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CHAPTER 1 INTRODUCTION

1.1 Background

1.1.1 Fixed Point Theory and Iteration

Fixed point theory is one of the most powerful instrument of modern math-
ematics. Fixed point theory concern the existence and properties of fixed points.
Fixed point theory is a gorgeous fusion of analysis, topology and geometry. Fixed
point theory has been applied in such field as engineering, physics, economics, biol-
ogy, chemistry game theory,optimization theory and approximation theory etc. In
1886, Poincare [1] was the first to work in in the field of fixed point theory. Afterward
Brouwer [2] proved fixed point theorem for the solution of the equation f(z) =z, a
square, a sphere and their n-dimensional counter parts which was further extended
by Kakutani [3]. In 1922, Banach [4] proved that a contraction mapping in the
complete metric space maintain a unique fixed point. Thereafter it was extended
by Kannan [5]. The fixed point theory as well as Banach contraction principle, has
been studied and generalized in different spaces and various fixed point theorem
were developed.

In 1953, Mann [10] introduced the well-known iteration process, called Mann
iteration, for approximating fixed point of a mapping 7' , which start from zy € E

and defined the sequence {z, }5°, iteratively by
Tpr1 = (1 —ap)x, + @, Tx,, Vn >0, (1.1.1)

where {a, }22, C [0, 1] satisfy the appropriate conditions.
In 1974, Ishikawa [11] introduced the iteration for approximating fixed point of
a mapping T as follows: the sequences {z,} defined by

Yn = ann + (1 - 5n)Txm
Tn+1 = Qnlp + (1 - Oén)Tyn, vn Z 07

(1.1.2)

where 2y € C'is arbitrary and {a,}, {8,} are real sequences in [0, 1]. After the work

of Mann [10] and Ishikawa [11] a new direction took place in the field of fixed point



theory for approximating fixed point and convergence of iterative of sequences.
In 1976, Korpelevich [21] introduced the well-known iteration process, called

extragradient method, which the sequence {x,} was defined as follows:

To =2 € C,
Yn = Po(xn, —(Txy), (1.1.3)
Tpr1 = Po(z, — 1 Ty,), Yn>0,

where ¢ € (0,1) and 7' is a monotone and L-Lipschitz continuous mapping. He
proved that, if the set of solutions of variational inequality problem is nonempty,
then the sequences {x, } converges to an element in the set of solutions of variational
inequality problems.

In 2000, Moudafi [24] introduced the viscosity approximation method for non-
expansive mappings. Starting with an arbitrary initial xy € H, define a sequence

{z,} recursively by
Tpy1 = onf(xn) + (1 —0,)Tx,, n>0, (1.1.4)

where {0,} is a sequence in (0,1). It is proved that under certain appropriate
conditions imposed on {o,}, the sequence {x,} strongly converges to the unique

solution z* in C' of the variational inequality
(I—flz*,x—2") >0, zeC. (1.1.5)

In 2006, Marino and Xu [22] introduced a general iterative method for nonex-
pansive mapping. Starting with an arbitrary initial xy € H, define a sequence {x,}
recursively by

Tni1 = eV f(xn) + (I — €,4)Tx,, n>0. (1.1.6)

They proved that if the sequence {e€,} of parameters satisfies appropriate condi-
tions, then the sequence {x,} generated by (1.1.6) strongly converges to the unique

solution & = Pp(p)(I — A+ vf)T of the variational inequality
(A=~f)z,x—z) >0, Yxe F(T), (1.1.7)
which is the optimality condition for the minimization problem

min 1<Aa:,:1:> — h(z), (1.1.8)

z€F(T) 2



where h is a potential function for vf (i.e., h'(z) = vf(z) for x € H).
In 2007, Moudafi [55] intoduced the following Krasnoselski-Mann algorithm:

Tl = (1 — )y + an(BoSzn + (1 — 5,)Txy), (1.1.9)

where S,T : C — C are two nonexpansive mappings, {a,} and {f,} are two
sequences in (0,1). Then he showed that {z,} converges weakly to a fixed point of
T which is a solution of a hierarchical fixed point problem: Find z* € F(T') such
that

(" — Sa*,x —2*) >0, Ve F(T). (1.1.10)

For obtaining a strong convergence result, Mainge and Moudafi in [56] introduced

the following algorithm:

Tpr1 = (1 —ap) f(xn) + an(BnSzn + (1 — Bn)Txy), (1.1.11)

where f : C — C'is a contraction mapping, S and T : C' — C are two nonexpansive
mappings, {o,} and {8,} are two sequences in (0, 1). Then they showed that {z,}
converges strongly to a fixed point of 7" which is a solution of problem (1.1.10).

In 2009, liduka [7] introduced an iterative algorithm for the following triple
hierarchical constrained optimization problem, the sequence {z,} defined by the

iterative method below, with the initial guess x1 € H is chosen arbitrarily,

Tpil = Yn — P Ay, Yn >0,
where «,, € (0,1] and \, € (0, 2] satisfies certain conditions. Let A; : H — H be
an inverse-strongly monotone, Ay : H — H be a strongly monotone and Lipschitz
continuous and 7' : H — H be a nonexpansive mapping, then the sequence con-
verge strongly o the set solution of the triple hierarchical constrained optimization
problem.
On the other hand, Cianciaruso et al. [53] introduced a two step algorithm as

follows:

Yn = 6n5xn + (1 - ﬁn)xm
Tp+1 = Can(xn) + (1 - an)Tyna

(1.1.13)

where f : C' — C'is a contraction mapping, S and T : C' — C' are two nonexpansive

mappings, {a, } and {3, } are two sequences in (0, 1). Under some certain restrictions



on parameters, the authors proved the sequence {x,} converges strongly to z* €

F(T), which is a unique solution of the following variational inequality:
(I - flz",x—a*) >0, VxeF(T). (1.1.14)

By changing the restrictions on parameters, the sequence {x,} converges strongly

to * € F(T), which is a unique solution of the following variational inequality:
1
(—(I—flz*+ (I —=S)x",z —2") >0, VaxeF(T), (1.1.15)
-

where 7 € (0,00) is a constant.
In 2010, Yao et al.[8] modified the two step algorithm (1.1.13) to extend Range
of f from C' to H by using the metric projection of H onto C'. They introduced the

following iterative scheme:

Yn = BnSTy + (1 - ﬁn)xna
Tn+1 = PC[O‘nf(xn) + (1 - an)Tyn]v

(1.1.16)

where f: C' — H is a contraction mapping, S and 7' : C' — C are two nonexpansive
mappings, {a,} and {8,} are two sequences in (0,1). The authors proved the
sequence {z,} generated by (1.1.16) converges strongly to z* € F(T'), which is a
unique solution of one of the variational inequalities (1.1.14) and (1.1.15).

On the other hand, Tian [23] considered the following iterative method for a
nonexpansive mapping 7 : H — H with F(T) # 0,

Tpt1 = v f(zn) + (I — po, F)Tx,, Vn>1, (1.1.17)

where F'is a k Lipschitzian and n-strongly monotone operator on H. He proved
that the sequence {x,} generated by (1.1.17) converges to a fixed point ¢ in F(T),

which is the unique solution of the variational inequality

(vf = nF)g,p—q) <0, Vpe F(T).

Meanwhile, Mainge [25] proposed the viscosity approximation scheme for quasi-

nonexpansive mappings in Hilbert spaces as follows:
Tnt1 = anf(a:n) + (1 - Oén)Twwna Vn >0,

where {a,} C (0,1) and T, was generated by T,, = (1 —w)I +wT for all w € (0, 1).

He also proved the convergence theorem under the suitable conditions.



In 2011, Yao et.al [9] studied new algorithms. For zq € C' is chosen arbitrarily,

let the sequence {z,} be generated iteratively by
Tpi1 = Bpxn + (1 = Bo)TPo[l — an(A — v f)|z,, Yn >0,

where the sequences {«, } and {,} are two sequences in [0, 1]. Then {z, } converges

strongly to x* € F(T) which is the unique solution of the variational inequality:
Find z* € F(T) such that ((A—~f)z*,z —2") >0, Vo € F(T). (1.1.18)
At the same time, Gu et al. [54] introduced the following iterative algorithm:

Yn = PC[ﬁnSJ:n + (1 - B’n)xn]a

Tny1 = Polan f(zn) + D (i1 — o) Tiyn], Vn>1,
i=1

(1.1.19)

where f : C'— H is a contraction mapping, S : C' — H is a nonexpansive mapping,
{T;}2, : C — C is a countable family of nonexpansive mappings, ag = 1, {a,,} and
{6,} are two sequences in (0, 1). The authors proved the sequence {z,} converges
strongly to a common fixed point of a countable family of nonexpansive mappings

which is a solution of a hierarchical fixed point problem.

Meanwhile, Yu and Liang [51] introduced the following iterative algorithm:
Tp4+1 = ARl + Bnl'n + ’Ynzrmzl(s(m,n)PC(S\mBmxn - AmAmxn)a n Z 17

where C'is a nonempty closed and convex subset of a real Hilbert space H, A,, : C —
H is a relaxed (1), pm)-cocoercive and v,-Lipschitz continuous mapping, B,, : C' —
H is a relaxed (7, pm)-cocoercive and 0,-Lipschitz continuous mapping for each
1 <m <r,ue Cis a fixed point, {an}, {Bn} {1} {0an}, {0@n)}, - {0@n } are
sequences in (0, 1), They proved the sequence {z,} strongly to a common element

ren: GVI(C, By, A,), which is the unique solution of the following:
(u—z,20—2) <0, Yeen, GVI(C, B, An). (1.1.20)

Later, He and Du[52] introduced the iteration as follows: a sequence {z,} defined



by
( x1 € C,
ul, =T x,,  Vi=1,2,...,1,
2, = Untuitetu (1.1.21)

1 ’
Yn = (1 = N)ap, + ATz,

| Zns1 = anf(2n) + (I — an)yn,

where T} © = {z € C: Fi(z,y) + ~(y — 2,2 —x) > 0,Vy € C}, o, C (0,1) and

rn C (0,400). They proved that if the sequence {a,,} and {r,} of parameters sat-

isfies appropriate conditions and Q = (N._, EP(F;)) N F(T) # (), then the sequence

{z,,} generated by (1.1.21) strongly converges to the unique solution ¢ = Py f(c) € Q.
In 2012, Kraikaew and Saejung[58] introduced the sequence {z,} and {y,} gen-

erated by

To, Yo, 20 € H,

Tn1 = (1= an)Tizn + an fi(Toyn), (1.1.22)

Ynr1 = (1 — an)Toyn + an fo(Tixy,), n=0,1,2,...,
where T,T5 : H — H are quasi-nonexpansive mappings, fi, fo : H — H are con-
traction mappings and {«,} is a sequence in (0,1). They proved that the sequence
{z,} and {y,} converge to z* and y*, which is the unique solution of bi-level hierar-
chical optimization problems, i.e, find (z*,y*) € F (1) x F(T3) such that for given

positive real numbers p and 7, the following inequalities hold:

(pF(y") +a* —y* o —a*) >0 Vxe F(Ty),
(nF(x*) +y* —a*y—y") >0 Vye F(Ty),

(1.1.23)

Recently, Chang et al. [59] introduced bi-level hierarchical variational inclusion
problems, i.e, find (z*,y*) € Oy x Q9 such that for given positive real numbers p and

n, the following inequalities hold:

(pF(y*) +2* —y*,x —2*) >0, Vo€ Q,
MF(x*)+y*—z*y—y*) >0, VyeQ,

(1.1.24)

where F, Ay, Ay : H — H are mappings and M, M, : H — 2! are multi-valued map-
pings, §2; is the set of solutions to variational inclusion problem with A = A;, M =
M; for i = 1,2. They solved the convex programming problems and quadratic min-

imization problems by using Maingés scheme.



1.1.2 Fixed Point Theory in Fuzzy Metric Spaces

The concept of fuzzy sets was coined by Zadeh [115] in his seminal in 1965.
Many authors have introduced the concept of fuzzy metric in different ways; see, e.g.,
[96, 104]. Thereafter, Kramosil and Michalek [105] introduced the concept of fuzzy
metric spaces which could be considered as a reformulation, in the fuzzy context, of
the notion of probabilistic metric space due to Menger [106].

The concept of fixed point theory in fuzzy metric spaces was introduced by
Heilpern [98]. He introduced the concept of fuzzy mappings and proved some fixed
point theorems for fuzzy contraction mappings in metric linear spaces, which is a
fuzzy extension of the Banach contraction principle. Afterward, George and Veera-
mani [96, 97] gave the notion of fuzzy metric spaces which constitutes a modification
of the one due to Kramosil and Michalek. From now on, by fuzzy metric we mean a
fuzzy metric in the sense of George and Veeramani. Many authors have contributed
to the development of this theory and apply to fixed point theory, for instance
93, 95, 99, 112, 113].

On the other hand, Jungk [100] introduced the notion of commuting mappings.
In 1982, Sessa [114] gave the notion of weakly commuting mappings. Thereafter,
Jungck [101] defined the notion of compatible mappings to generalize the concept of
weak commutativity and showed that weakly commuting mappings are compatible
but the converse is not true. Afterward, a number of fixed point theorems have been
obtained by various authors utilizing this notion (see [91, 92, 94, 103, 109]). In 1997,
Pathak et al. [108] introduced the concept of R-weakly commuting of type (A,).

In 2002, Aamri and El Moutawakil [90] introduced the concept of E.A. property
in metric spaces. Afterward, Mihet [107] proved two common fixed point theorems
for a pair of weakly compatible mappings in fuzzy metric spaces by using E.A. prop-
erty. Thereafter, Sintunavarat and Kumam in [111] obtained the results of Mihet
[107] require some special condition. However, some case is not satisfying this con-
dition (see [111] for more details). So the results of Mihet [107] can not be used for
this case. They introduced the concept of the common limit in the range property for
solve this problem and also established existence of a common fixed point theorems
for generalize contractive mappings satisfy this property in fuzzy metric spaces. Re-

cently, Sintunavarat and Kumam [117] gave the concept of R-weakly commuting of



type (A,) in fuzzy metric spaces and establish the existence of common fixed point

theorems by using the common limit in the range property.

1.1.3 Fixed Point Theory in Abstract Metric Spaces

The concept of K-metric spaces was reintroduced by Huang and Zhang under
the name of cone metric spaces [74] which is the generalization of a metric space. The
idea of cone metric spaces is to replace the codomain of metric from the set of real
numbers to an ordered Banach space. They reintroduce the definitions of convergent
and Cauchy sequences in sense of interior point of the underlying cone. They also
continued with results concerned with the normal cones only. One of the main
results of Huang and Zhang in [74] is fixed point theorems for contractive mappings
in normal cone spaces. In fact, the fixed point theorem in cone metric spaces is
appropriate only in the case when the underlying cone is non-normal and its interior
is nonempty. Jankovié et al. [80] studied this topic and gave some examples showing
that theorems from ordinary metric spaces cannot be applied in the setting of non-
normal cone metric spaces. Many works for fixed point theorems in cone metric
spaces were appeared in [61, 62, 64, 65, 73, 63, 66, 68, 82, 81, 84, 86, 88, 75, 76, 77, 78].

In 2011, Abbas et al. [61] introduced the concept of w-compatible mappings and
obtained a coupled coincidence point and a coupled point of coincidence for such
mappings satisfying a contractive condition in cone metric spaces. Very recently,
Aydi et al. [67] introduced the concept of W-compatible mappings for mappings
F:XxXxX— Xandg: X — X, where (X,d) is an abstract metric space
and established tripled coincidence point and common tripled fixed point theorems
in these spaces.

On the other hand, Sintunavarat and Kumam [85] coined the idea of common
limit range property for mappings F' : X — X and g : X — X, where (X,d) is
metric space (and fuzzy metric spaces) and proved the common fixed point theorems
by using this property. Afterward, Jain et al. [79] extend this property for mappings
F:XxX — Xand g: X — X, where (X, d) is metric space (and fuzzy metric
spaces) and established coupled fixed point theorem for mappings satisfy this prop-

erty. Several common fixed point theorems have been proved by many researcher



in framework of many spaces via common limit range property (see [70, 71, 72, 87]
and references therein).

Starting from the background of the coupled fixed points; the concept of tripled
fixed points was introduced by Samet and Vetro [83] and Berinde and Borcut [69]
which motivated by the fact that, through the coupled fixed point technique we can
not solve the solution of some problems in nonlinear analysis such as a system with
following form:

2> +2yz —62+3=0
Yy 4+ 222 — 6y +3=0
22 4 2yxr — 62+ 3 = 0.

1.2 Summary of Dissertation

Motivated and inspired by the above works, the purposes of this dissertation is
as follows:

(1) We study new property, tools, and procedure for prove the existence of tripled
fixed point theorems. Moreover, we generalize and extend the existence of tripled
fixed point theorems in fuzzy metric spaces and abstract metric spaces and give
illustrate examples to validate the some results in this thesis.

(2) We study the iterative procedure for approximating common solutions of
problems involving variational inequality and fixed point for nonlinear operators.
Moreover, we extend and improve the previous mentioned iterative procedure for
approximating common solutions of problems involving variational inequality and
fixed point for nonlinear operators and Construct the convergence theorems for the
generated iterative procedure and apply its results to another kind of problems as
its applications.

(3) We establish the new existence theorems of solutions of the system of hierar-
chical variational inequality problems and hierarchical variational inclusion problem
and new iterative algorithms for approximating solution of the system of hierarchical
variational inequality problems and hierarchical variational inclusion problem.

We studied and followed the above objectives and already reached all of our main
goal. Throughout this dissertation, we summarize and divide this literature into 6

Chapters as shown in the following:
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In Chapter 1, we review the background of this thesis for fixed point theorems
and fixed point iteration

In Chapter 2, we give the necessary notations, definitions, some useful lemmas
and the previous related theorems which will be used in the later chapter.

In Chapter 3, we introduce new property and new condition of contraction map-
pings for prove the existence of tripled fixed point theorems in fuzzy metric spaces
and abstract metric spaces. Moreover, we establish and prove the new existence of
tripled fixed point theorems in fuzzy metric spaces and abstract metric spaces. We
also give some examples to validate some results in this section.

In Chapter 4, we present the new iterative algorithms for approximating a com-
mon solution of several mathematical problems which consist of hierarchical fixed
point problems, hierarchical variational inequality problems and hierarchical opti-
mization problems. Exactly, its convergence theorem of the new iterative algorithms
are also proved and presented.

In Chapter 5, we show the new existence theorems of solutions of the system
of hierarchical variational inequality problems and the system of hierarchical varia-
tional inclusion problem and new iterative algorithms for approximating solution of
the system of hierarchical variational inequality problems and the system of hierar-
chical variational inclusion problem. Exactly, we prove the new existence theorems
and convergence theorem of the new iterative algorithms.

Finally, in Chapter 6, we give the summary of all the results and the conclusion

of this dissertation.



CHAPTER 2 PRELIMINARIES

In this chapter, we give some basic concepts including with definitions, notations
and some useful lemmas which are all necessary to the later chapters. Throughout
this dissertation, let R and N stand for the set of all real numbers and the set of all

natural numbers, respectively.

