction (SWE)	16
1.3	Purific	cation m	ethod	l	19
	1.3.1	Precipi	tatior	1	19
	1.3.2	Dialysi	S		20
1.4	Exper	imental 1	techn	iques	21
	1.4.1	Ultravi	olet a	and Visible spectrophotometry	21
	1.4.2	Fourier	r Trai	nsform Infrared spectroscopy (FT-IR)	22
1.5	Silks				26
	1.5.1	Compo	ositio	n of raw silk cocoon	29
	152	Pigmer	nts in	silk cocoon	31

1.5.2.1 Carotenoids	34
1.5.2.2 Flavonoids	38
1.5.3 Solvent extraction of pigments	41
1.5.4 Techniques for pigment quantification	44
1.5.5 Structure of silk protein	45
1.5.6 Interactions between silk fibroin and silk sericin	46
1.5.7 Amino acid composition of silk proteins	47
1.5.8 Silk sericin	49
1.5.9 Silk fibroin	51
1.6 Research Objectives	53
CHAPTER 2 EXPERIMENTAL	54
2.1 Chemicals, materials and equipment	54
2.1.1 Chemicals	54
2.1.2 Materials	55
2.1.3 Equipment	55
2.2 Preparation of solutions	56
2.3 Procedures	59
2.3.1 Pigment Extraction and Determination of total pigments	59
2.3.1.1 Solvent selection	60
2.3.1.2 Factors affecting pigments extraction	61
1) Effect of methanol and ethanol concentrations	61
2) Effect of temperature and extraction time	62
2) Effect of solvent polarity	62

3) Effect of solvent polarity

Х

	4) Effect of acidity/alkalinity	63
	5) Effect of ionic strength	63
	2.3.1.3 Determination of the total pigments	64
	2.3.2 Extraction and Determination of the sericin protein	64
	2.3.3 Extraction and Determination of the fibroin protein	65
	2.3.4 Structural characterizations of fibroin sericin and pigment	
	powders	65
CHAPT	TER 3 RESULTS AND DISCUSSION	66
3.1	Pigment Extraction and Determination of total pigments	66
	3.1.1 Solvent selection	67
	3.1.2 Factors affecting pigment extraction	69
	3.1.2.1 Effect of methanol and ethanol concentrations	71
	3.1.2.2 Effect of temperature and extraction time	74
	3.1.2.3 Effect of solvent polarity	76
	3.1.2.4 Effect of acidity/alkalinity	77
	3.1.2.5 Effect of ionic strength	79
	3.1.3 Determination of total pigments	82
3.2	Extraction and Determination of the sericin and fibroin proteins	86
3.3	Structural determination of sericin fibroin and pigment powders	91
	TER 4 CONCLUSION	98
REFERENCES 10		
APPEN	DIX	116

LIST OF TABLES

Tabl	e	Page
1.1	Common separation methods in chemistry laboratory	3
1.2	Characteristic infrared bands of peptide linkage	23
1.3	The different species of silkworms and the types of leaves	27
1.4	The chemical composition of silk	30
1.5	Amino acid composition of fibroin and sericin	48
3.1	The absorbances of total carotenoid extract in Thai yellow silk cocoon,	
	var. Nangnoi Si Sa Ket (Nan province) in each extracted batch	83
3.2	The weight of total pigment in Thai yellow silk cocoon,	
	var. Nangnoi Si Sa Ket (Nan and Chiang Mai provinces)	85
3.3	Weights and percentages of pigment, sericin and fibroin powder	90
3.4	Frequency ranges of characteristic absorption bands of amides in	
	crystalline state	92
3.5	Comparison of IR absorption bands of fibroin as amide I, amide II and	
	amide III	96
3.6	Comparison of IR absorption bands of sericin as amide I, amide II	96

xiii

LIST OF FIGURES

Figur	e	Page
1.1	Diagram illustrating methods for mixture separation	2
1.2	Sublimation of ammonium chloride	4
1.3	Separation of a magnetic substance by a magnet	5
1.4	Centrifugation method for separating particles;	
	(a) differential centrifugation and (b) rate-zonal centrifugation	7
1.5	Rotary evaporator	8
1.6	Simple distillation	9
1.7	Column chromatography	10
1.8	Fractional distillation	11
1.9	Funnel separation	12
1.10	Heat reflux extraction	13
1.11	Soxhlet extraction	14
1.12	Assemble of ultrasound-assisted Soxhlet extraction	15
1.13	The heating principles of classical conduction and the MAE	16
1.14	The phase diagram of water	17
1.15	Schematic representation of hydrophobic, negatively and positively	
	charged areas of general protein	19

