

มะละกอพันธุ์แขกคำเป็นไม้ผลเขตร้อนประเภท climacteric เกิดอาการสะท้านหนาได้ง่าย เมื่อเก็บรักษาที่อุณหภูมิต่ำกว่า 13° แม้ว่าเปลือกมีปริมาณ water soluble antioxidants (ascorbic acid, dehydroascorbic acid, และ glutathione) มากกว่าในเนื้อ แต่ออาการสะท้านหนาที่ม่องเห็นได้เกิดขึ้นที่เปลือกโดยแสดงอาการบุบตัวเป็นจุดกระจายไปทั่วเปลือก ผลมะละกอจะยับดิบ (mature green stage) เก็บรักษาอุณหภูมิที่ 5° แสดงอาการสะท้านหนาชุนแรกกว่าผลสุก (half yellow stage) ซึ่งปริมาณ ascorbic acid ในเปลือกและเนื้อของผลดิบเก็บรักษาที่อุณหภูมิ 5° ลดลงอย่างรวดเร็วในขณะที่ glutathione ค่อนข้างคงที่ ส่วนเอนไซม์ superoxide dismutase (SOD) มีกิจกรรมในผลสุกมากกว่าผลดิบ และมะละกอเก็บรักษาที่ 5° มีกิจกรรมของ SOD ลดลงอย่างรวดเร็ว การแข็งผลมะละกอจะเปลือกเริ่มเปลี่ยนสี (breaker stage) ในอุณหภูมิ 42° นาน 6 ชั่วโมง ก่อนการเก็บรักษาที่อุณหภูมิ 5° มีประสิทธิภาพอย่างยิ่งต่อการลดอาการสะท้านหนาของผลมะละกอ โดยสามารถรักษาปริมาณ ascorbic acid และ glutathione ในเปลือก นอกจากนี้การแสดงออกของยีน CpSOD มีระดับเพิ่มขึ้นหลังการได้รับความร้อนและทำให้กิจกรรมของ glutathione-S-transferase (GST) เพิ่มขึ้นในเนื้อระหว่างการเก็บรักษา

ผลมะละกอมีการสร้างเอทิลีนได้ในระดับต่ำที่อุณหภูมิ 5° แม่การพัฒนาอาการสะท้านหนาเกิดขึ้น การเก็บรักษาที่อุณหภูมิ 13° ทำให้ผลมะละกอมีการสร้างเอทิลีนเพิ่มขึ้นระหว่างการเก็บรักษาและเร่งการเสื่อมสภาพและการเน่าเสียของผลมะละกอ ผลสุกมีการผลิตเอทิลีนและมีการแสดงออกของยีน CpSOD และ CpGST มากกว่าในผลดิบ การให้เอทิลีนจากภายนอกความเข้มข้น 100 ไมโครลิตร/ลิตร นาน 24 ชั่วโมงกับผลมะละกอจะเปลือกเริ่มเปลี่ยนสี (breaker stage) ก่อนการเก็บรักษาที่ 5° เพิ่มการแสดงออกของยีน CpSOD แต่ผลที่ได้รับสาร 1-MCP ซึ่งเป็นสารยับยั้งการทำงานของเอทิลีนก่อนการเก็บรักษาอย่างคงมีการแสดงออกของยีน CpSOD การที่ปริมาณของ ascorbic acid และกิจกรรมของ SOD มากในเปลือกอาจเป็นกลไกการชะลออาการสะท้านหนาในผลมะละกอ โดยยีน CpSOD แสดงให้เห็นถึงรูปแบบการแสดงออกของ ethylene-independent gene

Papaya (*Carica papaya* L. cv. 'Khaek-Dum') is a tropical and climacteric fruit showing chilling injury (CI) when stored below 13°C. Although the peel contains higher levels of water soluble antioxidants (ascorbic acid, dehydroascorbic acid, and glutathione) compared to the pulp, primary visual CI expresses on the peel as scattered pitting spots across the fruit during low temperature storage at 5°C. Our study found that mature-green fruit exhibited more severe of CI symptoms than ripe fruit (half-yellow) stored at 5°C. Ascorbic acid decreased against dehydroascorbic acid increased whilst glutathione remained stable in both peel and pulp throughout low temperature storage. Superoxide dismutase (SOD) activity was higher in ripe fruit and dramatically decreased at 5°C. Dipping in heat water at 42°C for 6 hours before storage at 5°C effectively reduced CI symptoms on the peel of breaker stage papaya and dipped papaya fruit had higher contents of ascorbic acid and glutathione in the peel than the control fruit. *CpSOD* transcripts increased immediately after heat treatment whereas glutathione-s-transferase (GST) activity remained high in pre-heated pulp during storage.

Papaya produced very low ethylene at 5°C throughout storage period even though during development of CI symptoms. Storage temperature at 13°C increased ethylene production of stored fruit, caused a rapid senescence and decay. Ripe fruit produced higher ethylene and had higher levels of *CpSOD* and *CpGST* mRNA accumulations in peel. Furthermore application of exogenous ethylene at 100 ppm to papaya fruit at breaker stage for 24 hours induced *CpSOD* transcripts while fumigation with 500 ppb 1-MCP (1-methylcyclopropene, an ethylene response inhibitor) for 24 hours reduced, but *CpSOD* gene still expressed. High levels of ascorbic acid and SOD activity in peel of treated fruit indicate a delay in severity of CI symptoms and *CpSOD* gene expression shows ethylene-independent pattern.