2.1 Fundamental Definitions

Definition 2.1.1. Let X be a nonempty set. Assume that, for any z € X and

a € R, there exists a unique element « - x, which is called the scalar multiplication.

Also, assume that, for any x,y € X, there exists a unique element x + y, which is

called the addition. The system (X, -,+) is called a linear space over R or a vector

space over R if the following conditions are satisfied: for all z,y,z € X and «, 8 € R.
Der+y=y+ux;

r+(y+z2)=(x+y) +2

Definition 2.1.2. Let X be a nonempty set. A metric on X is a real function
d : X — R satisfying the following conditions:
(1) d(z,y) > 0 for all z,y € X;
(2) d(z,y)
(3) d(z,y) = d(y,z) for all x,y € X;
(4) d(z,y)

=0<«<=zx=yforal z,y € X;

z,y) <d(x,z)+d(z,y) for all z,y,2z € X.

A set X with a metric d is called a metric space. The elements of X are called

the points of the metric space (X, d).



12

Definition 2.1.3. Let X be a linear space over the field K (R or C). A function
|-l : X — Ris called a norm on X if the following conditions are satisfied:
(1) |z]| >0 for all z € X;
(2) llal) = 0 = = = 0;
(3) llz+ gl < ll2] + lgll for all .,y € X;
(4) ||azx|| = |a|||x| for all z € X and « € K.

The distance induced by its norm such that d(z,y) = ||z — y|| for all z,y € X.
A linear space X equipped with the norm || - || is called a normed linear space or a

normed space.

Definition 2.1.4. A sequence {x,} in a normed space is said to be strongly con-

vergent to a point x € X if lim ||z, — x| = 0. That is, if, for any € > 0, there exists
n—oo

a positive integer N such that ||z, — z|| < € for all n > N. We denote the strong

convergence by the notation z,, — x.

Definition 2.1.5. A sequence {z,} in a normed space is called a Cauchy sequence
in X if lim |z, —2,|| =0. That is, if for any € > 0 there exists a positive integer
m,n—00

N such that ||z, — z,|| < efor all m,n > N.

Theorem 2.1.6. [33] Let {z,} be a sequence in a normed linear space, then x,, —

x € X if and only if, for any subsequence {x,,} of {x,}, there exist a subsequence
{xn]} of {x,,} converging to x.

Definition 2.1.7. Let X and Y be linear spaces over the field K (R or C).
(1) A mapping L : Y — X is called a linear operator if L(x +y) = Lx + Ly and
L(az) = aLz for all z,y € Y and a € K;

(

2) A linear operator L : Y — K is called a linear functional on Y;
(3) A mapping L : Y — X be a continuous at zo € Y if, for any € > 0, there
exists d > 0 such that ||L(z) — L(x¢)|| < € whenever ||z —zo|| < . If L is continuous
at each x € Y, then L is called continuous on Y;

(4) A linear operator L : X — Y is said to be bounded on X if there exists a real

number M > 0 such that ||L(x)|| < M|z for all z € X.

Definition 2.1.8. A sequence {z,} in a normed space is said to be convergent
weakly to a point z € X if lim,,_, f(z,) = f(x) holds for every continuous linear

functional f. We denote the weak convergence by the notation z,, — x.
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Definition 2.1.9. A sequence {x,} in a normed linear space X is said to be bounded

if there exists a real number M > 0 such that ||x,| < M for all n > 1.

Definition 2.1.10. A normed space X is said to be complete if every Cauchy se-

quences in X converge to an element in X.

Definition 2.1.11. A complete normed linear space over the field K is called a

Banach space over the field K.

Definition 2.1.12. A subset C' of a normed linear space X is called a closed subset

in X if {z,} is a sequence in C' and x,, — x then z € C.

Definition 2.1.13. A subset C' of a normed linear space X is said to be convex in

XifX+(1—-NyeCforall z,y € C and X € [0,1].

2.2 Hilbert Spaces

Definition 2.2.1. The real-value function of two variables (-,-) : X x X — R is
called the inner product on a real vector space X if the following conditions are

satisfied: for any z,y,2 € X and o, € R

(1) (ax + By, z) = alx, 2) + By, 2);

(2) (z,y) = (y,2);
(3) (z,z) = 0;
(4) (z,2) =0 <=2 =0.

A real vector space X equipped with an inner product (-, -) is called a real inner

product space.

Definition 2.2.2. A Hilbert space is an inner product space which is complete under

the norm induced by its inner product such that ||z|| = y/(z,z) for all z € X.

Lemma 2.2.3. [33] (The Schwarz inequality) If z and y are any two vectors in an

mner product space X, then

[{z, )| < Nl llllyll

Lemma 2.2.4. [33] Let H be a real Hilbert space. Then the following inequalities
are satisfied:

(HD) [l + yl* + [l = ylI* = 2[l=[* + 2[ly||*
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H2) [z +ylI? < [|=]]* + 2(y, = + y);

H3) [lz +y[|* > [|2]1* + 2(y, );

H4) [[Az+ (1= Nyll> = AMlz[? + (1 = M)]lylI> = A1 = A) [z — y||* for all A € [0,1];
H5) ||z — y|* = [|=]1> = [lyll* = 2(z — y, ).

(H2)
(H3)
(H4)
(H5)

Definition 2.2.5. Let H be a Hilbert space and C' be a nonempty closed and convex
subset of H. Let f be a function of C' into (—o0, 0c|, where (—oo, 0] = R U {oo}.
Then f is called lower semi-continuous if, for any a € R, the set {z € C': f(z) < a}

is closed.

Lemma 2.2.6. [33] Let H be an inner product space and {z,} be a bounded sequence

of H such that x, — x. Then the following inequality holds:
|z|| < lim inf ||z,||.
n—oo

Lemma 2.2.7. [34] Let X be an inner product space. Then, for any x,y,z € X
and o, 3,y € [0,1] with o + 4+ v =1, we have

la + By + vz)*

= alzl® + Bllyl* + vll2l* — aBllz — ylI* — aylle — 2[* — Bylly — =]1*.

Lemma 2.2.8. [35] Fach Hilbert space H satisfies Opial’s condition, that is, for

any sequence {x,} with x, — z,
liminf ||z, — z|| < liminf ||z, — y||
n—oo n—oo
for ally € H with y # x.

Lemma 2.2.9. [36],[37] Fach Hilbert space H satisfies the Kadec-Klee property, that

is, for any sequence {x, } with x,, = x and |z, || — ||=|| together imply ||z, —z|| — 0.

Definition 2.2.10. A mapping Pr : H — C'is called the metric projection from H
onto C'if, for all x € H, there exists the unique nearest point in C', denoted by Prx

satisfying the property

[ = Poz|| < [lz —yll, VvyeC.
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Lemma 2.2.11. [33] Let C be a closed and convex subset of a real Hilbert space H
and x € H, y € C. Then the following inequalities are satisfied:

(Pl) z2=Pox <= (z —x,y — 2z) > 0 for all y € C;

(P2) ||Pcx — Peyl| < ||z —y|| for all x,y € H;

(P3) ||Pcx — Peyl]? < (Pex — Poy,x —y) for all z,y € H;

(P4) (x — Pox,y — Pex) <0 forall z € H and y € C,

(P5) ||z — y||* > ||z — Pox||* + ||y — Pex|? for all x € H and y € C;

(P6) [I(z = y) = (Pox — Pey)|I* < [l — ylI* = [[Pox — Pyl for all z,y € H.
Lemma 2.2.12. [38] Let C' be a closed and convex subset of a real Hilbert space H.
Let {x,} be a sequence in H and w € H. Let ¢ = Pou. If {x,} is wy(z,) C C and

satisfies the condition ||z, — ul|| < ||u—q|| for alln > 1. Then z, — q.

Lemma 2.2.13. [39] Let C be a closed and convex subset of a real Hilbert space H.
Let {x,} be a bounded sequence in H. Assume that

(1) The weak w-limit set wy,(x,) C C;

(2) For each z € C, lim,,_, ||z, — 2| exists.

Then the sequence {z,} is weakly convergent to a point in C.

2.3 Banach Spaces

Definition 2.3.1. [37] Let E be a Banach space and E* be the dual space of E.

For each z € E, we associate the set

J(@) ={f € E"[(z, f) = |l=|* = II£I*},

where (-, -) denotes the duality pairing between F and E*. The multivalued operator

J: E — FE* is called the normalized duality mapping or the duality mapping of E.

Theorem 2.3.2. [37] Let E be a Banach space and J be the duality mapping of E.
Then we have the following:

(1) For all x € E, J(x) is nonempty bounded closed and convex;
(2) J(0) = {0};

(3) Forallz € E and o € R, J(az) = aJ(x);
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(4) For allz,y € E,f € J(x) and g € J(y), (x —y, f —g) > 0;
(5) For allv,y € E and f € J(y), ||=[I* = |lyl* = 2(z — y. f).
Remark 2.3.3. If, E is a Hilbert space, then J = I, where [ is the identity mapping.

Definition 2.3.4. [40] Let F be a normed space. Suppose that, for each x € F,
there corresponds a unique bounded linear functional g, € E** given by ¢.(f) =

f(z), f € E*. A mapping h : E — E** defined by z — ¢, is called the canonical
mapping.

Definition 2.3.5. [40] A normed space E is said to be reflezive if the canonical

mapping h : F — E** is surjective.

Definition 2.3.6. [40] Let = be an element and {z,,} be a sequence in a normed

space E. Then {x,} converges strongly to x € E, written by x,, — x, if

lim ||z, —z| = 0.
n—oo

Definition 2.3.7. [40] Let  be an element and {z,} a sequence in a normed space
E. Then {z,} converges weakly to x, written by x,, — z, if f(z,) — f(x) wherever

f ek

Definition 2.3.8. [40] The weak* convergence of a sequence {x}} to z*, written by

xf — xaz*, where z* € E* and {z} is a sequence in E*.

Theorem 2.3.9. [40] A normed space E is reflexive if and only if each of its bounded

sequence has a weakly convergence subsequence.

Definition 2.3.10. [40] A nonempty subset C' of a Banach space E is said to be
weakly sequentially compact if every sequence {x,} in C' has a subsequence converg-

ing to a point of E in the weak topology.

Theorem 2.3.11. [37] Let E be a reflexive Banach space. Then a nonempty subset
C of X 1is weakly sequentially compact if and only if C is bounded.

Definition 2.3.12. [37] A Banach space F is said to be:

(1) strictly convex if |[*52|| < 1 whenever z,y € S(E) = {z € E : ||z| = 1} and

T #y,
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(2) uniformly convez if, for each € € (0,2], there exists 6 > 0 such that [|Z| <

1 — 6 whenever z,y € S(E) and ||z —y|| > €.

Definition 2.3.13. [37] The modulus of convexity of E is the function ¢ : [0,2] —
0, 1] defined by

r+y
2

6(e) = inf{1 — | |22y € Eflzf = [lyll =1, [l — yll = €}

Note that a Banach space E is uniformly convex if and only if 5(6) > 0 for all
e € (0,2].
Definition 2.3.14. [37] Let E be a Banach space and let S(E) = {z € E : ||z|| = 1}.

A Banach space is said to be smooth provided the limit

[z + tyl| = ]
lim (2.3.1)

t—0 t

exists for each z,y € S(E). In this case, the norm of F is said to be Gateauz
differentiable. The space F is said to have a uniformly Gateauz differentiable norm
if for each y € S(F), the limit (2.3.1) is attained uniformly for z € S(FE). The norm
of E is said to be a Fréchet differentiable norm if, for each x € S(F), the limit
(2.3.1) is attained uniformly for y € S(F). The norm of E is said to be uniformly
Fréchet differentiable (E is said to be uniformly smooth) if the limit (2.3.1)(x) is
attained uniformly for (x,y) € S(E) x S(E).

Remark 2.3.15. The following basic properties were proposed by Cioranescu [41]:

(1) If F is a strictly convex, then J is strictly monotone;

(2) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on

each bounded subset of F;

(3) If E is a reflexive and strictly convex Banach space, then J~! is norm-weak*-

continuous;

(4) If E is a reflexive smooth and strictly convex, then the normalized duality

mapping J is single valued, one-to-one and onto;

(5) If E is a reflexive strictly convex and smooth Banach space and J is the duality
mapping from E into £*, then J~! is also single valued, bijective and is also

duality mapping from E* into E and thus JJ ! = Ig. and J~'J = Ig;
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(6) If E is a uniformly smooth, then F is a smooth and reflexive;

(7) E is a uniformly smooth if and only if £* is uniformly convex.

Definition 2.3.16. [37] Let E be a linear space and C be a convex subset of F.
A function f : C — (—o0,00] is said to be conver on C' if, for any =,y € C and
te(0,1),

fltz+ (1 =t)y) <tf(x)+ (1 =1)f(y).

Definition 2.3.17. [33] A Banach space E is said to satisfy Opial’s condition if

r, — x weakly as n — oo and x # y imply that

limsup ||z, — z|| < limsup ||z, — y||.

Definition 2.3.18. [33] A Banach space F is said to have the Kadec-Klee property if,

for every sequence {z,} in E, x, — x and ||z,|| — ||z| together imply ||z, —z| — 0.

Remark 2.3.19. Each uniformly convex Banach space E has the Kadec-Klee prop-
erty, that is, for any sequence {z,} C E, if 2, — = € FE and ||z,| — ||z|/, then

T, — .

2.4 Fuzzy Metric Spaces

Definition 2.4.1. [110] A continuous t-norm is a binary operation * : [0, 1]x [0, 1] —

[0, 1] satisfying the following conditions:

(1) * is commutative and associative;

(ii) a*x1=a for all a € [0, 1];

(iii) a*b < ¢*d whenever a < cand b <d (a,b,c,d € [0,1));
(iv) *:[0,1] x [0,1] — [0, 1] is continuous.

Example 2.4.2. The following examples are classical examples of a continuous

t-norms.

(TL) (The Lukasiewicz t-norm) A mapping 77, : [0, 1] x [0, 1] — [0, 1] which defined
through
Tr(a,b) = max{a +b—1,0}.
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(TP) (The product t-norm) A mapping Tp : [0,1] x [0,1] — [0, 1] which defined
through
Tp(a,b) = ab.

(TM) (The minimum ¢-norm) A mapping Ty : [0, 1] x [0, 1] — [0, 1] which defined
through
Ty(a,b) = min{a, b}.

Definition 2.4.3. [96, 97] A fuzzy metric space is a triple (X, M, x) where X is a
nonempty set, * is a continuous ¢t-norm and M is a fuzzy set on X? x (0,00) and

the following conditions are satisfied for all z,y € X and t,s > 0:

(GV-1) M(z,y,t) > 0;

(GV-2) M(z,y,t) =1 <= z=y;

(GV-3) M(z,y,t) = M(y,z,1);

(GV-4) M(z,y,-): (0,00) — [0, 1] is continuous;

(GV-5) M(z,z,t+s) > M(x,y,t)* M(y, z,s).

And M (z,y,t) denote the degree of nearness between x and y with respect to ¢.

Example 2.4.4. Let (X,d) be a metric space, a x b = ab and the mapping M :
X x X x (0,00) define by for all z,y € X and t > 0,

t

M(z,y,t) = ————.
(z,9,1) t+d(x,y)
Then (X, M, *) is a fuzzy metric space, called a standard fuzzy metric space induced

by (X,d). If we take a x b = Ty(a,b) also is a fuzzy metric space.

Definition 2.4.5. Let (X, M, %) be a fuzzy metric space. A sequence {x,} in X is

said to be convergent to x € X if

lim M (x,,z,t) =1

n—o0

for all ¢t > 0.

Definition 2.4.6. Let (X, M, %) be a fuzzy metric space. A sequence {x,} in X is

said to be Cauchy sequence if
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lim lim M(x,, zp,t) =1

m—roon—oo

for all t > 0 and m,n € N.

Definition 2.4.7. A fuzzy metric space (X, M, *) is called complete if every Cauchy

sequence converge to a point in X.

Definition 2.4.8. [100] Let X be a nonempty set. Two mappings f,g: X — X

are said to be commuting if fgr = gfx for all x € X.

Definition 2.4.9. [101] Let (X, d) be a metric space. Two mappings f,g: X — X

are said to be compatible if

lim d(fgzn, gfx,) =0
n—oo
whenever {z,} is a sequence in X such that

lim fz, = lim gz, = 2,
n— o0 n—oo

for some 2z € X.

Definition 2.4.10. [102] Let X be a nonempty set. Two mappings f,g: X — X
are said to be weakly compatible if fgx = gfx for all x which frxr = gx.

Definition 2.4.11. [90] Let (X, d) be a metric space and f,g : X — X. Two
mappings [ and g are said to satisfy E.A. property if there exists a sequence {z,}
in X such that

lim fx, = limgx, =t
n—oo n—oo

for some t € X.

The class of E.A. mappings contains the class of noncompatible mappings. In a
similar mode, it is said that two self-mappings of f and g of a fuzzy metric space
(X, M, %) satisfy E.A. property, if there exist a sequence {z,} in X such that fx,

and gx, converge to t for some ¢t € X in the sense of Definition 2.4.5.

Definition 2.4.12. [111] Let (X,d) be a metric space and f,g : X — X. Two
mappings f and g are said to be satisfy the common limit in the range of g property

if there exists a sequence {x,} in X such that

lim fx, = limgx, = gz (2.4.1)
n—oo

n—oo

for some z € X.
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In what follows, the common limit in the range of g property will be denote by

(CLRg) property.

Example 2.4.13. Let X = [0,00) be the usual metric space. Define f,g: X — X

by fr =% and gr = %’3 for all z € X. We consider the sequence z, = % Since
lim fx, = limgx, =0 = g0. (2.4.2)
n—oo

n—oo

Therefore f and g satisfy the (CLRg) property.

In a similar mode, two self-mappings f and g of a fuzzy metric space (X, M, x)
satisfy the (CLRg) property, if there exist a sequence {x,} in X such that fz, and

gx,, converge to gx for some x € X in the sense of Definition 2.4.5.

Definition 2.4.14. Let (X, M,*) be a fuzzy metric space and f,g : X — X. A

pair of (f,g) is said to be
(i) weakly commuting [116] if

M(fgx,gfx,t) > M(fz,gx,t), forallz € X and ¢t > 0.

(ii) R-weakly commuting [116] if there exists R > 0 such that

M(fgzx,gfx,t) > M(fz, gz, }%), forall z € X and ¢ > 0.

(iii) R-weakly commuting of type (A,) if there exists R > 0 such that

M(ffx,gfx,t) > M(fx,gx,%), forall x € X and t > 0.

(iv) R-weakly commuting of type (Ay) if there exists R > 0 such that

M(fgx,ggx,t) > M(fz, gx, %), forall x € X and t > 0.

(v) R-weakly commuting of type (P) if there exists R > 0 such that

M(ffz,ggx,t) > M(fz, gz, %), forall x € X and t > 0.

Notice that

e If (f,g) is weakly commuting then (f,g) is R-weakly commuting with R = 1.
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e (iii) and (iv) are inspired by Pathak et al. [108] whereas (v) seems to be

unreported.