.16	Dialysis	20
1.17	Systematic diagram of UV-Vis instrument	22
1.18	Characteristic amide bands as exhibited by a capillary film of	
	N- methylacetamide	24
1.19	Diagram of the components of infrared spectrophotometer	24
1.20	Source of silk and processes of making silk fiber	28
1.21	SEM images of (a) the structure of a silk cocoon and (b) cross sectional	
	structure of silk fiber showing the fibroin-sericin co-existence	29
1.22	Application of sericin in various industries	30
1.23	Chemical structure of (a) Lutein and (b) Quercetin	32
1.24	Silk cocoon with different colors (a) pink cocoon; (b) yellow;	
	(c) whitish sasa; (d) deep sasa; (e) golden-yellow; (f) white	33
1.25	Some example of silk cocoons found in Thailand	34
1.26	Basic structure of carotenoid	35
1.27	7 Chemical structure of some carotenoids	36
1.28	Role of carotenoids in the prevention of chronic diseases	38
1.29	Basic flavonoid structure	39
1.30	Chemical structure of some flavonoids	40
1.3	1 Common structure of protein	45
1.32	2 Secondary structure of proteins include random coil (no structure),	
	alpha-helix, the beta-sheet, and the turn	46
1.3	3 Schematic representation of the intermolecular hydrogen bonding at the	
	boundary of silk fibroin and silk sericin	47

1.34	Photographs of sericin film, gel and sponge comprised of various sericin	
	solutions (SL-1A, SL-1B and SL-1C)	51
2.1	Reflux extraction apparatus	60
2.2	Reflux extraction apparatus by heating in a water bath	62
3.1	Nangnoi Si Sa Ket silk cocoon samples of B. mori silkworms obtained	
	from Nan and Chiang Mai provinces in Thailand	67
3.2	The yellow color of pigment extracted by various solvents	67
3.3	Chemical structures of (a) lutein (carotenoid) and (b) quercetin (flavonoid)	68
3.4	UV-Vis spectrum of pigment extracted from silk cocoon with	
	80%v/v ethanol	69
3.5	(a) UV-Vis spectrum of the purified lutein- binding protein dissolved in	
	20 mM Tris-HCl, pH 7.0 solution, (b) UV-VIS spectrum of lutein	
	dissolved in acetone/methanol	70
3.6	UV-VIS spectrum of the quercetin	71
3.7	Effect of MeOH concentrations on the extraction of pigments	72
3.8	Effect of EtOH concentrations on the extraction of pigments	72
3.9	Absorbances of the extracted pigments in various concentrations of MeOH	
	solution at different wavelengths	73
3.10	O Absorbances of the extracted pigments in various concentrations of EtOH	
	solution at different wavelengths	73
3.1	1 The effect of temperature and extraction time on pigment extraction	75
3.12	2 Absorbances of the pigment extracted by various polarities solvents	76
3.1	3 Effect of the % acetic acid added in 80% v/v EtOH solution on pigment	
	extraction	77

3.14	Effect of concentrations of NaOH on pigment extraction	78
3.15	The electrostatic interaction between lutein and silk fiber	79
3.16	The pH value of each salt containing solution	80
3.17	Effect of salt addition on pigment extraction	80
3.18	Effect of CH ₃ COONa concentrations on pigment extraction	81
3.19	Pigment solution obtained in each extraction	82
3.20	Process of pigment extraction: (a) refluxing, (b) extracting, (c) filtering,	
	(d) cocoon residue, (e) pigment solution (f) rotary evaporating and	
	(g) freeze-drying	84
3.21	The freeze-dried pigment powder	84
3.22	The freeze-dried sericin powder	87
3.23	Process of sericin extraction: (a) silk cocoon after pigment removal,	
	(b) silk degumming (c) degummed cocoon, (d) degumming solution and	
	precipitated sericin, (e) centrifugation, (f) dialysis and (g) freeze-drying	88
3.24	Processes of preparation of fibroin powder: (a) degummed silk,	
	(b) dissolving, (c) dialysis, (d) freeze-drying	89
3.25	The SF powder prepared by using different temperature in the process of	
	dissolving SF fiber (a) temperature at $110 \pm 5^{\circ}$ C, (b) temperature below	
	105°C	90
3.26	The vibrations responsible for the amide I and amide II bands	92
3.27	FT-IR spectra of fibroin powder (NAN)	93
3.28	FT-IR spectra of fibroin powder (Chiang Mai)	94
3.29	FT-IR spectra of sericin powder (NAN)	95
3.30	FT-IR spectra of sericin powder (Chiang Mai)	95

3.30	FT-IR spectra of sericin powder (Chiang Mai)	95
3.31	FT-IR spectra of pigment powder	97
3.32	FT-IR spectra of lutein	97

ABBREVIATIONS AND SYMBOLS

А	Absorbance
e.g.	for example
FT-IR	Fourier transform infrared spectroscopy
g	gram
h	hour
mg	milligram
mg/mL	milligram per milliliter
М	molarity
min	minute
mm	millimeter
mL	milliliter
nm	nanometer
v/v	volume by volume
w/v	weight by volume
α	alpha
β	beta
°C	degree Celsius
SD	standard deviation

SS	silk sericin
kDa	kilodalton
t	time
HPLC	high performance liquid chromatography
pH	potential of hydrogen ion
%	percentage
SDS	Sodium dodecyl sulphate
UV-Vis	Ultraviolet–Visible