หัวข้อวิทยานิพนธ์ ผลกระทบของเถ้าแกลบ-เปลือกไม้และเถ้าปาล์มน้ำมันต่ออัตราการซึมของ

น้ำผ่านคอนกรีต

หน่วยกิต 12

ผู้เขียน นางสาววลัยลักษณ์ สาระจันทร์

อาจารย์ที่ปรึกษา ศ.คร.ชัย จาตุรพิทักษ์กุล

หลักสูตร วิศวกรรมศาสตรมหาบัณฑิต

 สาขาวิชา
 วิศวกรรมโยชา

 ภาควิชา
 วิศวกรรมโยชา

 คณะ
 วิศวกรรมศาสตร์

พ.ศ. 2550

าเทคัดย่อ

งานวิจัยนี้เป็นการศึกษาผลของเถ้าแกลบ-เปลือกไม้และเถ้าปาล์มน้ำมันต่ออัตราการซึมของน้ำผ่าน คอนกรีต โดยนำเถ้าแกลบ-เปลือกไม้และเถ้าปาล์มน้ำมันซึ่งเป็นผลพลอยได้จากกระบวนการผลิต กระแสไฟฟ้ามาปรับปรุงคุณภาพโดยการบดให้มีความละเอียดแตกต่างกัน 2 ขนาด คือ ค้างบนตะแกรง เบอร์ 325 เท่ากับร้อยละ 15-20 (ความละเอียดปานกลาง) และน้อยกว่าร้อยละ 5 โดยน้ำหนัก (ความ ละเอียดมาก) รวมกับเถ้าแกลบ-เปลือกไม้และเถ้าปาล์มน้ำมันที่ไม่ผ่านการบดจึงมีความละเอียดอย่างละ 3 ขนาด จากนั้นนำเถ้าแกลบ-เปลือกไม้และเถ้าปาล์มน้ำมันทั้ง 3 ขนาดแทนที่ปูนซีเมนต์ปอร์ตแลนด์ ประเภทที่ 1ในอัตราร้อยละ 10, 20, 30 และ 40โดยน้ำหนักของวัสดุประสาน ทดสอบกำลังอัดของ คอนกรีตที่อายุ 7, 28 และ 90 วันและอัตราการซึมของน้ำผ่านคอนกรีตที่อายุ 28 และ 90 วัน

ผลการวิจัยพบว่าคอนกรีตที่ผสมเถ้าแกลบ-เปลือกไม้และเถ้าปาล์มน้ำมันที่นำมาจากแหล่งผลิต โดยตรงมีกำลังอัดต่ำกว่าคอนกรีตควบคุมและไม่สามารถลดอัตราการซึมของน้ำผ่านคอนกรีตได้ เมื่อ ปรับปรุงความละเอียดของเถ้าแกลบ-เปลือกไม้และเถ้าปาล์มน้ำมันให้มีความละเอียดมากขึ้น พบว่า คอนกรีตมีกำลังอัดเพิ่มขึ้นและสามารถลดอัตราการซึมของน้ำผ่านคอนกรีตได้ นอกจากนี้การแทนที่ ปูนซีเมนต์ด้วยเถ้าแกลบ-เปลือกไม้ความละเอียดปานกลางในอัตราร้อยละ 10 และความละเอียดมาก ในอัตราร้อยละ 30 โดยน้ำหนักของวัสดุประสานมีกำลังอัดใกล้เคียงกับคอนกรีตควบคุม และมีอัตรา การซึมของน้ำผ่านคอนกรีตต่ำกว่าคอนกรีตควบคุมที่อายุ 90 วัน ส่วนคอนกรีตที่ผสมเถ้าปาล์มน้ำมัน พบว่าการแทนที่ปูนซีเมนต์ด้วยเถ้าปาล์มน้ำมันที่มีความละเอียดมากในอัตราร้อยละ 20 ให้กำลังอัด ของคอนกรีตใกล้เคียงกับคอนกรีตควบคุม และมีอัตราการซึมของน้ำผ่านคอนกรีตต่ำกว่าคอนกรีต ควบคุมที่อายุ 90 วัน นอกจากนี้คอนกรีตกวบคุม และมีอัตราการซึมของน้ำผ่านคอนกรีตต่ำกว่าคอนกรีต ควบคุมที่อายุ 90 วัน นอกจากนี้คอนกรีตกวบคุม และมีอัตราการซึมของน้ำผ่านคอนกรีตต่ากว่าคอนกรีต

ที่ผสมเถ้าแกลบ-เปลือกไม้และเถ้าปาล์มน้ำมันมีแนวโน้มลคต่ำลงค้วย และท้ายสุคอัตราการซึมของ น้ำผ่านคอนกรีตสามารถทำนายได้ โคยใช้กำลังอัคของคอนกรีตที่ผสมเถ้าแกลบ-เปลือกไม้ และเถ้า ปาล์มน้ำมันที่ผ่านการบค

คำสำคัญ : อัตราการซึมของน้ำ / กำลังอัค / เถ้าแกลบ-เปลือกไม้ / เถ้าปาล์มน้ำมัน

Thesis Title Effect of Rice Husk-Bark Ash and Palm Oil Fuel Ash on

Water Permeability of Concrete

Thesis Credits 12

Candidate Miss Walailuk Sarajun

Thesis Advisors Prof. Dr. Chai Jaturapitakkul

Program Master of Engineering

Field of Study Civil Engineering

Department Civil Engineering

Faculty Engineering

B.E. 2550

Abstract

The objective of this research is to study the effects of rice husk-bark ash (RHBA) and palm oil fuel ash (POFA) on water permeability of concrete. Rice husk-bark ash and palm oil fuel ash, by-products from biomass power plant, were ground until the particles retained on a sieve No. 325 of 15-20 (medium fineness) and less than 5% (high fineness) by weight. Three different finenesses of RBHA and POFA (including RBHA and POFA as directly received from the power plant) were used to replace Portland cement type I at 10, 20, 30 and 40 percent by weight of binder to cast concrete. Compressive strengths of concretes were determined at the ages of 7, 28 and 90 days and water permeabilities of concretes were determined at the ages of 28 and 90 days.

The results revealed that the unground rice husk-bark ash and palm oil fuel ash were not suitable for using as a cement replacement in concrete because the concrete produced exhibited produced exhibited low compressive strength and high water permeability as compared to that of the control concrete. Additionally, with 10% and 20% replacement of Portland cement type I by medium fineness and high fineness of rice husk-bark ash, respectively, the compressive strengths of concrete were as high as that of the control concrete and the values of water permeability were lower than that of the control concrete at 90 days. When high fineness of palm oil fuel ash was used to replace Portland cement at 20 percent by weight binder, it produced higher compressive strength and lower water permeability of concrete as compared to the control concrete at 90 days. In addition, concrete containing RHBA or POFA with higher compressive strength tended to have lower water permeability of concrete than the one with

lower compressive strength. Finally, it was found that the water permeability of concrete containing RBHA and POFA could be predicted by using the compressive strength of the concrete.

Keywords: Water Permeability / Compressive Strength / Rice Husk-Bark Ash / Palm Oil Fuel Ash