Example 2.4.15. Let X = [1, 00) with the usual metric d and a*b = ab. Let M be
t

t+d(x,y)
for all z,y € X and t > 0. Let f,g: X — X define by fr = ¢/ and gz = 2.

a usual fuzzy metric space on (X, M, *) which is define by M (x,y,t) =

Next, we will show that (f,g) is R-weakly commuting.

For z € [1,00) and R,t > 0, we have

M(fge,gfw.t) = M2, g¥/a,1) = M(z,2,0) = 1 2 M(fz, g3, 7).

Therefore, (f,g) is R-weakly commuting for all R > 0.

Example 2.4.16. [117] Let X = [1,00) with the usual metric d and a * b = ab.

Let M be a usual fuzzy metric space on (X, M, *) which is define by M (z,y,t) =

t

———forall z,y € X and t > 0. Let f,g: X — X define by
t+d(z,y)

1 ;2 e{l,5}

fr=

5 ;x€(1,5)U(5,00)

and
1 ;x e {1,5};
9T =

x+4 ;xe(1,5)U(5 00).

Then, (f, g) is R-weakly commuting of type (A4,) for all R > 0.

Example 2.4.17. Let X = [0, 1] with the usual metric d and a * b = ab. Let M be

t
a usual fuzzy metric space on (X, M, %) which is define by M (z,y,t) = ————
y p ( ) y M(z,y,1) [T dz.y)
forall z,y € X and t > 0. Let f,g: X — X define by
) 1
o= 0 71‘6[0,11—(1)01U[1—0,1],
3 32 € (1500 10)

and

Next, we will show that (f, g) is R-weakly commuting of type (Ay).
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For z € [0, 175] U [55,1] and R, t > 0, we have

M(fgx,ggx,t) = M(f0,90,t) = M(0,0,t) =1 zM(fx,ga:,%).

For z € ( and R,t > 0, we get

1 1
100° 16)

t
M(fgz, 9g2,t) = M(f10z, g10z,t) = M(0,0,t) = 1 > M(f=, gz, 7).

Now, we have

t

M(ff$agf$at) > M(fﬁlf,gi’,ﬁ)

for all x € X and R,t > 0.

Therefore, (f,g) is R-weakly commuting of type (Ay) for all R > 0.

Example 2.4.18. Let X = [0, 1] with the usual metric d and a * b = ab. Let M be
t

a usual fuzzy metric space on (X, M, *) which is define by M (x,y,t) = m
z,y

for all x,y € X and t > 0. Let f,g: X — X define by

fa =
and
0 ;zel0,5]U[3,1];
12 € (5 3)-

Next, we will show that (f,g) is R-weakly commuting of type (P).

g =

|8

For z € [0,1] U[%, 1] and R,¢ > 0, we have

t

M(ffx,ggz,t) = M(f0,g0,t) = M(0,0,t) =1 = M(fz, gz, E)'
For z € (3,3) and R,t > 0, we get
r x t

Now, we have

t
for all x € X and R,t > 0.

Therefore, (f,g) is R-weakly commuting of type (P) for all R > 0.

It is well known (Imdad and Ali [? ]) the independence of R-weakly commu-
tativity of type (4,) with R-weakly commutativity of type (Af) or (P) and the
independence of R-weakly commutativity of type (A;) with R-weakly commutativ-

ity of type (P).
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2.5 Cone Metric Spaces

In this dissertation, we denote from now on X x X --- X x X by X* where k € N

k terms
and X is a non-empty set. The following definitions and results will be needed in

the sequel.

Definition 2.5.1. Let F be a real Banach space and 0g be the zero element in £.
A subset P of E is called a cone if satisfy the following conditions:

(a) P is closed, non-empty and P # {Og},

(b) a,b € R, a,b >0, x,y € P imply that ax + by € P,

() PN (=P) = {0g}.

Given a cone P of real Banach space E, we define a partial ordering < with
respect to P by * =X y if and only if y — x € P. We shall write z < y for
y — x € Int(P), where Int(P) stands for interior of P. Also we will use z < y to
indicate that z <y and = # .

The cone P in normed space (E, ||-]|) is called normal whenever there is a number
k > 0 such that for all z,y € E, O < = < y implies ||z|| < k||y||. The least positive
number satisfying this norm inequality is called the normal constant of P. In 2008,
Rezapour and Hamlbarani [82] showed that there are no normal cones with normal
constant k£ < 1.

In what follows we always suppose that E is a real Banach space with cone P

satisfying Int(P) # () (such cones are called solid).

Definition 2.5.2 ([74, 89]). Let X be a non-empty set. Suppose that d : X xX — E
satisfies the following conditions:

(d1) O =< d(x,y) for all z,y € X and d(z,y) = Og if and only if = = v,

(d2) d(z,y) = d(y,z) for all z,y € X

(d3) d(z,y) 2 d(z,2) + d(z,y) for all z,y,z € X.

Then d is called a cone metric or K-metric on X and (X,d) is called a cone

metric space or K —metric space.

Remark 2.5.3. A concept of a K —metric space is more general than a concept of
a metric space, because each metric space is a K —metric space where X = R with

usual norm and cone P = [0, c0).
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Definition 2.5.4 ([74]). Let X be a K-metric space and {x,} be a sequence in X.
We say that {z,} is

(C1) a Cauchy sequence if and only if for each ¢ € E with ¢ > Op there is some
k € N such that d(z,, z,,) < c for all n,m > k,

(C2) a convergent sequence if and only if for each ¢ € E with ¢ > Og there is
some k € N such that d(z,,z) < c for all n > k, where 2 € X. This limit is

denoted by lim x,, = x or x,, = x as n — oo.
n—oo

Remark 2.5.5. Every convergent sequence in a K-metric space X is a Cauchy

sequence but the converse is not true.

Definition 2.5.6. A K-metric space X is said to be complete if every Cauchy

sequence in X is convergent in X.

Definition 2.5.7 ([83]). Let X be a nonempty set. An element (z,y,z) € X3 is
called a tripled fixed point of a given mapping F : X3 — X if v = F(x,y,2),
y=F(y,z,x) and z = F(z,x,y).

Berinde and Borcut [69] defined differently the notion of a tripled fixed point in

the case of ordered sets in order to keep true the mixed monotone property.

Definition 2.5.8 ([67]). Let X be a non-empty set. An element (z,y,z) € X? is
called

(i) a tripled coincidence point of mappings F : X? — X and g : X — X if
gz = F(z,y,2), gy = F(y,r,2) and gz = F(z,z,y). In this case (gz, gy, gz)

is called a tripled point of coincidence;

(i) a common tripled fixed point of mappings F : X3 — X and g : X — X if
r=gr=F(z,y,2),y =9y = F(y,z,x) and z = gz = F(z,x,y).

Example 2.5.9. Let X = R. We define F': X3 — X and g: X — X as follows

2 + 2y

F(z,y,z) = ( ) sin(2z) and gr =147 —4x

for all #,y,z € X. Then (7,7, 7%) is a tripled coincidence point of F' and g, and

(1,1,1) is a tripled point of coincidence.
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Definition 2.5.10 ([67]). Let X be a non-empty set. Mappings F': X3 — X and
g : X — X are called W-compatible if

Fgx, 9y, 92) = 9(F(x,y,2))
whenever F(x,y,z) = gz, F(y,z,2) = gy and F(z,y,z) = gz.

Example 2.5.11. Let X = [0,1). Define F: X® - X and g : X — X as follows

x2+y2+22

F(z,y,2) = 15

x
d S
and gz =

for all z,y,z € X. One can show that (x,y, z) is a tripled coincidence point of F’
and g if and only if z = y = 2z = 0. Since F(g0, ¢0,¢0) = g(F(0,0,0)), we get F
and g are W-compatible.

2.6 Interesting Problems

Convex Feasibility Problem
The convex feasibility problem (CFP) is the problem of finding a point in the in-
tersection of finitely many closed convex sets in a real Hilbert spaces H. That is,
finding an x € N7 _,C,,,, where r > 1 is an integer and each (), is a nonempty closed
and convex subset of H. Many problems in mathematics, for example in physical
sciences, in engineering and in real-world applications of various technological in-
novations can be modeled as CFP. There is a considerable investigation on CFP
in the setting of Hilbert spaces which captures applications in various disciplines
such as image restoration [57, 27| computer tomography [28] and radiation therapy

treatment planning [29].

Variational Inequality Problem

The variational inequality problem is the problem of finding a point u© € C' such that
(Av,z —y) >0, VyeC. (2.6.1)

where A : H — H is nonlinear mappings. We use VI(C, A) to denote the set of
solutions of the variational inequality (2.6.1). It is easy to see that an element x € C

is a solution to the variational inequality problem if and only if x is a fixed point
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of the mapping Po(I — AA), that is © = Po(l — M)z & = € VI(C, A). There-
fore, fixed point algorithms can be applied to solve VI(C, A). It is well known that
the variational inequality theory has emerged as an important tool in studying a
wide class of obstacle, unilateral, and equilibrium problems; which arise in several
branches of pure and applied sciences in a unified and general framework. Several
numerical methods have been developed for solving variational inequalities and re-
lated optimization problems, see [12, 13, 49, 21, 6, 18, 19, 20, 14, 16, 17] and the

references therein.

Generalized Variational Inequality Problem
the generalized variational inequality problem is the problem of finding x € C' such
that
(x — S\Bq:—k/\Aa:,x—y) >0,Vy € C,

where A,B : C — H, A and \ are two positive constants. We use GVI(C, B, A)
to denote the set of solutions of the generalized variational inequality. It is easy
to see that an element x € C' is a solution to the generalized variational inequal-
ity problem if and only if z is a fixed point of the mapping PC(S\B — AA), that
is © € F(Po(AB — M) & = € GVI(C, B, A). Therefore, fixed point algorithms
can be applied to solve GVI(C, B, A). If B = I and A = 1, then the generalized

variational inequality problem is reduced to the variational inequality problem.

Hierarchical Fixed Point Problem
The hierarchical fixed point problem is the problem of finding a point z* € F(T)
such that
(Fx*,x —x*) >0, Vo e F(T),

where F' : H — H is nonlinear mappings and 7" : C' — (' is nonlinear mappings.
It is well known that the iterative methods for finding hierarchical fixed points of
nonexpansive mappings can also be used to solve a convex minimization problem:;

see, for example, [50, 26] and the references therein.

Hierarchical Variational Inequality problem

The hierarchical variational inequality problem (HVIP) is the problem of finding a
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point z* € VI(C, A) such that
(Fa*,x — ") >0, Ve e VI(C, A), (2.6.2)

where F, A : H — H are nonlinear mappings. Many problems in mathematics, for
example the signal recovery [30], the power control problem [31] and the beamform-
ing problem [32] can be considered in the framework of this kind of the hierarchical

variational inequality problems.

Hierarchical Generalized Variational Inequality Problem
The hierarchical generalized variational inequality problem (HGVIP) is the problem
of finding a point & € GVI(C, B, A) such that

(F&,xz — &) <0, Yz e GVI(C,B,A), (2.6.3)

where GV I(C, B, A) is the solution set of the generalized variational inequality. If If
the set GVI(C, B, A) is replaced by the set VI(C, A), the solution set of the varia-
tional inequality, then the HGVIP is called a hierarchical variational inequality prob-
lems (HVIP). Many problems in mathematics, for example the signal recovery[57],
the power control problem[7] and the beamforming problem[32] can be modeled as

HGVIP.

Equilibrium Problem
The equilibrium problem for finding x € H such that F(x,y) >0, Yy € H. where
F: Hx H— Ris a bifunction. The set of solutions of the equilibrium problem is
denoted by EP(F), that is, EP(F) ={ z € H : F(z,y) >0, VH € C }. Numer-
ous problems in physics, optimization, and economics reduce to find a solution of
the equilibrium problem see, for example, [120, 60, 121, 118, 122] and the references
therein. If F(z,y) = (Az,y — z) for all x,y € C. Then, z € EP(F) if and only if

(Az,y — z) > 0 for all y € C, that is, z is a solution of the variational inequality.

Variational Inclusion Problem

The wvariational inclusion problem is as follows: Find x € H such that

0 € Ax) + M(z), (2.6.4)
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where A : H — H is a single-valued nonlinear mapping, M : H — 2 is a set-valued
mapping and @ is the zero vector in H. We denote the set of solution of this problem

by I(A, M).

Remark 2.6.1. (1) If M = 0¢ : H — 2% in (2.6.4), where ¢ : H — R is proper
convex lower semi-continuous and d¢ is the sub-differential of ¢, then the variational

inclusion (2.6.4) is equivalent to the following problem: Find = € H such that
(Az,v —x) + ¢(y) — ¢(z) >0, Yo,y e H,

which is called the mized quasi-variational inequality in Noor [43].
(2) Let M = 06¢ in (2.6.4), where C' is a nonempty closed convex subset of H

and ¢ : H — [0, 00) is the indicator function of C| i.e.,

0, x e C;
dc(z) =
400, otherwise.
Then the variational inclusion (2.6.4) is equivalent to the following problem: Find
x € H such that

(Az,v—x) >0, Yv e H,
which is called Hartman-Stampacchia’s variational inequality.

Remark 2.6.2. (1) If H = R™, then the problem (2.6.4) becomes the generalized
equation introduced by Robinson [44];

(2) If A =0, then the problem (2.6.4) becomes the inclusion problem introduced
by Rockafellar [45].

The problem (2.6.4) is the most widely use for the study of optimal solutions in
many related areas including mathematical programming, complementarity, varia-
tional inequalities, optimal control and many other fields. Many kinds of variational
inclusions problems have been improved, extended and generalized in recent years

by many authors.

The System of Hierarchical Variational Inequality Problem

The system of hierarchical variational inequality problem: find (z*,y*, 2*) € VI(C, Ay) X
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VI(C,Ay) x VI(C, A3) such that for given positive real numbers p,n and &, the fol-

lowing inequalities hold:

(pF(y*) +a* —y*,x — %) >0, Vo e VI(C,A),
(MF(z)+y" =2y —y*) >0, VyeVI(C Ay), (2.6.5)
(EF(z*)+ 2z —a*,z2—2") >0, VzeVI(C,As).

where F|, Ay, Ay, A3 : H — H are mappings.

Some special cases of the system of hierarchical variational inequality

problem (2.6.5):

(1)

(11)

(I11)

If A, =1—"1T,, where T; : H — H is a nonlinear mapping for each i = 1,2, 3,
in (2.6.5), then VI(C, A;) = F(T;) and the system of hierarchical variational
inequality problem (2.6.5) reduces to the following a system of hierarchical

optimization problem: finding (z*,y*, 2*) € F(T1) x F(T3) x F(T3) such that

(pF(y*) +a* —y*,x —a*) > 0, Vo e F(T),
MF (") +y* =25y —y") >0, Vye F(Ty), (2.6.6)
(EF(x%)+ 2" —a*,z—2%) >0, Vze F(Ty).

It T, = Pk, for each ¢ = 1,2,3, where Pk, is the metric projection from
H onto a nonempty closed convex subset K; in (2.6.6), then it is clear that
the VI(C,A;) = F(T;) = K; and the system of hierarchical optimization
problem(2.6.6) reduces to the following problem: finding (z*,y*, z*) € K; X
K5 x K3 such that

(pF(y*) + 2* —y*, o —2*) >0, Vre Ky,
MF(Z") +y" =25y —y") >0, Vye€ Ky, (2.6.7)
(EF(x*) + 2* —a*,2 — 2*) >0, Vz€ K.

If K1 = Ky = K3, then the system of optimization problem(2.6.7) reduces to
the following a system of variational inequality problem: finding (x*,y*, z*) €

K1 X Kl X Kl such that

(pF(y*) +o* —y*, o —x*) >0, Vore K,
MF(*) +y* =25y —y") >0, Vye K, (2.6.8)
(EF(x*)+ 2" —a*,2—2%) >0, Vze K.
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If&=0,p,n>0VIC A) = VIC,As) and z* = z* in (2.6.5) then the
system of hierarchical variational inequality problem (2.6.5) reduces to the

following bi-level hierarchical variational inequality problem: finding (z*,y*) €

VI(C,A) x VI(C, As) such that

(pF(y") +a* —y' o —a*) >0, VoeVI(C,A),
(nF(z") +y* —a"y—y") 20, VyeVI(C, Ay)

(2.6.9)

In (2.6.9), if A; = [ — T;, for each ¢ = 1,2, then bi-level hierarchical varia-
tional inequality problem (2.6.9) reduces to the following bi-level hierarchical

optimization problem: finding (z*,y*) € F(T}) x F(Ty) such that

(pF(y*) +a* —y*, o —2*) >0, Vz e F(Ty),
(nF(x*)+y*—z*y—y*) >0, Vye F(Ty)

(2.6.10)

which was Kraikaew and Saejung[58].

In (2.6.10), if T; = Pk, for each i = 1,2, then bi-level hierarchical optimization
problem (2.6.10) reduces to the following problem : finding (z*,y*) € K; x K3

such that
(pF(y*) +a* —y*,x—a") >0, Vze kK,

(nF(z*)+y* —a*,y—y*) >0, Vye K,

(2.6.11)

In (2.6.11), If Ky = K, then the bi-level optimization problem (2.6.11) reduces
to the following bi-level variational inequality problem: finding (z*,y*) € K; X

K such that

(pF(y*) +a* —y*,x —z*) >0, Vxe K,
(MF(z*) +y* — oy —y*) >0, Vye K

(2.6.12)

In (26.5), If £ =n=0,p> 0,VI(C,A1) = VI(C,Ay) = VI(C,As) and
x* = y* = 2z* then the system of hierarchical variational inequality problem
(2.6.5) reduces to the following a hierarchical variational inequality problem:

finding 2* € VI(C, A1) such that

(F(y*),z —x%) >0, VzxeVIC, A), (2.6.13)
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(IX) In (2.6.13), if A; = I — T} then the hierarchical variational inequality problem
(2.6.13) reduces to the following a hierarchical fized point problem: finding
x* € F(T1) such that

(F(y"),x —x%) >0, VxeF(T)), (2.6.14)

(X) In (2.6.14), if T} = Pk, then the hierarchical fixed point problem (2.6.14)
reduces to the following a classic variational inequality problem: finding z* €

K such that
(F(y"),x —x*) >0, Ve K, (2.6.15)

The System of Hierarchical Variational Inclusion Problem
The system of hierarchical variational inclusion problem: find (z*, y*, 2*) € 1 x Qg X
Q3 such that for given positive real numbers p,n and &, the following inequalities

hold:
(pF(y*) +a* —y*,x —2*) >0, V€ Qy,
{

nF (") +y" =2y —y") =20, VyeQy, (2.6.16)
(EF(x*)+ 2z —a*,z—2%) >0, VzeQs,
where €; is a solution set of the variational inclusion problem I(A;, M;), for each
i=1,2,3.
Some special cases of the system of hierarchical variational inclusion prob-

lem (2.6.16) as follows:

(1) f£E=0,p,m> 0,02 = Q3 and z* = z* in (2.6.16) then the system of hierar-
chical variational inclusion problem (2.6.16) reduces to the following bi-level
hierarchical variational inclusion problem: finding (z*,y*) € €1 x Qy such that

(pF(y*) +a* —y*,x —a*) >0, Voelly,

(2.6.17)

which was studied by Chang et al. [59].

