

202948

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการย่อยการมันสำปะหลังโดยการนำบัดขันตันด้วย เชลลูโลส งานวิจัยแบ่งการทดลองออกเป็น 2 ช่วง ช่วงแรก เพื่อศึกษาสภาพที่เหมาะสมของเอนไซม์ เชลลูโลสในการย่อยการมันสำปะหลังร้อยละ 0.1 (น้ำหนักโดยปริมาตร) เทียบเท่าอัตราการอินทรีย์ 0.075 กรัมซีโอดี/ลิตร/วัน ซึ่งทำการทดลองแบบที่อุณหภูมิห้องและ 50 องศาเซลเซียส จากผลการทดลองพบว่า การย่อยสลายสูงสุดที่ซีโอดีละลายน้ำ 187 และ 189 มิลลิกรัมต่อกรัมแห้ง เวลาทำปฏิกิริยา 24 ชั่วโมง พีเอช 5 ที่อุณหภูมิห้องและ 50 องศาเซลเซียส ปริมาณเอนไซม์ เชลลูโลส 400 และ 200 ยูนิตต่อกรัมแห้งตามลำดับ จากนั้นนำสภาพจากทดลองที่ อุณหภูมิ 50 องศาเซลเซียส เป็นสภาพเริ่มต้นในการเดินระบบในช่วงการทดลองที่ 2 เพื่อศึกษาผลของการเติมเอนไซม์ เชลลูโลสในถังปฏิกิริย์ที่ควบคุมชั่งแบบ 2 ขั้นตอน ประกอบด้วย ถังปฏิกิริย์ หมักกรดและถังปฏิกิริย์ สร้างมีเทน โดยเดินระบบแบบต่อเนื่อง ควบคุมอุณหภูมิ 50 องศาเซลเซียส ที่เวลา กักเก็บน้ำเท่ากับ 2 และ 18 วันตามลำดับ ทำการทดลองที่อัตราการอินทรีย์ 0.075, 0.1, 0.5, 1 และ 2 กรัมซีโอดี/ลิตร/วัน ถูกป้อนเข้าสู่ถังปฏิกิริย์ หมักกรดที่มีการเติมเอนไซม์ เชลลูโลสและไม่มีการเติมเอนไซม์ ควบคุมระบบที่ พีเอช 5 อุณหภูมิ 50 องศาเซลเซียส พนวจว่า ที่อัตราการอินทรีย์ 0.1 กรัมซีโอดี/ลิตร/วัน ที่มีการเติมเอนไซม์ เชลลูโลส ให้ประสิทธิภาพไส้โดรไลซิสสูงสุดร้อยละ 37.6 และประสิทธิภาพในการกำจัดซีโอดี และ ศักยภาพในการผลิตก๊าซมีเทนสูงสุดร้อยละ 53 และ 208 มิลลิกรัมมีเทนต่อกรัมซีโอดี ตามลำดับ

202948

The objective of this research was to evaluate the enhancement of decentered cake degradation from tapioca mill by cellulase pretreatment. The study was divided into 2 parts. The first part was conducted in a batch mode to determine the optimal condition for cellulase to hydrolyze 0.1 % (w/v) solution of the decentered cake which equivalent to 0.075 g COD/l/day. It was disclosed that the best hydrolysis performance in term of soluble COD within 24 hours and at pH 5 was 187 mg/g dry weight for the test conducted under room temperature and using 400 units/ g dry weight of substrate and was 189 mg/g dry weight for the run at 50 $^{\circ}\text{C}$ and 200 units/ g dry weight. Then the optimal condition at 50 $^{\circ}\text{C}$ was used in the second part to study the effect of cellulase addition in the two-stage anaerobic sequencing batch reactor which comprised of an acidogenic reactor and a methanogenic reactor and operated in a continuous mode at pH 5. Hydraulic retention time for acidogenesis and methanogenesis was 2 and 18 days, respectively, and organic loading rates were varied from 0.075 to 0.1, 0.5, 1 and 2 g COD/l/day. It was found that addition of cellulase provided better performance than the control without cellulase addition, with the maximum hydrolysis, COD removal, and methane production of 37.6%, 53% and 208 ml CH_4 / g COD, respectively, at the organic loading of 0.1 g COD/l/day.