

ข้าวตอซัง (Ratoon Rice) เป็นผลพดอยได้ต่อเนื่องจากข้าวรุ่นหลักที่ปลูกตัวขึ้นมาแล้ว จึงเรียกว่าตอ แล้วอกรวงเริ่ว และมีอายุการเก็บเกี่ยวสั้นกว่าข้าวรุ่นหลัก แต่คุณภาพของผลผลิตขาดความสม่ำเสมอถือว่าเป็นข้อจำกัด และถ้าลองลิ้กในต้นเป็นผลพดอยได้จากการน้ำที่ดูดซึมน้ำที่ดิน น้ำ และอากาศ ดังนั้นการศึกษาวิจัยครั้งนี้จึงนุ่งเน้นถึงผลของการเติมถ้าลองลิ้กในต้น ปุ๋ยหมักฟางข้าว และปุ๋ยเคมี ในการปลูกข้าวรุ่นหลัก ต่อการเจริญเติบโต และองค์ประกอบทางเคมีของข้าวตอซัง ในแปลงนาเกษตรกร ต.ดอนยอ อ.เมือง จ.นครนายก ซึ่งเคยเติมถ้าลองลิ้กในต้น เมื่อปี พ.ศ. 2544 วางแผนการทดลองแบบ Randomized Complete Block ทำ 3 ชั้นปลูกข้าวรุ่นหลักแบบปักดำ และพันธุ์ข้าวที่ใช้คือ ข้าวพันธุ์ปัทุมธานี 1

ผลการศึกษาพบว่า การเจริญเติบโตของข้าวตอซัง ได้แก่ ความสูง น้ำหนักแห้ง ผลผลิต และองค์ประกอบผลผลิต (จำนวนต้นต่อตารางเมตร จำนวนรวงต่อตารางเมตร ความยาวรวง จำนวนเมล็ดต่อรวง จำนวนเมล็ดต่อรวง เปอร์เซ็นต์เมล็ดดี และน้ำหนัก 1,000 เมล็ด) ของข้าวตอซัง และองค์ประกอบทางเคมีของข้าวรุ่นหลักและข้าวตอซัง ได้แก่ ปริมาณฟอสฟอรัสทั้งหมด ปริมาณโพแทสเซียมทั้งหมด และปริมาณซิลิกอนทั้งหมด (Crude Si) เพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ เมื่อเติมถ้าลองลิ้กในต้น ปุ๋ยหมักฟางข้าว และปุ๋ยเคมี ส่วนปริมาณคาร์บอน ปริมาณในโตรเจนทั้งหมด ปริมาณโปรตีนหนานในข้าวรุ่นหลัก และข้าวตอซัง เพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ เมื่อเติมปุ๋ยหมักฟางข้าว และปุ๋ยเคมีในข้าวรุ่นหลัก นอกจากนี้การเจริญเติบโตและองค์ประกอบทางเคมีของข้าวตอซัง ยังสามารถทดสอบแทนราชอาหารหลัก (ในโตรเจน ฟอสฟอรัส และโพแทสเซียม) และชาตุเสริมประไชน์ (ซิลิกอน) ที่ออกงานข้าวในรูปของข้าวรุ่นหลักได้อย่างเพียงพอ โดยไม่เป็นปัจจัยเรื่องการสลายตัว เพราะอัตราส่วนคาร์บอนต่อไนโตรเจนของข้าวตอซัง (ฟางข้าวตอซัง และเมล็ดข้าวเปลือกของข้าวตอซัง) มีค่าอยู่ในช่วง 9 : 1 – 17 : 1 และสามารถใช้เป็นวัตถุคุณภาพลิตร้อยละได้ แต่มีปริมาณโปรตีนหนานน้อย และมีปริมาณซิลิกอนสูงจนอาจจะเป็นปัจจัยกับระบบการย่อยอาหารของสัตว์ อย่างไรก็ตามผลผลิตข้าวตอซังที่คำนวณองค์ประกอบผลผลิตมีโอกาสเพิ่มขึ้นจาก 54.97 เป็น 528.68 กิโลกรัม/ไร่ เมื่อเติมถ้าลองลิ้กในตัวร่วมกับปุ๋ยหมักฟางข้าวร่วมกับปุ๋ยเคมี

ดังนั้น การปลูกข้าวตอซังในการศึกษาครั้งนี้ ถือได้ว่า เป็นการใช้ประไชน์จากถ้าลองลิ้กในต้น และฟางข้าว ซึ่งเป็นวัสดุเหลือทิ้งจากภาคอุตสาหกรรมและภาคเกษตรกรรมอย่างเหมาะสม และยังคงความอุดมสมบูรณ์ของดินนาไปโดยช่วยลดการใช้สารเคมีในรูปของปุ๋ยเคมีและสารเคมีปราบศัตรูพืช อีกทั้งยังเป็นการช่วยลดการเผาตอซังข้าวรุ่นหลัก ซึ่งเป็นสาเหตุสำคัญของการเกิดปัญหามลพิษทางอากาศด้วย

Ratoon rice is a by-product continued from main crop which is seeded rice. Although growing period, panicle stage and harvesting time of ratoon rice are lesser than the main crop, the quality of yield is inconsistent. Lignite fly ash, a by-product from lignite burning process, is a cause of environmental problem such as water, soil and air pollution, if it is not manage properly. This study, therefore, emphasized on effect of application lignite fly ash, rice straw compost and chemical fertilizer to main crop on growth and chemical composition of ratoon rice. Field experiment was carried out at Mueang district, Nakhon Nayok province, where lignite fly ash was previously applied in 2001. The experimental design was Randomized Complete Block Design with 3 replications. The test plant was PTT 1 rice variety by transplanting method.

The result showed that growth of ratoon rice such as plant height, biomass, yield and yield component (number of culm per square meters, number of panicle per square meters, panicle length, number of seed per panicle, number of filled per panicle, percentage of filled grain and thousand grain weight) were increased significantly when applied lignite fly ash, rice straw compost and chemical fertilizer. Besides, composition of main crop and ratoon crop such as total phosphorus, total potassium and crude silicon were also significant increased. While organic carbon, total nitrogen and crude protein in main crop and ratoon crop were significant increased when rice straw compost and chemical fertilizer were applied. In addition, the macronutrients (Nitrogen, Phosphorus and Potassium) and beneficial nutrient (Silicon) removal from paddy field in main crop could be substituted by biomass and chemical composition of ratoon rice sufficiently without any decomposition problem due to C/N ratio of ratoon rice (rice straw and seed) in the range of 9:1 – 17:1. The ratoon rice could be a material for produce alcohol, but the possibility to utilize as forage crop was low because of low crude protein and high crude silicon effected on digestive system of animal. How ever yield of ratoon rice which calculated from yield component indicated an opportunity to increased from 54.97 to 528.68 kg/rai (1 ha = 6.25 rai) when applied lignite fly ash cum rice straw compost with chemical fertilizer.

Therefore, rice ratooning was a suitable option to utilize lignite fly ash and rice straw as waste from industry and agriculture. As a result, fertility of paddy soil was maintained by using less chemical fertilizer and pesticide. Moverover, burning rice straw and tiller that cause air pollution was also reduced.