(I1) In (2.6.16), If £ =n =0,p > 0,Q; = Qy = Q3 and z* = y* = 2* then the
system of hierarchical variational inclusion problem (2.6.16) reduces to the
following a hierarchical variational inclusion problem: finding z* € €2y such
that

(F(y"),x —x%) >0, Vrel. (2.6.18)
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2.7 Useful Lemmas

Let H be a real Hilbert space with the inner product (-,-) and the norm || - ||
and C'is a nonempty closed convex subset of H. We use F(T') to denote the set of
fized points of T : H — H, that is, F(T) ={x € H : Tz = z}.

Let A,T: H — H be a nonlinear mappings. Recall the following definitions:

(a) A is said to be monotone if

(Ar — Ay,x —y) >0, Va,y € H.

(b) Ais said to be p-strongly monotone if there exists a positive real number p > 0
such that

(¢) A is said to be n-cocoercive or n-inverse strongly monotone if there exists a

positive real number n > 0 such that

(Az — Ay,z —y) > nl|Ax — Ay|*, Y,y € H.

(d) A is said to be relaxed n-cocoercive if there exists a positive real number 1 > 0
such that

(e) A is said to be relaxed (n, p)-cocoercive if there exists a positive real number

1, p > 0 such that

(Az — Ay, o —y) > (-n)l|Az — Ay|]* + pllz — y||*, Yo,y € H.

(G is said to be L-Lipschitzian on C if there exists a positive real number L > 0
(f) p p
such that
[A(z) — A(y)|| < Lljx —yl|, Vz,y € H.

(g) A is said to be k-contraction if there exists a positive real number k& € (0,1)
such that
[A(z) = Ayl < Ellz —yll, Ve,y € H.
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(h) A mapping T is called nonexpansive if
[Tz =Tyl < |lz—yl,  Va,y€H.
It is well known that F'(T) is a closed convex set, if T" is nonexpansive.
(i) A mapping T is called quasi-nonexpansive if F(T) # () and
[Tz —pl| < |lz—pll, VzeHpeFT).
It should be noted that 7" is quasi-nonexpansive if and only if Vo € H,p € F(T)

1
(x = Tx,x —p) > §||:1:—Tx||2.

(7) A mapping T is called strongly quasi-nonexpansive if T' is quasi-nonexpansive
and x, — Tx, — 0,
whenever {z,} is a bounded sequence in H and ||z, — p|| — ||Tx, — p|| — 0 for

some p € F(T).

(7) A mapping T is called k-strict pseudo-contraction if there exists a constant

k € ]0,1) such that

|72 — Tyl < |l — ylI? + K[[(I = T)a — (I = Tyl Va,y € C.

(I) A mapping A is said to be strongly positive if there exists a constant y > 0
such that
(Az,x) > pl||lz||?, Vz e H. (2.7.1)

Lemma 2.7.1. [}7] Let H be a Hilbert space, C a closed convex subset of H and
T :C — C be a nonexpansive mapping with F(T) # 0. If {xz,} is a sequence in C
weakly converging to x and if {(I —T)x,} converges strongly to y, then (I —T)x = y;
in particular, if y = 0 then x € F(T).

Lemma 2.7.2. [22] Assume A is a strongly positive linear bounded operator on a

Hilbert space H with coefficient 7y > 0 and 0 < a < ||A||7L. Then || —aAl < 1—a7.

Lemma 2.7.3. [23] Let F': C — C be a n-strongly monotone and L-Lipschitzian
operator with L > 0, > 0. Assume that 0 < p < 2n/L* 7 = p(n — uL?/2) and
0<t<1. Then||(I—-ptF)z— I —ptFy| <1 —tr)||z—yl.
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Lemma 2.7.4. [23] Let H be a real Hilbert space, f : H — H a contraction with
coefficient 0 < k < 1, and G : H — H a L-Lipschitzian continuous operator and

&-strongly monotone operator with L > 0, £ > 0. Then for 0 < v < p&/k,

(v =y, (uG =1 f)z = (uG = 1f)y) = (u€ — k) ||z — yl*, Yo,y € H.
That is, uG' — v f is strongly monotone with coefficient p& — k.

Lemma 2.7.5. [54] Let H be a Hilbert space and C' be a nonempty closed and convex
subset of H. Let T be a nonexpansive mapping of C' into itself such that F(T) # ().
Then

Tz — 2||* < 2{x — T,z — ), Vo' € F(T),Vr e C.

Lemma 2.7.6. [48] Assume that {a,} is a sequence of nonnegative numbers such
that
An+1 S (1 - '.Yn)an + 5n7 vn 2 O;

where {v,} is a sequence in (0,1) and {d,} is a sequence in R such that
1.3 0 e = 00,
2. limsup,,_, ., j—z <0 or Y2 |0n] < oo.

Then lim,,_yoo @, = 0.

Lemma 2.7.7. [26] Let B : H — H be (3-strongly monotone and L-Lipschitz contin-
uous and let i € (0,23). For X € [0,1], define T : H — H by Th\(z) := x — AuB(2)
for all x € H. Then, for all x,y € H,

T3 (z) = Ta(y)ll < (1 = A7)l[z =yl

hold, where T :=1— /1 — (28 — uL?) € (0,1].

Definition 2.7.8. Let M : H — 2% be a multi-valued maximal monotone mapping.

Then the mapping Jyx : H — H defined by
Jur(w) = (I + M) u),u € H

is called the resolvent operator associated with M, where \ is any positive number

and [ is the identity mapping.
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Proposition 2.7.9. [119] Let M : H — 2% be a multi-valued mazimal monotone
mapping, and let A : H — H be an a-inverse-strongly monotone mapping. Then

the following conclusions hold.

1. The resolvent operator Jy x associated with M is single-valued and nonexpan-

swe for all A > 0.

2. The resolvent operator Jy x is 1-inverse-strongly monotone, i.e.,
[ Taa (@) = Taupa@)1? < (& =y, Jua () = Jua(y)), Yo,y € H.

3. w € H is a solution of the variational inclusion (2.6.4) if and only if u =
Jua(u — NAu), YA > 0, i.e., u is a fized point of the mapping Jy (I — NA).
Therefore we have

O = F(Jua(I = AA)), YA > 0,

where € is the set of solutions of variational inclusion problem (2.6.4).
4. If X € (0,2a], then Q is a closed convex subset in H.

Lemma 2.7.10. [59] Let M : H — 2" be a multi-valued mazimal monotone map-
ping, A . H — H be an a-inverse-strongly monotone mapping and let 2 be the set of

solutions of variational inclusion problem and Q2 # (). Then the following statements

hold.
1. If X € (0,2a], then the mapping K : H — H defined by
K = JM’)\([— )\A)

is quasi-nonexpansive, where I is the identity mapping and Jyr y is the resolvent

operator associated with M.

2. The mapping [ — K : H — H 1is demiclosed at zero, i.e., for any sequence
{z,} CH, ifx, —x and (I — K)x,, — 0, then x = Kz.

3. For any € (0,1), the mapping Kz defined by
Ky =(1—B)I +BK

is a strongly quasi-nonexpansive mapping and F(Kz) = F(K).
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4. I — Kz, B €(0,1) is demiclosed at zero.

Lemma 2.7.11. [22]) Let H be a Hilbert space, C' a closed convex subset of H,
f:C — H be a contraction with coefficient 0 < p <1, T :C — C be nonezrpansive
mapping. Let A be a strongly positive linear bounded operator on a Hilbert space H

with coefficient ¥ > 0. Then, for 0 <y < 7/p, for x,y € C,

1. the mapping (I — f) is strongly monotone with coefficient (1 — p) that is
(—y,(I—flze— (I~ fly) > (1= p)llz —y|*
2. the mapping (I — T) is monotone, that is

(—y, (I -T)x— (I —T)y) >0.

3. the mapping (A — ~f) is strongly monotone with coefficient 7 — ~vp that is
(# =y, (A=~flx = (A= )y) > (T =)z —y|*

Lemma 2.7.12. [119] Let A: H — H be an a-inverse-strongly monotone mapping.
Then

1. Ais an é—Lipschitz continuous and monotone mapping;

2. For any constant A > 0, we have
I(1 = XAz — (I = AA)y|* < [l = y|I> + A\ = 2a)|| Az — Ay|)*;

3. If A € (0,2a], then I — \A is a nonexpansive mapping, where I is the identity
mapping on H.

Lemma 2.7.13. Let x € H and z € C be any points. Then we have the following:

1. That z = Pg[x] if and only if there holds the relation:

(x—2z,y—2) <0, VyeC.
2. That z = Pclx] if and only if there holds the relation:

lo = 2" < llo = ylI* = lly — 2I°, ¥yeC
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3. There holds the relation:
(Polz] = Pelyl,x —y) > || Polz] — Pelylll?, Y,y € H.
Consequently, Po is nonexpansive and monotone.
4. ueVI(C,A) e ue F(Po(I —MA) ,VA>0.

Proposition 2.7.14. [125] Let C' be a bounded closed convex subset of a real Hilbert
space H and let A be an « inverse strongly-monotone mapping of H into H. Then,

VI(C,A) is nonempty.

Lemma 2.7.15. [33] For x,y € H and w € (0, 1), the following statements hold:
LAz (1= Nyll* = Al + Q= N[lyl? = AA =Mz —yl*, Y,y € H, A € [0,1];
2 e+ yl?* <zl +2(y, 2 + y);
3. Nz +yll* = [lz|” + 2@y, x), Va,y € H.
40 —wz +wyl* = (1 - w)llzl* + wlyl® — w(l - w)llz - y|*.

Lemma 2.7.16. [25] Let {a,} be a sequence of real numbers, and there ezists a
subsequence {am;} of {an} such that ay,; < am;11 for all j € N, where N is the set
of all positive integers. Then there exists a nondecreasing sequence {ny} of N such
that limy_,o np,. = 00 and the following properties are satisfied by all (sufficiently

large) number k € N :
any < Ay and  ag < Gy
In fact, ny is the largest number n in the set {1,2, ..., k} such that a, < an41 holds.

Lemma 2.7.17. [58] Let {a,} C [0,00),{a,,} C[0,1),{b,} C (—00,400),& € [0,1)
be such that

1. {a,} is a bounded sequence;

2. apy1 < (1— an)Qand\/ﬂ\/m + ayb,,Vn > 1;

3. whenever {a,, } is a subsequence of {a,} satisfying
lim inf(an, +1 — an,) > 0,

k—o0

it follows that lim sup,,_, . b,, < 0;
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4. lim,, oo, =0 and Y07 o, = 00.
Then lim,,_, a, = O.

Lemma 2.7.18. Let A: H — H be an a-inverse-strongly monotone mapping and
let VI(C,A) be the set of solutions of variational inequality problem (2.6.1). Then
the following statements hold.

1. If X € (0,2a], then the mapping K : H — C' defined by
K = Po(I — \A)
1S quasi-nonexpansive, where I is the identity mapping.

2. The mapping [ — K : H — H 1is demiclosed at zero, i.e., for any sequence
{z,} CH, ifx, —x and (I — K)x, — 0, then x = Kz.
3. For any € (0,1), the mapping K defined by
Kg=(1-p5)]+pK (2.7.2)
is a strongly quasi-nonexpansive mapping and F(Kz) = F(K).
4. I —Kg, B €(0,1) is demiclosed at zero.
Proof. 1. By Lemma 2.7.13 and Proposition 2.7.14, the mapping K is nonexpan-
sive and VI(C, A) = F(K) # (). This implies that K is quasi-nonexpansive.
2. Since K is a nonexpansive mapping on C, I — K is demiclosed at zero.

3. It obvious that F(Kp) = F(K).
Next we prove that Kz, 5 € (0,1) is a strongly quasi-nonexpansive mapping.
Let {z,} be any bounded sequence in H and let p € K3 be a given point such
that
o — pll — [ K — pll = 0. (2.73)
First, we prove that Kz, 8 € (0,1) is a quasi-nonexpansive mapping.

By (2.7.2) and K is quasi-nonexpansive, we have

[Kpz —pll = [[(1=5)z—p]+ B(Kz—p)
< (1=Blz —pl + Bl Kz —pl

|z —pl, VxeCl.

IN
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Therefore, K3 is a quasi-nonexpansive mapping.
Next we prove that || Kgx,, — x| — 0.
In fact, it follows from (2.7.2) that

HKﬁxn_pHZ = Hxn_p_ﬂ(xn_Kxn)HQ
= ||xn_p||2_25<xn_pvwn_Kxn>+52||xn_Kan2

< o =2l = B = B)llwn — Kl
By (2.7.3), we have
B(L = B)llwn — Kay||* < ||z — pll* — | K520 — pl|* — 0.
Since 5(1 — ) > 0 then ||z, — Kx,| — 0. Hence

[0 — Kpgwn|l = Bllon — Kaal = 0.

4. Since I — K3 = (I — K) and IK is demiclosed at zero, hence I — Kp is
demiclosed at zero. This completes the proof.

]

Lemma 2.7.19. [/6] Let C be a closed convex subset of a strictly convexr Banach
space E. Let T,, : C — C be a nonexpansive mappings for each 1 < m < r, where r
is some integer. Suppose that N _ F(T,,) is nonempty. Let {\,} be a sequence of
positive numbers with >~ _, X\, = 1. Then the mapping S : C' — C defined by

Sz = Z ATz, YreC,
m=1

is well defined, nonexpansive and F(S) = NI, _F(T,,) holds.

Lemma 2.7.20. [15] Let C' be a nonempty closed convex subset of H and let r > 0
and x € H. Let F': C x C — R satisfying

(A1) F(xz,x) =0 for all z € C;
(A2) F is monotone, i.e., F(x,y)+ F(y,z) <0 forall z,y € C;
(A3) for each z,y,z € C, limyo F(tz + (1 — t)x,y) < F(x,y);

(A4) for each x € C,y — F(z,y) is convex and lower semicontinuous.
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Then, there exists z € C' such that

1
Flzy)+ -y —zz-2)20, Vel

Lemma 2.7.21. [}2] Assume that F': C x C — R satisfies (A1)-(A4). Forr >0
and x € H, define a mapping TF - H — C as follows:

TF(x):{zeC’:F(z,y)jL%(y—z,z—x)ZO, VyGC'}

T

for all x € H. Then, the following hold:

1. TF is single- valued;

2. TF is firmly nonexpansive, i.e., Y,y € H,

T = Tyl < (TFa = Ty, — y);
3. F(TF) = EP(F); and

4. EP(F) is closed and conver.

Lemma 2.7.22. [52] Let H be a real Hilbert space. Then for any xq,xs, ...,z € H

and ay, as, ..., a € [0, 1] with Zle a; = 1,k € X, we have

k k-1 k
= D aillzl® =) Y aaylle — ).

i=1 i=1 j=i+1

k

E Q;T;

=1

2




CHAPTER 3 COMMON FIXED POINT AND COMMON
TRIPLED FIXED POINT THEOREMS

3.1 Common Fixed Point Theorems in Fuzzy Metric Spaces

In this section, we establish the existence of common fixed point theorems for
R-weakly commuting in fuzzy metric spaces by using the common limit in the range

property. We also give the example to validate our main results.

Let © denote the class of those functions 6 : (0,1 — [0,1] such that 6 is

continuous and

O(z,1,1,2,2) = z.
There are examples of 6 € ©:
1. 01(1‘1, X2, X3, T4, l‘5) - min{xh X2, T3, T4, x5}7

) 4 z1(x1 + 22 + 23 + 24 + T5)
. X1, To, T3, Ty, T5) = ;
2(1 23 5> I1+JZ4+I5+2

3. O3(x1, o, T3, Ty, T5) = JT1T2X3T4T5;

T1XoX3 + ToT3Ly + ToX3T5

3 ?

4. 94($1, X2, T3, T4, $5) =

T1X9X3 + XT4T5

5. O5(x1, T2, 3, 4, T5) = 1
1

Now we prove our main results.

3.1.1 Existence Results

Theorem 3.1.1. Let (X, M, %) be a fuzzy metric space and let f, g be self-mappings
of X such that (f,g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (A,),
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(¢) R-weakly commuting of type (Ay),
(d) R-weakly commuting of type (P).

If the following holds: (i) f and g satisfy the (CLRg) property;
) fOM(fx’fy’t) W(s)ds > fOM(gx’gy’t) W(s)ds for x,y € X;
(i11) fOM(fx’ffx’t)w(s)ds > fon($)¢(s)ds for fx # ffx and

n(x) = 0(M(gx, gfx,t), M(fx, gz, t), M(f fx,gfx,t), M(fx,gfx,t), M(gx, f fr,t))

for some 6 € O,
whenever ¥ : Ry — R is a Lebesgue integrable mapping which is summable,

nonnegative and such that

/ ¥(s)ds >0
0
for each € > 0, then f and g have a common fixed point.

Proof. Since f and g satisfy the (CLRg) property, there exists a sequence {z,} in
X such that
lim fz, = lim gz, = gx (3.1.1)
n—oo

n—oo

for some x € X. Let ¢ be a continuity point of (X, M, *). By (i), we have

M(fxn,fx,t) M(gzn,gz,t)
/ wiis = | U(s)ds
0 0

for all n € N. Letting n — oo, we have

M (g, fz,t) M(gz,g7,t)
/ P(s)ds > / P(s)ds,
0 0

which implies that fx = gx.

In case (f, g) is R-weakly commuting, we have

M(fgx,gfx,t) > M(fx, gz, %) =1

that is fgxr = gfx. Therefore, we obtain that

ffr=fgr=gfx=ggx.
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In case (f, g) is R-weakly commuting of type (A,), we can see in [117], we have

M(gfe, ffw.t) > M(fr,gr, ) =1

that is gfx = f fx. Therefore, we obtain that

g9r = gfr = ffr = fgz.
In case (f, g) is R-weakly commuting of type (Ay), we have

t
M(fgx,ggx,t) > M(fx, gz, E) =1

that is fgr = ggx. Therefore, we obtain that

Jfx=fgx=ggr=gfuz.

In case (f, g) is R-weakly commuting of type (P), we have

M(ffx, ggz,t) > M(fz, gz, %) _1

that is f fox = ggx. Therefore, we obtain that

Jfgx = ffx=ggr=gfuz.

Next, we prove that ffr = fr. In deed, we assume that ffz # fx. By the

inequality (iii), we get

M(fz,ffzt)
/ P(s)ds > / P(s)ds
0

/ b(s)ds
0

O(M (fx,f fa,t),M(fx,fx,t),M(f fz,f fz,t),M(fx,f fz,t),M(fz,f fz,t))
/ b(s)ds

0

O(M (fx,f fx,t),1,1,M (fz,f fx,t),M(fx,f fz,t))
/ b(s)ds

0

M(fx,ffx,t)
_ / (s)ds,
0

which is a contradiction. Thus ffx = fx and then fox = ffx = gfx. So fx is a

common fixed point of f and g. O
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Corollary 3.1.2. Let (X, M, *) be a fuzzy metric space and let f, g be self-mappings
of X such that (f,g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (A,),
(¢) R-weakly commuting of type (Ay),
(d) R-weakly commuting of type (P).

If the following holds:
(1) f and g satisfy the (CLRg) property;
(i) [MIDID (s)ds > [N (s)ds for x,y € X;
(i17) fOM(fx’ffx’t)w(s)ds > fONLZ)(s)ds for fo # ffx,

whenever

N e {M(gz,gfx,t), M(fz,gz,t), M(ffx,gfz,t), M(fz,gfz,t), M(gz, f fz,t)}

and ¢ : Ry — R is a Lebesgue integrable mapping which is summable, nonnegative

and such that

/Oezb(s)ds >0

for each € > 0, then f and g have a common fixed point.

Proof. We obtain that

N > min{M(gz,gfz,t), M(fz,gx,t), M(ffx,gfx,1)

M (fa,gfx,t), M(gz, ffr,1), } (3.1.2)

for
N e {M(gx,gfx,t), M(fx,gz,t), M(ffzx,gfx,t), M(fx,gfx,t), M(gz, ff2,t)}.

By (iii) and (3.1.2), we have

M(fz,f fz,t)
/ W(s)ds
0
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/ e

/mm{M gz,gfxt),M(fx,gzt),M(ffz,gfzt),M(fz.gfxt),M(gz,ffz,t)}
>
0

(s)ds

for x,y € X. By taking § = #; in Theorem 3.1.1, we get f and g have a common
fixed point. O]

Theorem 3.1.3. Let (X, M, %) be a fuzzy metric space and let f, g be self-mappings
of X such that (f,g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ay),
() R-weakly commuting of type (Ay),
(d) R-weakly commuting of type (P).

If the following holds:
(1) f and g satisfy E.A. property and gX is a closed subspace of X ;
(i) fOM(fx’fy’t)w( ds > fOM(gx’gy’t) W(s)ds for z,y € X;
(131) fOM(fx’ff“ U(s)ds > fo s)ds for fx # ffx and

n(x) = 0(M(gx, gfx,t), M(fx, gz, t), M(f fx,gfx,t), M(fx,gfx,t), M(gx, f fr,t))

for some 6 € O,
whenever ¥ : Ry — R s a Lebesque integrable mapping which is summable,

nonnegative and such that

/ P(s)ds >0
0
for each € > 0, then f and g have a common fized point.

Proof. Since f and g satisfy E.A. property, there exists a sequence {x,} in X such
that

lim fz, = hm 0 gL, = U (3.1.3)

n—0o0
for some u € X. It follows from ¢gX is a closed subspace of X that u = gz for some
x € X and then f and g satisfy the (CLRg) property. By Theorem 3.1.1, we get f

and g have a common fixed point. O]
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Since the pair of noncompatible mappings implies to the pair satisfying E.A.

property, we get the following corollary.

Corollary 3.1.4. Let (X, M, *) be a fuzzy metric space and let f, g be self-mappings
of X such that (f,g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (A,),
(¢) R-weakly commuting of type (Ay),
(d) R-weakly commuting of type (P).

If the following holds:
(1) f and g are noncompatible mappings and gX is a closed subspace of X ;
(i) [MUBID (s)ds > [N (s)ds for x,y € X;
(i11) fOM(fx’ffw’t)w(s)ds > fon(x)w(s)ds for fx # ffx and

n(x) = 0(M(gz,gfz,t), M(fz,gz,t), M(ffr,gfx,t), M(fr,gfx,t), M(gx, f fz,1))

for some 6 € O,
whenever ¥ : Ry — R s a Lebesque integrable mapping which is summable,

nonnegative and such that

/0 y(s)ds > 0

for each € > 0, then f and g have a common fixed point.

Let A denote the class of those functions § : (0,1]* — [0,1] such that § is
continuous and

Sz, 1,2,1) = x.

There are examples of § € A:

1. 01(z1, e, x3, x4) = min{xy, T9, T3, 14 };

2. 0a(w1, 2, T3, T4) = \/T1T2T3Ty;

3. 03(x1, Ta, T3, x4) = min{\/T173, \/T2, T4 };
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T1To + T3y

4' 54<$1,$2,I37$4) - 92 )

T1T2 + T1X3 + T1T4

2+I’1

5. 55($171’271’3,$4) =

Theorem 3.1.5. Let (X, M, *) be a fuzzy metric space and let f, g be self-mappings
of X such that (f,g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (A,),
(¢) R-weakly commuting of type (Ay),
(d) R-weakly commuting of type (P).

If the following holds:
(1) f and g satisfy the (CLRg) property;
(i1) fOM(fz’fy’t) P(s)ds > fOM(gz’gy’t) W(s)ds for z,y € X;
(ii7) fOM(fx’ffx’t)w(s)ds > fon(m)w(s)ds for fa # ffx and

n(r) = 6(M(gz,gfx,t), M(fx,gv,t), M(fx,gfx,t), M(ffr,gfx,t))

for some § € A,
whenever ¥ : Ry — R is a Lebesque integrable mapping which is summable,

nonnegative and such that

/ YP(s)ds >0
0
for each € > 0, then f and g have a common fized point.

Proof. Since f and g satisfy the (CLRg) property, there exists a sequence {z,} in

X such that
lim fz, = lim gz, = gz (3.1.4)
n—oo

n—oo

for some z € X. Let t be a continuity point of (X, M, x). By (ii), we have

M(fzn,fz,t) M (gxn,gz,t)
/ b(s)ds > / (s)ds
0 0



for all n € N. Letting n — oo, we have

M (gz,fz,t) M(gx,gx,t)
/ B(s)ds > / (s)ds,
0 0

which implies that fx = gx.

In case (f, g) is R-weakly commuting, we have

t

M(fgz,gfx,t) > M(fx,gz, ?z) =1

that is fgr = gfx. Therefore, we obtain that

ffr=fgr=gfx=ggx.

In case (f,g) is R-weakly commuting of type (4,), we can see [117], we have

M(gfa, ffw.t) > M(fr,gr, ) =1

that is gfx = f fx. Therefore, we obtain that

ggr =gfzr = ffr= fgz.

In case (f, g) is R-weakly commuting of type (Ay), we have

t

that is fgr = ggx. Therefore, we obtain that

[fr=fgx = g9z =gfx.
In case (f, g) is R-weakly commuting of type (P), we have

t

M(ffx,ggx,t) > M(fx,gz, E) =1

that is f fx = ggx. Therefore, we obtain that

Jgx = ffx=ggr=gfuz.
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Next, we prove that ffxr = fxr. We may suppose that ffx # fx. By inequality
(iii), we get
M(fz,ffzt) n(z)
/ P(s)ds > Y (s)ds
0

0
/5(M gzr,gfz.t),M(fz,92,t),M(fr,gfzt),M(ffr,gfzt))

0
S(M(fx,f fz,t),M(fo,f,t),M(fz,f fo,t),M(ffz,f f,t))

:/ P(s)ds
0

S(M(fa.f fo,t), L, M(fo,f fat),1)
:/ ¥(s)ds

0

(fz,ffa,t)
- / b(s)ds,

0

which is a contradiction. Thus ffxr = fr and then for = ffxr = gfx. So fx is a

common fixed point of f and g. O]

Theorem 3.1.6. Let (X, M, *) be a fuzzy metric space and let f, g be self-mappings
of X such that (f,g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (A,),
(¢) R-weakly commuting of type (Ay),
(d) R-weakly commuting of type (P).

If the following holds:
(1) f and g satisfy the (E.A.) property and gX is a closed subspace of X ;
(i) [MUBI0 4 (5)ds > fOM@x’gy’“ W(s)ds for z,y € X;
20 fOM(fw’ffxt P(s)ds > fo s)ds for fx # ffx and

n(x) = 6(M(gz, gfxr,t), M(fx,gx,t), M(fx,gfx,t), M(ffr,gfz,1))

for some § € A,

whenever ¥ @ Ry — R is a Lebesgue integrable mapping which is summable,

/0 Y(s)ds > 0

for each € > 0, then f and g have a common fixed point.

nonnegative and such that
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Proof. Since f and g satisfy E.A. property and gX is a closed subspace of X, we

get there exists a sequence {x,} in X and some u € X such that

lim fx, = lim gz, = gx (3.1.5)
n—oo

n—oo

This show that f and g satisfy the (CLRg) property. By Theorem 3.1.5, we conclude

that f and g have a common fixed point. O]

Corollary 3.1.7. Let (X, M, ) be a fuzzy metric space and let f, g be self-mappings
of X such that (f,g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ay),
(¢) R-weakly commuting of type (Ag),
(d) R-weakly commuting of type (P).

If the following holds:
(1) f and g are noncompatible mappings and gX is a closed subspace of X ;

(i) MO0 (s)ds > MO0 g(s)ds for vy € X;

(ZZZ) OM(fx’ffxvt) w(s)ds > fO‘S(M(gxrgfzvt)7M(fngx’t)7M(fzvgfx7t)7M(ffxvgfxrt)) ¢(8)d8 fo,r,

fx # ffr and

some d € A,
whenever ¥ : Ry — R is a Lebesgue integrable mapping which is summable,

nonnegative and such that

/ P(s)ds >0
0
for each € > 0, then f and g have a common fixed point.

Proof. Since f and g are noncompatible mappings, we get f and g satisfy E.A.
property. Therefore, we apply Theorem 3.1.6 for conclude that f and g have a

common fixed point. O
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3.1.2 Examples

Example 3.1.8. Let X = [1,00) with the usual metric d and a * b = ab. Let M be
t

~trd(a,y)
for all 7,y € X and t > 0. Define fz = /z and gz = 2. Let Lebesgue integrable

a usual fuzzy metric space on (X, M, *) which is define by M (x,y,t)

¥ : Ry — R define by ¢(s) = e®. Now, we show that all hypothesis of Theorem
3.1.1 holds.

e Let us prove that f and g satisfy the (CLRg) property.
Consider the sequence {x,} in X which is define by

1
Tp,=14+— n=12,3,...
n

Since

lim fx, = lim gz, =1 = gl.
n—oo n—oo

Thus f and g satisfy the (CLRg) property with this sequence.

e From Example 2.4.15, we conclude that (f,g) is R-weakly commuting for all
R>0.

e We prove that

M(fz,fyt) M(gz,gy,t)
/ Y(s)ds > / W(s)ds
0

0

for x,y € X, we have

M(fz,fy.t) M (¥, /y:t)
/ Y(s)ds = / e’ds
0 0

M(gz,gy,t)
= / W(s)ds.
0

Therefore, the condition (ii) in Theorem 3.1.1 holds.
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e We show that
M(fz,ffx,t) n(z)
/ Y(s)ds >/ P(s)ds
0 0

for fo # ffx and

for some 6 € O.
Now, let 6 : (0,1]> — [0, 1] define by

9($1, Lo, T3,T4, 1'5) = min{xb X2, T3, T4, 3:5}‘

If fx # ffx, then we get x € (1,00). Thus we only show for this case.
We obtain that

M(fz,ffz)
/ P(s)ds
0

= / e’ds
0
M (23, Yz,t)
= / e’ds
0
-/ b(s)ds
0
min{M (gz,gfz,t),M(fz,gz,6),M(f fz,gfxt),M(fz,9fzt),M(gz,f fz,t)}
> / P(s)ds
0
= / (s)ds
0

Therefore, we get condition (iii) of Theorem 3.1.1 holds.

Now, all the required hypotheses of Theorem 3.1.1 are satisfied. Thus we deduce
the existence of a common fixed point of f and g. Here, a point 1 is a common fixed

point of f and g.

Example 3.1.9. Let X = [0, 1] with the usual metric d and a * b = ab. Let M be
t

a usual fuzzy metric space on (X, M, *) which is define by M (x,y,t) = T dey)
T,y
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for all z,y € X and t > 0. Let f,g: X — X define by
1611

0 ;xe(0, UL,
f(&?): ) 11001 10
2 73:6(1_00’1_0)
0 ;2¢€l0, 15 Ul 1;

and
9(x) = -

Let Lebesgue integrable ¢ : R, — R define by 1(s) = €°*. Now, we show that all

hypothesis of Theorem 3.1.1 holds.
e Let us prove that f and g satisfy the (CLRg) property.

Consider the sequence {x,} in X which is define by
n=1,2,3...

n
Ty =
n+1

Since
lim fz, = lim gz, = 0= gl.
n—o0 n—oo

Thus f and g satisfy the (CLRg) property with this sequence.

e From Example 2.4.17, we conclude that (f,g) is R-weakly commuting of type

(Ay) for all R > 0.

e We prove that
M(fz,fy,t) M (gz,gy,t)
/ P(s)ds 2/ Y(s)ds
0 0

for x,y € X. We distinguish the following cases.
L 1]

Case 1: z,y € [0, 155 U [55.
In this case, we have
M(fz,fy.t) M (gz,gy,t)
/ YP(s)ds :/ P (s)ds.
0 0
=, 1] and y € (155, 15)-

Case 2: x € [0, 745) U [55.
In this case, we have

M(fz,fy;t) M(0,4,t)
/ P(s)ds = / e’ds

0 0
t

t+4
= / e’ds
0
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= etz -1

t
> ey — 1

t
t+10y
= e’ds
0

M(0,10y,t)
= / e’ds
0
M (gz,gy,t)
= / P(s)ds.
0
Case 3: x € (15, 15) and y € [0, 765] U [, 1]

In this case, we have

M(fz,fy,t)
/ (s)ds
0

Case 4: x,y € (755 15)-

In this case, we have

M(fz,fy.t)
/ Y(s)ds
0

t
etrios — |

t
t+10x
e’ds
0

M (102,0,t)
/ e’ds
0

M(gz,gy,t)
/ p(s)ds.
0

ettl5-%1 _ 1
_t
[z—y]
etz —1
_t
€t+10\x7y| — 1

t
et+10c—10y[ — ]

M (10z,10y,t)
/ e’ds
0

M(gz,g9y,t)
/ W(s)ds.
0

95
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Therefore, we can conclude that

M(fz,fy,t) M(gz,gy,t)
/ P(s)ds > / P(s)ds
0 0

for x,y € X. So the condition (ii) in Theorem 3.1.1 holds.

e We show that
M(fx,ffx,t) n(z)
/ Y (s)ds >/ Y(s)ds
0 0
for fx # ffxr and
n(x) = 0(M(gx,gfx,t), M(fx,gz,t), M(ffz,gfx,t), M(fr,gfx,t), M(gz, f fz,t))
for some 6 € O.
Now, let 6 : (0,1]% — [0, 1] define by
9<$la Lo, T3,T4, 1'5) - min{xb X2, T3,T4, 3:5}-

If fx # ffx, then we get x € (
Case 1: x € (15, 15)-

In this case, we have ffr =0 # § = fr and

M(fx,ffx,t)
/ (s)ds
0

ﬁ, %) We distinguish the following cases.

t
> et+ioz — ]

M (10,0,t)
= / e’ds
0

M (g, f fz,t)
= / P(s)ds
0

mln{M(g;v,gfx,t),M(fac,gac,t),M(ffaggfx,t),M(fac,gfa:,t),M(ga:,ff:v,t)}
> / (s)ds
0

P (s)ds.

0

Case 2: x € (155, 15)-

In this case, we have ffz =7 # § = fr and

M(fz,.ffzt) M(%v%vt)
/ P(s)ds = / e’ds
0 0
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t

5
= / e’ds
0

t
> et+109:—% _ 1

M(10z,2 1)
= e’ds
0

M(gz,ffx.t)
= / P(s)ds
0

P(s)ds
0

O(M(gz,gfw.t),M(fo.gx,t),M(f fz.gfzt),M(fz.gfzt),M(gz.f fz.t))
/ P(s)ds.

0

Therefore, we get condition (iii) of Theorem 3.1.1 holds.

Now, all the required hypotheses of Theorem 3.1.1 are satisfied. Thus we deduce
the existence of a common fixed point of f and g. Here, a point 0 is a common fixed

point of f and g.

Example 3.1.10. Let X = [0, 1] with the usual metric d and a * b = ab. Let M be
t

a usual fuzzy metric space on (X, M, *) which is define by M (x,y,t) = T dy)
Y

for all z,y € X and t > 0. Let f,g: X — X define by

and

N8
—~

i
Let Lebesgue integrable v : Ry — R define by ¢ (s) = ¢*. Now, we show that all
hypothesis of Theorem 3.1.1 holds.

e Let us prove that f and g satisfy the (CLRg) property.
Consider the sequence {x,} in X which is define by

T, = n=1,2,3...

Since

lim fx, = hm 0 g, = 0=gl.

n—oo

Thus f and g satisfy the (CLRg) property with this sequence.
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e From Example 2.4.18, we conclude that (f,g) is R-weakly commuting of type
(P) for all R > 0.

e We prove that
M(fz,fy.t) M(gz,gy.t)
[ sz [ s
0 0

for z,y € X. We distinguish the following cases.
Case 1: z,y € 0,1 U[3,1].

In this case, we have

M(fxz,fy,t) M (gz,g9y,t)
/ Y(s)ds = / W (s)ds.
0 0

Case 2: x € [0,3]U[3,1] and y € (3, 3).

In this case, we have

M(fz,fy.t) M(Ov%vt)
/ P(s)ds = / e’ds
0 0

Case 3: x € (1,3) and y € [0, 3] U [5,1].

In this case, we have

M(fx,fy,t) M(%,0,t)
/ W(s)ds = / e’ds
0 0
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Case 4: x,y € (i, %)

In this case, we have

M(fz,fy,t) M($,4.t)
/ Y(s)ds = / e’ds
0 0

t

EEST
= / e’ds
0

t

t
BT
t
> B
ot
= €t+|%_%‘ — 1
M(%%»t)
= / e’ds
0
M((gz,9y,t)
= / P(s)ds.
0

Therefore, we can conclude that

M(fz,fyt) M(gz,gy,t)
/ P(s)ds > / Y(s)ds
0 0

for x,y € X. So the condition (ii) in Theorem 3.1.1 holds.

e We show that
M(fz,f fx,t) n(z)
/ Y(s)ds >/ Y(s)ds
0 0

for fo # ffx and
n(x) = 0(M(gx,gfx,t), M(fx,gx,t), M(f fx,gfx,t), M(fx,gfx,t), M(gz, ffz,t))

for some 6 € O.
Now, let 6 : (0,1]° — [0, 1] define by

0(371, X2,X3, T4, $5> - min{l‘h X2, T3, T4, $5}'
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If fx # ffx, then we get x € (i, %) Thus we only show for this case.
We obtain that

M(fx,ffx,t)
/ (s)ds
0

Therefore, we get condition (iii) of Theorem 3.1.1 holds.

Now, all the required hypotheses of Theorem 3.1.1 are satisfied. Thus we deduce
the existence of a common fixed point of f and g. Here, a point 0 is a common fixed

point of f and g.

For example of (f, g) being R-weakly commuting of type (A,), see [117]

3.2 Common Tripled Fixed Point Theorems in Abstract
Metric Spaces

In this section, we extend and unify common tripled fixed point results in [67]
and study condition which guarantee the uniqueness of common tripled fixed point.
We also provide illustrative example in support of our results. Now, we introduce

the following concepts.

Definition 3.2.1. Let (X, d) be a K-metric space with a cone P having non-empty

interior (normal or non-normal). Mappings F': X3 — X and g : X — X are said
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to satisfy E.A property if there exist sequences {z,}, {yn},{2,} € X such that

lim F(xn,Yn,2z,) = lim g(z,) ==,
n—oo n—oo
im F(yn, zn,z,) = lim g(y,) =v,
n—00 n—00
S Pl ) = o) =

for some z,y,z € X.

Definition 3.2.2. Let (X, d) be a K-metric space with a cone P having non-empty

interior (normal or non-normal). Mappings F : X® — X and g : X — X are said

to satisfy C' LR, property if there exist sequences {x,}, {y.},{z.} € X such that

lim F(x,,Yn,2,) = lim g(z,) = gz,

n—oo

n—oo

lim F(yn, zn,7n) = lim g(yn) = gy,
n—oo

n—oo
lim F(z,,2n,y,) = lim g(z,) =gz
n—00 n—00

for some z,y,z € X.

3.2.1 Existence Results

Theorem 3.2.3. Let (X,d) be a K-metric space with a cone P having non-empty

interior (normal or non-normal) and F : X3 — X and g : X — X be mappings

satisfy CLR, property. Suppose that for any x,y, z,u,v,w € X, following condition

d(F(z,y,2), F(u,v,w))

= ad(F(z,y,2),97) + ad(F(y, z, %), gy)

+azd(F(z,2,9), 92) + asd(F(u,v,w), gu)

+asd(F(v,w,u), gv) + agd(F(w,u,v), gw)

(
( )> gv) F(

+azd(F(u,v,w), gx) + asd(F (v, w, u), gy)
+agd(F(w, u,v), g2) + a1od(F(z,y, 2), gu)

+and(F(y, z, ), gv) + a2d(F(z,2,y), gw)

tai3d(gx, gu) + a14d(gy, gv) + a13d(gz, gw),

15

holds, where a;, 1 = 1,--- ,15 are nonnegative real numbers such that Zai < 1.

=1

Then F' and g have a tripled coincidence point.
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Proof. Since F and g satisfy C' LR, property, there exist sequences {z,, }, {yn}, {zn} €
X such that

Tim F(an, yn, 20) = lim g(zn) = g, (3.2.1)
lim F(yn, 2n,z,) = lim g(y,) = gy, (3.2.2)
n—00 n—00
lim F(z,, Tn,yn) = lim g(z,) = g2 (3.2.3)
n—o00 n—0o0

for some z,y, 2z € X.
Now, we prove that F'(z,y,2) = gz, F(y,2,2) = gy and F(z,7,y) = gz. Note

that for each n € N, we have
d(F(z,y,z2),9z) 2 d(F(z,y, 2), F(Tn, Yn, 2n)) + d(F (0, Y, 2n), gT). (3.2.4)

On the other hand, applying given contractive condition and using triangular

inequality, we obtain that

d(F(z,y,2), F(2n,yn, 20)) = ard(F(z,y,2),97) + axd(F(y, 2, 2), gy)
+azd(F(z,2,9),92) + asd(F(Zn, Yn, 2n)s §Tn)
+asd(F(yn, 20, Tn), gyn) + asd(F (2n, Tn, Yn), 92n)
+ard(F(Zn, Yn, 2n), 92) + asd(F(Yn, 2n, Tn), 9y)
+agd(F (2n, TnyYn), 92) + ar0d(F(x,y, 2), gx,,)
+and(F(y, z,2), gyn) + a12d(F (2, 2,Y), 92n)

(
tai3d(gx, gry) + a14d(gy, gyn) + a15d(92, g2y)
(

A

a1d(F(z,y, 2), gx) + a2d(F(y, z, ), gy)
+agd(F(z,2,y),92)

+aa[d(F (2, Yn, 2n), g2) + d(gz, gn)]

+as[d(F (Yn, 2n, Tn), 9y) + d(gy, gyn)]

+ag[d(F (zn, Tn, Yn), 92) + d(gz, gzn)]

+ard(F (zn, Yn, 2n), 97) + asd(F(Yn, 2, Tn), 9y)
+agd(F (2n, Tn, Yn), 97)

+ayo[d(F(x,y, 2), 97) + d(gz, g,)]
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+anld(F(y, 2,2), gy) + d(9y, gyn)]
+aia[d(F(z,7,y),92) + d(gz, gzn)]

+ai3d(gx, gr,) + a14d(gy, gyn) + a15d(g2, g2),

for all n € N. Combining above inequality with (3.2.4), we have

d(F(x,y,2),9)

for all n € N. Therefore,

__< ald(F(ZE,y,Z>,g$) +a2d(F(y,z,x),gy)

+asd(F(z,2,y), 92)

Fasd(F(zn, Yn, 2n), g7) + d(gz, g1

+as[d(F (Yn, 2n, Tn), 9y) + d(9Y, 9y )]

+ag[d(F (zn, Tn, Yn), 92) + d(g2, 92n)]

+ard(F (20, Yn, 20), 92) + asd(F (Yn, 2n, Tn), 9Y)
+agd(F (zp, Ty Yn), 92)

+aio[d(F(z,y,2), gx) + d(gz, gx,)]
+an[d(F(y, 2, 2), gy) + d(g9y, gyn)]
+apld(F(z,x,y),92) + d(gz, gz,)]

+azd(gx, gxn) + a14d(gy, gyn)

+a15d<gz7 gzn) + d(F('rna Yn, Zn): gl’)

(1 —ay; — ay)d(F(z,y,2),97)

_(CL? + 0,11)d(F(y, 2y :L‘), gy)

_(a3+a12)d(F(Z;‘r7y)ugz) = (1+a4+a7)d(F(xmyn;Zn)7gx)

+(as + ag)d(F(yn, Zn, xn)a gy)

+ ag + @9>d<F(znaxmyn)agz)

(

(

+(aq + aro + ar3)d(gx, go,)

+(as + a11 + awa)d(gy, gyn)
(

+(ag + a1z + a15)d(gz, gz,) (3.2.5)



for all n € N. Similarly, we obtain

(1 —ay —ay0)d(F(y, z,x),9y)
—(ag + a11)d(F(z,x,y), g2)

—(ag + a12)d(F(z,y, z), gx)

and

(1 —ay; —ay)d(F(z,z,y),92)
—(ag + an1)d(F(z,y, z), gx)

_(a3 + al?)d(F(ya 2y I’), gy)

<

=
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(1 + aq + a?)d(F(ym Zn, xn)7 gy)
+ as + a8>d<F(Zm o yn)a gZ)
+ Qg + CLg)d(F(ZEn, UYn, Zn)a gJT)

(

(

+(as + awo + a3)d(gy, gyn)

+(as + a1y + aia)d(gz, gzn)
(

+(ag + a12 + a15)d(gx, gz,), (3.2.6)

(14 ay + a7)d(F (2, Tn, Yn), 92)
+(as + CLg)d(F(xm Yn, Zn)a gx)
+(ag + CLg)d(F(ym Zny xn)u gy)

(

(
+(as + aio + a13)d(gz, gzn)
+(as + an + aw)d(gz, gz,)
(

+(ag + a1z + a15)d(gy, gyn,) (3.2.7)

for all n € N. Adding (3.2.5), (3.2.6) and (3.2.7), we get

(1 —a1—az —az —ap —an — an)

x [d(F(x,y,2),97) +d(F(y, 2 2),9y) + d(F(z,2,9), 92)]

= (14 as+as+ag + ar + ag + ag)d(F(xy, Yn, 2n), 97)

+(1 + ay + as + ag + a7 + ag + a9)d(F (Yn, 2n, Tn), gY)

+(1 4+ ay + as + as + ar + as + ag)d(F(zn, Tn, Yn), 92n)

+(as + a5 + ag + aip + an + apaiz + arg + a1s)d(9y, gyn)

(
(
+(ag + as + ag + a10 + a1 + ar2a13 + arq + a15)d(gz, gz,)
(
(

+(as + a5 + as + aip + a1 + aparz + arg + a15)d(9z, gzn)
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for all n € N. Therefore, for each n € N, we have

d(F(x,y,2),97) + d(F(y, 2, 2),9y) + d(F(z,2,y), 92)

j ad(F(‘rTL?yn?Zn)?gx) "‘ad(F(ymmen),gy) +Oéd<F(Zn,xn,yn>,an>

+Bd(gx, gxn) + Bd(gy, gyn) + Bd(gz, 92n),

where

2
o =
1 —a; —asy—az—ayp—ai — ax

5= 1

1—a1—a2—a3—a10—a11—a12'
From (3.2.1), (3.2.2) and (3.2.3), for any ¢ € E with O < ¢, there exists N € N
such that

c
6 max{a, 8}’
c

6 max{a, 5}’
¢

d(F (%, Yn, 2n), 97)
d(F<yn7 Zna xn)u gy)

6 max{a, 5}’
d(gzy, gz) m’
d(gyn, 99) aaéﬁﬁﬁ
d(92n, 92) m’

for all n > N. Thus, for all n > N, we have

A(F (2,9, 2). gu) + d(F(y, . 2).99) + d(F(z,2,9).92) S g+ g+ o+t pto=c

It follows that d(F(x,y,2),g9z) = d(F(y, z,x),9y) = d(F(z,2,y),9z) = Og, that is

F(z,y,2) =gz, F(y,z,z) = gy and F(z,x,y) = g=. O

Corollary 3.2.4. Let (X,d) be a K-metric space with a cone P having non-empty
interior (normal or mnon-normal) and F : X?* — X and g : X — X be map-
pings satisfy E.A. property and g(X) be closed subspace of X. Suppose that for any

x,y, z,u,v,w € X, following condition
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d(F(z,y,2), F(u,v,w)) =2 ad(F(z,y,2),92) + a2d(F (y, z, 7), gy)
F(z,2,y),92) + ayd(F(u,v,w), gu)

(
+asd(F (v, w,u), gv) + agd(F (w, u,v), gw)
(
(

), gv) F( )
+azd(F(u,v,w), gx) + agd(F(v,w, u), gy)
+a9d F(w>ua U),gZ) + alOd(F(x7yv Z),gU)

+a11d(F(?J, Z, x)a QU) + a12d(F(z, z, 9)7 gw)

tai3d(gz, gu) + ad(gy, gv) + a15d(gz, gw),

15
holds, where a;, 1 = 1,--- 15 are nonnegative real numbers such that Zai < 1.

i=1
Then F and g have a tripled coincidence point.

Proof. Since F and g satisfy E.A property, there exist sequences {z,},{yn},{z.} €
X such that

im F(x,,Yn, z,) = lim g(z,) =p,
n—oo n—oo
lim F(yn, zn,z,) = lim g(y,) = q,
n—00 n—00
lim F(z,, 20, y,) = lim g(z,) =7,
n—oo n—oo

for some p,q,r € X. It follows from g(X) is a closed subspace of X that p = gz,
q = gy and r = gz for some z,y, 2 € X and then F' and g satisfy the C'LR, property.
By Theorem 3.2.3, we get F' and g have a tripled coincidence point. O]

Corollary 3.2.5. [67]] Let (X,d) be a K-metric space with a cone P having non-
empty interior (normal or non-normal) and F : X3 — X and g : X — X be
mappings such that F(X?) C g(X). Suppose that for any z,y, z,u,v,w € X,

following condition

d(F(QS’,y, Z),F(U,U,U])) j ald(F(x7yv Z),gl’) —l—(lgd(F(y, Zax>agy)
+a3d(F<Z7xay)7gZ) + a4d(F(u,v,w),gu)
+asd(F (v, w,u), gv) + asd(F (w, u,v), gw)

+a7d(F(u7 v, w)7 giL’) + a8d(F(va w, U), gy)
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+agd(F(w,u,v), gz) + a1od(F(z,y, 2), gu)
+a11d(F(y7 <, ZL’), gU) + ale(F(Zv L, y)u gw)

+aizd(gz, gu) + ad(gy, gv) + a15d(gz, gw),

15

holds, where a;, 1 = 1,--- 15 are nonnegative real numbers such that Zai < 1.
i=1

Then F and g have a tripled coincidence point provided that g(X) is a complete

subspace of X.

Corollary 3.2.6. Let (X,d) be a K-metric space with a cone P having non-empty
interior (normal or non-normal) and F : X3 — X and g : X — X be mappings

satisfy CLR, property. Suppose that for any x,y, z,u,v,w € X, following

d(F(z,y,2), F(u,v,w)) = ad(F(z,y,z),9x) + a1d(F(y, z,x), gy)
+ard(F(z,2,y), 92) + aed(F (u, v, w), gu)
+ad(F 1), gv) + aod(F(w,u,v), gw)

+asd

(

(v,

F(u,v,w), gz) + asd(F(v,w,u), gy)

+asd(F(w,u,v), gz) + cud(F(z,y, 2), gu)
(

+&4d F Y, z, x) gU)+O{4d(F(Z,.T,y),g’LU)

(
(
(
(
(
(

+asd(gx, gu) + asd(gy, gv) + asd(gz, gw),

5

holds where a;, © = 1,--- ,5 are nonnegative real numbers such that Zai < 1/3.
i=1

Then F' and g have a tripled coincidence point.

Proof. Tt suffices to take a1 = as = a3 = oy, a4 = a5 = ag = Qa, a7 = ag = ag = Q3,
5

aigp = 11 — A1 — Q4 and 13 = A4 = Q15 = Qj in Theorem 3.2.3 with E o; <
i=1

1/3. O
Corollary 3.2.7. Let (X,d) be a K-metric space with a cone P having non-empty
interior (normal or non-normal) and F : X3 — X and g : X — X be map-

pings satisfy E.A. property and g(X) be closed subspace of X. Suppose that for any
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x,y, z,u,v,w € X, following

d(F(z,y,2), Fu,v,w)) = ad(F(z,y,%),9z)+ a1d(F(y, z, ), gy)

F(z,2,y),92) + aed(F(u,v,w), gu)

+aod(F(v,w,u), gv) + aad(F(w,u,v), gw)

+asd(F (u, v, w), gz) + azd(F (v, w,u), gy)

+asd(F(w,u,v), 9z) + cud(F(z,y, 2), gu)
(

(
(
(
(
+ayud(F(y, z,x), gv) + asd(F (2, x,y), gw)
+asd(gx, gu) + asd(gy, gv) + asd(gz, gw),

5

holds where a;, © = 1,--- ;5 are nonnegative real numbers such that Zai < 1/3.
i=1
Then F and g have a tripled coincidence point.

Proof. Tt follows immediately from Corollary 3.2.6. [

Corollary 3.2.8. [67] Let (X,d) be a K-metric space with a cone P having non-
empty interior (normal or non-normal) and F : X* — X and g : X — X be

mappings such that F(X3) C g(X) and for any x,y, z,u,v,w € X, following

d(F(z,y,2), F(u,v,w)) =2 ad(F(z,y,2),92) + oad(F(y, z, ), gy)

F(z,z,y),92) + aod(F(u,v,w), gu)

+aad(F (v, w,u), gv) + asd(F(w,u,v), gw)

+azd(F(u,v,w), gx) + asd(F (v, w,u), gy)

+azd(F(w,u,v),gz) + asd(F(x,y, 2), gu)
(

+O[4d F Y, =z, ZL‘) g'U)+Oz4d(F(Z,ZL',y>,gU))

(
(
(
(
(
+asd(gx, gu) + asd(gy, gv) + asd(gz, gw),

holds where a;, © = 1,--- ;5 are nonnegative real numbers such that Zai < 1/3.
i=1
Then F and g have a tripled coincidence point provided that g(X) is a complete

subspace of X.

Next, we prove the existence of common tripled fixed point theorem for W-

compatible mapping.



69

Theorem 3.2.9. Let F': X3 — X and g : X — X be two mappings which satisfy
all the conditions of Theorem 3.2.3. If F' and g are W-compatible, then F and g
have a unique common tripled fized point. Moreover, common tripled fixed point of

F and g is of the form (u,u,u) for some u € X.

Proof. First, we will show that the tripled point of coincidence is unique. Suppose
that (z,y, 2) and (2%, y*, 2*) € X® with

( (

gr = F(z,y,2) gr* = F(a*,y*, 2*)

gy = F(y,z ) and  § gy* = F(y*, 2%, 2*)

gZ:F(Z,ZE,y>, gZ*:F(Z*vm*ay*)'

\ \

Using contractive condition in Theorem 3.2.3, we obtain

d(gz,g2”) = d(F(z,y,2), F(z",y", 2"))

ad(F(z,y, 2), gx) + asd(F(y, z, ), gy) + asd(F(z,z,y), g2)

IA

*

tasd(F o) + asd(F(y*, 2%, %), gy*)

Y5279
7y*)7gz )—l—md(F(m*,y*,z*),gm)
N

(x”
+agd(F (2", x
+agd(F(y*, 2", x%), gy) + agd(F (2", 27,y"), )

Fawd(F(z,y,2), 92%) + and(F(y, 2, 2), 9y*) + ar2d(F (2, z,y), g2")
+aisd(gz, gz*) + awd(gy, gy”) + arsd(gz, g27)
= (a7 + a0 + a13)d(gz", gz) + (as + ann + awa)d(gy*, gy)

+(CL9 “+ a9 + a15)d(gz*, gz).

Similarly, we have

d(gy,gy") = d(F(y,zx), F(y", 2" z"))

(a7 + a0 + a13)d(gy”, gy) + (as + ayy + a14)d(gz", gz)

PN

+(ag + a12 + a15)d(gx™, gz)

and

d(gz,92") = d(F(z,z,y),F(z",2%,y"))

(a7 + aio + a13)d(gz", gz) + (as + a1 + ar4)d(gz™, go)

PN

+(ag + a1z + ar5)d(gy*, gy).
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Adding above three inequalities, we get

15

d(gz, gx") + d(gy, gy") + d(g2,92") = (D _ a;)[d(gx, gz*) + d(gy, gy") + d(g2, 92")].
=7

15
Since Z a; < 1, we obtain that
i=T

d(gx, gz*) + d(gy, gy*) + d(g9z,92") = O,

which implies that

gr =gz*, gy=gy* and gz =gz (3.2.8)

This show the uniqueness of the tripled point of coincidence of F' and g, that is,

(92, 9y, 92).

From the contractive condition in Theorem 3.2.3, we have

d(gz,gy*) = d(F(z,y,2), F(y", 2", z%))

ald(F<x7 Y, 2)7 qgr
, L

A

+a2d(F(y,z,a:),gy) —l—agd(F(z,ac,y),gz)

*

)
Fasd(F(y", 2%, 27), gy) + asd(F (2", 2%, y7), g27)
+agd(F(x*,y", 2"), gx*) + a7d(F (y*, 2%, x¥), gz)
+agd(F (2", 2", y"), gy) + agd(F(x*,y*, z*), g2)
+aid(F(z,y,2), 9y") + and(F(y, 2, x), g2*) + a12d(F (2, z, y), gz”)
+aizd(gz, gy*) + aad(gy, 92*) + ar5d(gz, gz™)
= (a7 + a1 + a13)d(gy", gx) + (as + an + a14)d(gz", gy)

+(ag + a2 + ai5)d(gz™, g2).
Similarly, we get

d(gy,92") = (ag + a0+ a13)d(92", gy) + (as + a1 + ars)d(gz™, g2)

+(&9 + a12 + a15>d<gy*7 gl’),
and

d(gz,92%) = (a7 + aio + ai3)d(gx™, gz) + (as + a1 + a14)d(gy”, gz)

+(ag + aiz + ay5)d(gz", gy).
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Adding above inequalities, we obtain

d(gz, gy*) + d(gy, 92*) + d(gz, gz*) Zaz (92, 9y") + d(gy, g2") + d(gz, gz*)).

15
It follows from Z a; < 1 that
i=7

gr=gy", gy=gz" and gz=ga" (3.2.9)

From (3.2.8) and (3.2.9), we can conclude that

gr = gy = gz. (3.2.10)

This implies that (gx, gz, gx) is the unique tripled point of coincidence of F' and g.

Now, let u = gz, then we have u = gr = F(z,y,2) = gy = F(y,z,2) = gz =
F(z,z,y). Since F' and g are W-compatible, we have

Fgx, 9y,92) = 9(F(x,y,2)),
which due to (3.2.10) gives that
F(u,u,u) = gu.

Consequently, (u,u,u) is a tripled coincidence point of F' and g, and so (gu, gu, gu)
is a tripled point of coincidence of F' and ¢, and by its uniqueness, we get gu = gx.
Thus, we obtain

u=gr = gu= F(u,u,u).
Hence, (u,u,u) is the unique common tripled fixed point of F' and g. This completes

the proof. O

Corollary 3.2.10. Let F : X3 — X and g : X — X be two mappings which
satisfy all the conditions of Corollary 3.2.4. If F and g are W-compatible, then F
and g have a unique common tripled fized point. Moreover, common tripled fized

point of F' and g is of the form (u,u,u) for some u € X.
Proof. Tt is similar to the proof of Theorem 3.2.9. O]

Corollary 3.2.11. [67] Let F : X3 — X and g : X — X be two mappings which
satisfy all the conditions of Corollary 3.2.5. If F' and g are W -compatible, then F
and g have a unique common tripled fixed point. Moreover, common tripled fixed

point of F' and g 1is of the form (u,u,u) for some u € X.
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Here, we give some illustrative examples which demonstrate the validity of the
hypotheses and degree of utility of our results. These examples can not conclude
the existence of tripled coincidence point and common tripled fixed point by using

main results of Aydi et al. [67].

3.2.2 Examples

Example 3.2.12. Let X = [0,3] and £ = R? with the usual norm. Define the
cone P = {(z,y) € E : z,y > 0} (this cone is normal) and d : X?* — FE by
d(z,y) = (| — y|, o]z — y|), where a > 0 is a constant. It is easy to see that (X, d)
is a K-metric space over a normal solid cone P.

Consider the mappings F : X — X and ¢g: X — X are defined as

w0 (@y2)=(3.493) 3 =3
F(z,y,z) = and gr =
1'2 2 Z2 €T
Since F(X?) = [0, 55) U {55} € 9(X) = [0, 55) U{3}, the main results of Aydi et al.

[67] can not applied in this case.

Next, we show that our results can be used for this case.

e Let us prove that f and g satisfy the (CLRg) property.
Consider the sequences {x,}, {y,} and {z,} in X which is define by

1 d ! 1,2,3
n= -, n — T, 1 n— T = 1,4 cet
. 3n Y 4dn e s 5n "
Since
n—o00 n—oo
lim F(y,, 2n, 2n) = lim g(y,) = g0,
n—00 n—=oo
oo Flan T ) =l a(en) = 90

Thus F' and g satisfy the C' LR, property with these sequences.

e Next, we will show that F' and g are W-compatible.
It easy to see that F(z,y,z) = gz, F(y,z,2) = gy and F(z,z,y) = gz if and

only if x =y = 2 = 0. Since

F(g0, g0, g0) = g(£'(0,0,0)),
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mappings F' and g are W-compatible.

e Finally, we prove that, for z,y, 2z, u,v,w € X,
d(F(I’, Y, Z)v F(u7 v, w)) = ald(F(xa Y, Z)a gZL‘) + a2d(F(y7 <, {L‘), gy)
+agd(F(z,2,9), 92) + asd(F(u,v,w), gu)

+(I7d

(

(

+asd(F (v, w,u), gv
(F(u,v,w)
(F(w,u,v),gz) + aod(F(z,y, z), gu)

)
,0,w), gx) + agd(F (v, w,u), gy)
+agd )
+an1d(F(y, z,x), gv) + a12d(F(z, 2, y), gw)

+ai3d(gx, gu) + a14d(gy, gv) + a15d(gz, gw),

, Qg = a3 = a5 = g = a7 = ag = Ag = ayg = a11 = a2 = 0
15

and a13 = a4 = a5 = % such that Zai < 1.

©OIN

where a1 = a4 =

i=1
For z,y, z,u,v,w € X, we distinguish the following cases.

Case 1:(z,y,2z) # (3,3,3) and (u,v,w) # (1,1, 1). In this case, we have

2 +y? 422 w0+ w?
60 60 ’
P42 @40+

60 60 )

22 — 2 2 _ 2 22 _ 2
(ol Wl et

d(F(x,y,2), F(u,0,w)) = (

IA

60 60 60 '
I B st N et
60 60 60

o—ul ol |z—w
60 60 60

Jr—ul el Je-—w
60 60 60

- Ll gl Lol o)
6 10 10 6 10 7’ 10
Al al )

6 10 7 10

= a3d(gx, gu) + a14d(gy, gv) + a15d(gz, gw)

PN

PN

a’ld(F<x7 Y, Z)v gl‘) + a4d(F(’LL, v, w)7 gu)

tai3d(gx, gu) + aad(gy, gv) + a15d(gz, gw).
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Case 2:(z,y,2) # (3,3,

N[ =

) and (u,v,w) = (3,3, 3). In this case, we have

2+t +22 1
60 20

d(F(x,y,2), Flu,v,w)) = <

= ayd(F(u,v,w), gu)
= wmd(F(z,y,2),97) + ard(F(u,v,w), gu)

+ai3d(gz, gu) + ad(gy, gv) + a15d(gz, gw).

Case 3:(z,y,2) = (3,3,1) and (u,v,w) # (1,1, 1). In this case, we have
1w+ o+ w? 1w+ 0+ w?
d(F F = S .
( (xvya Z)v (u,v,w)) ( 20 60 , (v 20 60 )
1 «
=< =
- (20720)
2.9 9
< 2
9°20" 20

= ald(F(x7yv Z)7g$)
= ad(F(z,y,2),g9x) + asd(F(u, v, w), gu)

+a13d(gx, gu) + a14d(gy, gv) + ar5d(gz, gw).

Case {:(z,y,2) = (3,5, 3) and (u,v,w) = (3,

wli—‘

,3). Clearly,

d(F(J},y,Z),F(U,U,UJ)) = ald(F(x,y,z),gx) —I—agd(F(y,z,x),gy)
+a3d Z, T y) gz) +a4d<F(u7U7w)7gu)

(F

+asd(F (v, w,u), gv) + agd(F(w, u,v), gw)
(F
(F

(
(v, w,u), gv) (

(u,v,w), gz) + asd(F (v, w,u), gy)
(w,u,v),gz) + apd(F(z,y, 2), gu)
+and(F(y, z,x),gv) + a12d(F(z, z,y), gw)

+ai3d(gx, gu) + a14d(gy, gv) + a15d(gz, gw).

Hence, all hypotheses of Theorem 3.2.3 and Theorem 3.2.9 are hold. Clearly (0,0, 0)

is the unique common tripled fixed point of F' and g.

Example 3.2.13. Let X = [0,1] and £ = Cj[0, 1] with the norm || f]| = || f|le +
£ |ls for all f € E. Define the cone P = {f € E : f(t) > 0fort € [0,1]} (this
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cone is not normal) and d : X*> — E by d(z,y) = |z — y|p for a fixed p € P (e.g.,
o(t) = €' for t € [0,1]). Tt is easy to see that (X,d) is a K-metric space over a
non-normal solid cone.

Consider the mappings F : X — X and g : X — X are defined as
Fz,y,2) = and gz =

a:—l—gyO—I—z ; (xaya Z) 7& (17 17 1) ;L 7é 1.

©oI8

Since F(X?) = [0,55) U{3} € 9(X) = [0,5) U {1}, the main results of Aydi et al.
[67] can not applied in this case.

Next, we show that our results can be used for this case.

e Let us prove that f and g satisfy the (CLRg) property.
Consider the sequences {x,},{y,} and {z,} in X which is defined by

1 Lo ! 1,2.3
Tn =75 Yn =5, ald 2, = — ;n=1,2,0...
2n J 3n dn
Since
lim F(xp,Yn,2z,) = lim g(z,) = g0,
n—00 n—00
lim F(y,, 2n, 2n) = lim g(y,) = g0,
n—o00 n—r00
lim F(Zn,xn,yn) = lim g(zn) = 0.
n—00 n—00

Thus F' and g satisfy the CLR, property with these sequences.

e Next, we will show that F' and g are W-compatible.
It obtain that F(z,y,2) = gz, F(y,z,z) = gy and F(z,z,y) = gz if and only

if t =y =2=0. Since
F(g0, 90, g0) = g(F(0,0,0)),

mappings F' and g are W-compatible.
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e Finally, we prove that, for z,y, z, u,v,w € X,

d(F(z,y,2), F(u,v,w)) = ad(F(z,y,2),97) + a2d(F(y, z,7), gy)

+azd(F(z,z,y), g2) + asd(F(u, v, w), gu)
+asd(F (v, w,u), gv) + agd(F (w, u,v), gw)
+ard(F(u,v,w), gr) + asd(F (v, w,u), gy)
+agd(F(w,u,v), gz) + ajod(F(z,y, 2), gu)

+G11d( (%Z IE);QU) +a12d(F(z,x,y),gw)

+a13d(g:c, gu) + a14d(gy, QU) + a15d(gz, gw)a

, A2 = a3 = a5 = Qg = a7 = ag = g = ayp = a11 = a2 = 0
15

and a1z = Q14 = Q15 = % such that Zai < 1.

PN

where a1 = a4 =

=1
For z,y, z,u,v,w € X, we distinguish the following cases.

Case 1:(z,y,2) # (1,1,1) and (u,v,w) # (1,1,1). In this case, we have

d(F(x,y,2), F(u,v,w))

r+y+z utvt+w

90 9 |
1|z —ul 1 |y —o| 1|z —w|
= 10 9 0 9 T 9

= aizd(gz, gu) + ad(gy, gv) + a15d(gz, gw)
ald(F(‘T’ Y, Z)a gl‘) + a’4d(F(u7 v, w)v gu)

PN

+ai3d(gx, gu) + a14d(gy, gv) + ai15d(gz, gw).
Case 2:(x,y,z) # (1,1,1) and (u,v,w) = (1,1,1). In this case, we have

d(F(x,y,2), F(u,v,w)) =

x+y+z_1
90 9|”

(N
|
AS)

PN

()(

)90

= a4d(F(u,v,w) u)
(
(

A

ald(F l’,y,Z) g$) —|—CL4d<F(U,U,U}),gU)

+ai3d(gx, gu) + a14d(gy, gv) + a15d(gz, gw).
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Case 3:(z,y,z) = (1,1,1) and (u,v,w) # (1,1,1). In this case, we have

1
A(F (2, 2), F(u, v,0)) — \ urvdw

9 90 ‘90

IA
| —
AS)

A

D)

)
= ad(F( g)

(

(

ald(F ZE,y,Z) g[[‘) —f-CMd(F(U,U,U)),gU)

8
=
N

~

PN

+aizd(gz, gu) + aiad(gy, gv) + ai5d(gz, gw).
Case 4:(z,y,z) = (1,1,1) and (u,v,w) = (1,1,1). Clearly,

d(F(J},y,Z),F(U,U,U))) j ald(F(x,y,z),gx) —I—agd(F(y,z,x),gy)
+agd(F(z,2,9),92) + asd(F(u,v,w), gu)
, gw)

w,u), gv) + agd(F(w, u,v

(£(
+asd(F (v, ) F( )
+azd(F(u,v,w), g7) + asd(F (v, w, u), gy)
+agd(F(w, u,v), g2) + a1od(F(z,y, 2), gu)
+and(F(y, z,x), gv) + a12d(F (2,7, y), gw)

tai3d(gz, gu) + ad(gy, gv) + a15d(gz, gw).

Therefore, all hypotheses of Theorem 3.2.3 and Theorem 3.2.9 are hold. It is easy
to see that a point (0,0,0) is the unique common tripled fixed point of F' and g.



CHAPTER 4 SYSTEM OF VARIATIONAL
INEQUALITY PROBLEMS

4.1 Systems of Hierarchical Variational Inequality Problems

In this section,

Throughout this section we always assume that the following conditions are satisfied:

(C1) A; : H — H is an a;-inverse-strongly monotone mapping and VI(C, A;) is
the set of solutions to variational inequality problem with A = A;, for all

1=1,2,3;
(C2) K, and K, 5,0 € (0,1),i = 1,2, 3, are the mappings defined by

Kz‘ = PCZ([ — /\A,L>, AE (O,QOQL

(4.1.1)

respectively.

We have the following result.

4.1.1 Existence Result

Theorem 4.1.1. Let C be a bounded closed convex subset of a real Hilbert space H .
Let A; and VI(C, A;) satisfy the condition (C1) and let f; : H — H be contractions
with a contractive constant h; € (0,1), for alli =1,2,3. Then there exists a unique
element (x*,y*,z*) € VI(C, A1) x VI(C, Ay) x VI(C, A3) such that the following

three inequalities are satisfied

(x* = fily*),x —a*) >0, Vo e VI(C, 4),
(y* = foz"),y —y*) >0, VyeVI(C,A), (4.1.2)
(z* = f3(a*),z — 2*) = 0, Vze€VI(C,A;).

Proof. The proof is a consequence of the Banach’s contraction principle but it is

given here for the sake of completeness. By Proposition 2.7.14, Lemma 2.7.18 (3) and
Lemma 2.7.13 (4), VI(C, Ay),VI(C, As) and VI(C, A3) are nonempty closed and
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convex. Therefore the metric projection Py, a,) is well defined for each ¢ = 1,2, 3.

Since f; is a contractions mapping for each i = 1,2, 3 then we have

Pyrcanfio Pvic,as) f2 0 Prvic,as f3

is a contractions. Hence there exists a unique element z* € H such that

" = (Pvrc,anfi © Pricas) fa © Pric,aq f3)r".

Putting z* = Py ay) f3(z*) and y* = Py a,) f2(2*), then 2* € VI(C, A3), y* €
V](C, AQ) and Tt = PVI(C,Al)fl(y*)-
Suppose that there is an element (2,7, 2) € VI(C, A;) x VI(C, Ay) x VI(C, A3)

such that the following three inequalities are satisfied

<§3_f1(g),l'—ii'> 207 VLEEV[(C,A1>,
<,7:’—f3(.’i')72—2> ZO, Vz € V[(C,Ag,)

Then
& = Pyrc,anfi(9),
U= Pyrc.a,f2(2),
2= Pyrc,.as)f3()
Therefore
& = (Pvic,anti © Pvic.as) f2 © Pric,as) f3)®
This implies that £ = z*, § = y* and 2 = 2*. This completes the proof. O

4.1.2 Approximation Result

Theorem 4.1.2. Let C' be a closed convex subset of a real Hilbert space H and
VI(C,A;) #0. Let A, VI(C, A;), K; and K; 5 satisfy the conditions (C1) and (C2),
and let f; : H — H be contractions with a contractive constant h; € (0,1), for all

i=1,2,3. Let {x,}, {yn} and {z,} be three sequences defined by

(

To, Yo, 20 € H,

Tpa1 = (1 — ) K120 + o f1(K2,8Yn),

Ynr1 = (L= o) Ko pyn + o f2( K5 520),

Zni1 = (1 — an) K3 g2 + au f3( K4 gy), n=20,1,2,...,

(4.1.3)
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where {a,} is a sequence in (0,1) satisfying o, — 0 and Y " o, = oco. Then
the sequences {x,},{y.} and {z,} generated be (4.1.3) converge to z*,y* and z*
respectively, where (x*,y*, z*) is the unique element in VI(C,A;) x VI(C,As) X
VI(C, As) verifying (4.1.2).

Proof. (i) First we prove that {z,}, {y,} and {z,} are bounded.

From Lemma 2.7.18, it follow that Kjg is strongly quasi-nonexpansive and
F(K;p) = F(K;) = VI(C,A;) for each i = 1,2,3. Since f; is contraction with
the coefficient h; for each i = 1,2,3 and 2* € F(K3),y* € F(Ksp),2* € F(K3p3),

we have

IA

[ 21 — =7

IN

1= an)|zn — 2™l + anll fi(K2pyn) — [1(y)I] + anll f1(y") — 27|

IN

IN
— —~ —~ —~ —~
—_
|
L

)
)
)llen = 2" + ann|[ Ko pyn — v + anll f1(y") — 27|
)
)

IN

where h = max{hy, hy, h3}. Similarly, we can also prove that

[Yns1 =¥l < (1 = an)llyn — ¥7l| + anhllzn — 27| + aal| f2(27) — ¥
and

[Zn1 = 27| < (1 = an)llzn = 27| + anhl[an — 27| + o[ f3(27) = 7.

This implies that

[zn1 = 2l + l[gnsr =yl + 1201 — 27

< (Q—anl—h) [uxn e z*n}

11(y") — "l + 1o (z") =yl + ([ fs (=) — 27|

+a, (1 —h) T

< max{||xn—w*||+||yn—y*u+||zn—z*||,

1f1(y") — 2"l + [[fo(z") =yl + [ f3(=") — =7 }
1—h '

By induction, we have
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[enir = 21+ lynsr = 97l + 120 — 27|

for all n > 1.

< maX{Hﬂ?o—ﬂf*HJrHyo—y*HJrHZO—Z*Ha

11(y") — ™[l + 1fa(z") — vl + ([ fa(z™) — 27| }
1—nh ’

Hence {z,},{y,} and {z,} are bounded. Consequently, {K; sz}, {K2sy,} and
{K3p2,} are bounded.

(ii) Next we prove that for each n > 1 the following inequality holds.

l2nsr = 271 + lynsr — ¥ [I1* + [lzngr — 2712

< (1 =) (n — 2+ lym — ¥* 11 + |20 — 2*|°)

+200h (|20 — 2|y — 7| (4.1.4)

Hgner = ¥z = 2l + l2ns1 = 2" [l — 27]))
200 ((A1(y") = 2" 2y — ") + ((27) =4 g — ") (41.9)

+{fa(x") = 2", a1 — 27)). (4.1.6)

From (4.1.3) and Lemma 2.7.15, we have

1 — 2|

IN

IA

IN

IN

(1 = ) (K1 520 — 27) + an(f1(Kapyn) — 27)|I”

11 = ) (K gz — @) + 200 (f(K25yn) — 2%, @ng1 — 27)
(1= @)’ Ky pan — 27|1° + 200 { f1(K2,89n) = 1(y")s Tngr — 27)
20, (f1(y") — 27, T — 27)

(1= o) [l — 2"|1* + 200 || f1 (K2,590) — (") l|nsn — 27|
+20n (f1(y*) — 2%, Zpy1 — 77)

(1= o) llen — 2"I° + 200l | K2 590 — ¥ |20 — 27

20, (f1(y") — 27, Ty — 27)

(1 = o)z — 27|1* + 2anh||yn — Y lnss — 27|

+2an<f1(y*> - x*wxn-i-l - ZE*> (417>

Similarly, we can also prove that

[yner =y 1 < (1= )y — 7|7 + 200hll 20 — 2" [[lynsr — 7|

20, (f2(2") = Y*, Y1 — Y°) (4.1.8)



82

and

2o = 217 < (1= an)?llzn — 21 + 200mhlzn — 2" ([ 2041 — 27

+200, (f3(x™) — 2%, Zp1 — 27). (4.1.9)

Adding up the inequality (4.1.7), (4.1.8) and (4.1.9), the inequality (4.1.6) is proved.

(iii) Next we prove that if there exists a subsequence {n;} C {n} such that

0 < liminf {([lznerr — 271 + [Ynerr = 117 + [lzner — 27[1%)
k—oo

—(ln, = 21+ g = 471" + Nz, — 27117},

then
0 > limsup {{h") = 2%, s — ) + (f2(2°) = ¥ Unsr — ¥7)
— 00
F(fo(a) = 2 2ms — 2}
Since the norm || - ||? is convex and lim,, ., o, = 0, By (4.1.3), we have

0 < liminf {(Jen1 = 2"|* + [ness = 17 + lznss = 2"1°)
~(llzn, = @I + [y — ¥ 1" + ll2n, — 2" [1%)}

lim inf { (1~ ) [ K s, — 212 + Lo (Ko i) — 27

IN

(1= a0 )1 ptm, — 0 I + g | o 70) — 0 P
(1= a0 ) [ g2, = 2P+ | s (K pn,) — P
R I ) P )
= liinf {(| K1, = 21 = e = 2 I) + (1Ko st = 712 = llgme = 5°11)

+([Ks,82n, = 27[1° = ll2n, — 2711%) }

IN

lim sup {(IE g, = 217 = llzn, = 21%) + (1K29m0 = 17 = 9 = v711%)
—00
(1 K3520 — 21 = [l2ne — 2711°) }

< 0.
This implies that

S (| Ky g, = 27| = Jlon, —2"l1%) = lm (1K209n, = v"I* = llyn, = v"[1*)
—00 k—o00

= lim (|| Ksp2n, — 2| = [|2n, — 2*|*) = 0.
k—oo
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Since the sequence {[| Ky gan, — 2| + [|zn, — 2"} 5 {18259, = ¥l + [1yn, — v"[I}

and {|| K5 520, — 2*|| + ||2n, — 2*||} are bounded, we have

Jim (| Ky parn, — 27| = llwn, —27()) = lm ([Kopyn, =yl = [[gne —y7l])
—00 k—o0
= lim (K 7, — 2" [z, — =) =0

By Lemma 2.7.18, K, g, K2 3 and K3 g are strongly quasi-nonexpansive. We have

Ky gn, —xn, — 0, KopYn, —Yn, — 0 and Ksgz,, — 2, — 0

k

Consequence, we obtain that
Tnp — Topt1 = 0 Yy — Yne+1 — 0 and 2, — 25,41 — 0

It follows from the boundedness of {z,, } that there exists a subsequence {y, } of

{n,} such that z,, — pand

lim (fi(y*) — 2%, 2y, —2") = limsup(fi(y") — 2", zn, — )
=00 k—oo
= limsup(fi(y*) — 2", Tp, 41 — 2)
k—o0

By Lemma 2.7.18, I — K 4 is demiclosed at zero, and so p € F(K;5) = VI(C, Ay).

Hence from (4.1.2) we have
H (fi(y") =% an, — %) = (fily") =" p—a") < 0.
Therefore
limsup(fi(y*) — 2%, Tn1 — 2%) = Im(fi(y") — 2%, 2, — %) < 0.
k—o0 =00
Similarly, we can also prove that

limsup(f2(2*) — ¥*, Ynps1 — ¥*) <0

k—o00

and

lim sup(fs(z*) — 2%, 2,41 — 2) < 0.

k—o0

Hence, we have the desired inequality.
(iv) Finally we prove that the sequence {x,}, {y,} and {z,} generated be (4.1.3)

converge to z*, y* and z* respectively.
)
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It is clearly that
l2nss = 2 Wlym = y*l| + lasr — 57120 — 271+ Dzmss — 2 llen — 2|

< (lon =12+ llyn = 0" + 120 — 2°[12)

X (£ner = 2" 2+ fywer = 912 + lzs = 2°[2)F (4.1.10)
Substituting (4.1.10) into (4.1.6), we have
lnss = 22 + st — v 12 + l2nsr — 2°)2
< (1= an)(l2n — &2+ llyn = ' 17 + 20 — =*[17)
200 h{ (l2n = 217 + lyn — 9*[12 + 120 — 2°[2)?
X (lzns1 = @2 + st — ¥ 12 + Iznss — =°IP) %)

200 ((f1(y") — 2% T — 27) + (f2(27) = ¥ Yns1 — ¥7)

+(f3(x™) — 2%, Zpp1 — 27)). (4.1.11)
Set
Ap = ||$n - $*||2 + Hyn - y*HQ + ||Zn - Z*Hz’
bn = 2<<f1(y*) - $*,$n+1 - ZE*> + <f2(2*) - y*’yn‘H - y*>

+{f3(2%) = 2%, 2041 — 27)).
Then we have the following statement:
e From (i), {a,} is bounded sequence;
e From (4.1.11), apy < (1 — an)Qan&EM—k anb,,VYn > 1,
e From (iii), whenever {a,, } is a subsequence of {a,} satisfying
h]gr_l)i;)lf(ank_i_l — ap,) >0,
it follows that limsup;_, ., b,, < 0;
By Lemma 2.7.17, we have
Tim (o — [+ g — 57+ 120 — =' ) = 0.
Hence we obtain that
T [l — 27| = i [lg, — 37 = i |12, — =7 = .

This completes the proof. O
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4.1.3 Consequence Results

Using Theorem 4.1.2, we can prove the following results.

Theorem 4.1.3. Let C' be a closed convex subset of a real Hilbert space H and
VI(C,A;) #0. Let A;,VI(C, A;), K; and K; 5 satisfy the conditions (C1) and (C2)
foreachi=1,2,3, and let F: H — H be a pu-Lipschitzian and r-strongly monotone
mapping. Let {x,},{y.} and {z,} be three sequences defined by

(

To, Yo, 20 € H,

Tt = (1 = o) K1 g + o [1(K2,8Yn),

Ynv1 = (L = o) Ko pyn + an fo( K5 520),

Zni1 = (1 — an) K3 g2 + an f3(K4 gay), n=20,1,2,...,

\
where f1 ;= I — pF, fy := I —nF, f3 := I — &F with p,n,§ € (0,%) and {ap,}
is a sequence in (0,1) satisfying o, — 0 and )" - ja, = co. Then the sequences
{z,}, {yn} and {z,} converge to x*,y* and z* respectively, where (z*,y*, z*) is the

unique element in VI(C, Ay) x VI(C, Ay) x VI(C, A3) such that the following three

inequalities are satisfied

(pF(y*) +z* —y*,x —a*) >0, Vo e VI(C,A),

(MF(z*) +y* — 25y —y*) >0, VyeVI(C, A), (4.1.12)

(EF(z*) 4+ 2z —a*,2—2") >0, VzeVI(C,As).
Proof. Tt is easy to see that fi, fs, f3 are contraction mappings and all the condition
in Theorem 4.1.2 are satisfied. By Theorem 4.1.2, we have the sequences {z,}, {y,}
and {z,} converge to (z*,y*, 2*) € VI(C, A;) x VI(C, Ay) x VI(C, As) such that

the following three inequalities are satisfied

(x* — fily"),x —a*) >0, Vo e VI(C,A),
(y* = f2(z),y —y*) >0, VyeVI(C, A), (4.1.13)
(z* — f3(x*),z — 2*) >0, VzeVI(C,A3).

Substituting f; := I —pF, fo := I —nF, f3 := I —&F into (4.1.13), we obtain that the
sequences {z,},{y,} and {z,} converge to (z*,y*, 2*) € VI(C, A;) x VI(C, As) %
VI(C, As) such that the following three inequalities are satisfied

(pF(y*)+a* —y*,x —2*) >0 Ve e VI(C, Ay),

MFE )4y —z2z5y—y) >0 YyeVIC, Ay),

(EF(x*)+ 2" —a*,2—2%) >0 VzeVI(C,As).
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This completes the proof O

In Theorem 4.1.2 and Theorem 4.1.3, if A, = I —T; where T; : H — H is

1

nonexpansive mapping. Then A; is 5 inverse strongly-monotone and VI(C, 4;) =

F(T;), for each i = 1,2,3. We obtain the following corollary.

Corollary 4.1.4. Let C' be a closed convex subset of a real Hilbert space H and
VI(C,A;) # 0. LetT; : H— H be nonexpansive mapping and A; = I-T;, VI(C, A;), K;
and K; g satisfy the conditions (C1) and (C2). Let f;: H — H be contractions with

a contractive constant h; € (0,1), for alli =1,2,3. Let {z,},{y,} and {z,} be three
sequences defined by

4

To, Yo, 20 € H,

Tt = (1 — o) K1 g + o [1(K2,8Yn),

Ynt1 = (1 — an) Kz yn + an f2(K382),

| Zna1 = (1 — ) K5 820 + anf3( K1 pzn), n=0,1,2,...,

where {a,} is a sequence in (0,1) satisfying o, — 0 and Y " o, = oco. Then
the sequences {x,},{y,} and {z,}* converge to x*,y* and z* respectively, where
(x*,y*, z*) is the unique element in F(T1) x F(Ty) x F(T3) such that the following

three inequalities are satisfied

(x* = fily*),x —x*y >0, Voe F(Ty),

(" = ("), y —y") 20, Vye F(T),

(z* — f3(x*), 2 —2*) >0, Vze F(T3).
Corollary 4.1.5. Let C' be a closed convex subset of a real Hilbert space H and
VI(C,A;) £ 0. LetT; : H— H be nonexpansive mapping and A; = I-T;, VI(C, A;), K;
and K; g satisfy the conditions (C1) and (C2) for each i = 1,2,3. Let F : H — H
be a p-Lipschitzian and r-strongly monotone mapping. Let {x,},{y,} and {z,} be

three sequences defined by

(

To, Yo, 20 € H,

Tpa1 = (1 — an) K1 g0 + o f1(K2,Yn),

Ynt1 = (1 — an) Ko gyn + o f2(K3,520),

21 = (1 — an) K3 g2 + o f3 (K4 gy), n=0,1,2,...,

where f1 ;= I — pF, foy := I —nF, f3 := I — &F with p,n,§ € (0,%) and {ap,}

is a sequence in (0,1) satisfying o, — 0 and )" - a, = co. Then the sequences
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{zn}, {yn} and {z,} converge to x*,y* and z* respectively, where (x*,y*, z*) is the
unique element in F(T1) x F(Ty) x F(T3) such that the following three inequalities
are satisfied

(pF(y*) +2* —y*, o —2*) >0, Vo e F(Th),

MF(z*)+y" =2y —y*) >0, Vye F(Ty),

(EF(z*) 4+ 2" —a*,z—2") >0 Vze F(T3).
Corollary 4.1.6. Let C' be a closed convex subset of a real Hilbert space H and
VI(C,A;) #0. Let Ay =1—Pg,, VI(C, A;), K; and K; 5 satisfy the conditions (C1)
and (C2). Let f; - H — H be contractions with a contractive constant h; € (0,1),
foralli=1,2,3. Let {z,},{yn} and {z,} be three sequences defined by

;

To, Yo, 20 € H,

Tna1 = (1= an) Ky gn + an f1(K2,89n),

Ynv1 = (1 = o) Ko pyn + o f2(Ks,820),

| Zne1 = (1 — ) K5 g2, + an f3 (K7 p2n), n=0,1,2,...,

where {a,} is a sequence in (0,1) satisfying o, — 0 and Y " o, = oco. Then
the sequences {x,},{y,} and {z,}* converge to x*,y* and z* respectively, where
(x*,y*, z*) is the unique element in Cy x Cy x Cs such that the following three

inequalities are satisfied

(x* — fily*),x —2*) >0, Yz e C},
<y*_f2(2*)7y_y*> 207 \V/?/EC%
(z* — f3(z*), 2 — 2*) >0, VzeCs.

Corollary 4.1.7. Let C' be a closed convex subset of a real Hilbert space H and
VI(C,A;) #0. Let A, =1— P, VI(C, A;), K; and K, g satisfy the conditions (C1)
and (C2) for each i = 1,2,3. Let F : H — H be a u-Lipschitzian and r-strongly

monotone mapping. Let {x,},{y.} and {z,} be three sequences defined by

;

To, Yo, 20 € H,

Tn1 = (1 — an) K1 g0 + o f1(K2,9n),

Yn+1 = (L — o) Kz pyn + o f2(Ks,520),

Zni1 = (1 — o) K3 g2, + oy, f3(Kq gy), n=20,1,2,...,

where f1 ;= I — pF, foy := I —nF, f3 := I — &F with p,n,§ € (0,%) and {ap,}

is a sequence in (0,1) satisfying o, — 0 and )" - a, = co. Then the sequences
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{zn}, {yn} and {z,} converge to x*,y* and z* respectively, where (x*,y*, z*) is the

unique element in C7 x Cy X C3 such that the following three inequalities are satisfied

(pF(y*) +a* —y*,x —a*) >0, Vx e,
<7]F<Z*)+y*_2*7y_y*> ZO, vyGCQ,
(EF(x*)+2* —a*,2—2) >0 Vz€Cs.

Setting A; = Ay = A3 in Theorem 4.1.2, we obtain the following corollary.

Corollary 4.1.8. Let C' be a closed convex subset of a real Hilbert space H and
VI(C,Ay) # 0. Let Ay, VI(C,Ay), K, and Ky satisfy the conditions (C1) and
(C2), and let f; - H— H be contractions with a contractive constant h; € (0,1), for
alli=1,2,3. Let {z,},{yn} and {z,} be three sequences defined by

(

To, Yo, 20 € H,
Tpi1 = (1 — ) K1 g + an f1 (K1 gYn),
Ynt1 = (1 — an) K1 gyn + an f2( K1 520),
| Zne1 = (1 — ) K1 gzn + anfs( K1 pzn), n=20,1,2,...,

where {a,} is a sequence in (0, 1) satisfying o, — 0 and Y~ oy, = 0o. Then the se-
quences {x,}, {y,} and {z,} converge to x*,y* and z* respectively, where (z*,y*, z*)
is the unique element in VI(C, Ay) x VI(C, Ay) x VI(C, Ay) such that the following

three inequalities are satisfied

(" — fily"),z —a*) >0 Va e VI(C,A),
(y* — fo(2*),x — y*) > 0, Vo e VI(C,A),
(z* — f3(a*),x — 2*) >0, Ve VI(C, A).

Corollary 4.1.9. Let C' be a closed convex subset of a real Hilbert space H and
VI(C,A)) # 0. Let A;,VI(C, A1) and K, g satisfy the conditions (C1) and (C2),
and let F : H — H be a p-Lipschitzian and r-strongly monotone mapping. Let
{z,}, {yn} and {z,} be three sequences defined by

(

To, Yo, 20 € H,

Tpa1 = (1 — an) K1 g0 + o f1(K1,Yn),

Ynt1 = (1 — an) K1 gyn + o f2 (K1 g20),

Zni1 = (1 — an) Ky gz + an f3( K4 gy), n=20,1,2,...,
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where fi == I — pF, fo := I —nF, f3 := 1 — &F with p,n, € € (0,%) and {a,}
is a sequence in (0,1) satisfying o, — 0 and )" oy, = co. Then the sequences
{z,},{yn} and {z,} converge to x*,y* and z* respectively, where (x*,y*, z*) is the
unique element in VI(C,Ay) x VI(C, A1) x VI(C, Ay) such that the following three

inequalities are satisfied

(pF(y*) +a* —y*,x —2*) >0 Vo € VI(C, A,
(MF(z*) +y* =2 x—y*) >0 Vo e VI(C, 4),
(EF(z*) 4+ 2z —a*x—2*) >0 YeeVI(C, A).

Corollary 4.1.10. Let C be a closed convex subset of a real Hilbert space H and
VI(C,Ay) #0. LetT : H— H be nonexpansive mapping and Ay = I-T,VI(C, Ay), K3
and K, g satisfy the conditions (C1) and (C2). Let f; : H — H be contractions with

a contractive constant h; € (0,1), for alli =1,2,3. Let {z,},{yn} and {z,} be three
sequences defined by

;

To, Yo, 20 € H,
Tna1 = (1= an) Ky pan + an f1(K1pyn),
Ynr1 = (1 = o) K1 yn + o f2(K1520),
| 21 = (1 — ) K gz + an f3( K7 pxn), n=20,1,2,...,

where {a, } is a sequence in (0, 1) satisfying o, — 0 and Yy, oy, = 00. Then the se-
quences {x,}, {y,} and {z,} converge to x*,y* and z* respectively, where (z*,y*, z*)
is the unique element in F(T)x F(T)x F(T) such that the following three inequalities

are satisfied

X
*
|

=

<

N,z —x*) >0 VreF(T),
,x—y*) >0, Voe F(T),
— f3(z*),x —2*) >0, Vo e F(T).

S~ S~
N Neg
* *
|
e
—
N

Corollary 4.1.11. Let C be a closed convexr subset of a real Hilbert space H and
VI(C,Ay) #0. LetT : H— H be nonexpansive mapping and Ay = I-T,VI(C, Ay), K;
and K g satisfy the conditions (C1) and (C2). Let F' : H — H be a p-Lipschitzian

and r-strongly monotone mapping. Let {x,},{yn} and {z,} be three sequences de-
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fined by

To, Yo, 20 € H,

Tnp1 = (1 — o) Ky g + an f1 (K1 59n),

Ynv1 = (L= o) K1 gyn + an fo(K1520),

Znt1 = (1 — ay) K1 gzn + o f3 (K7 g2n), n=0,1,2,...,

where f1 ;= I — pF, fo := I —nF, f3 := I — £F with p,n,§ € (0,%) and {ap,}
is a sequence in (0,1) satisfying o, — 0 and Y~ a, = co. Then the sequences
{zn}, {yn} and {z,} converge to x*,y* and z* respectively, where (x*,y*, z*) is the
unique element in F(T) x F(T) x F(T) such that the following three inequalities are
satisfied

(PF(y") + 2" —y" o —2") >0 Vo e F(T),

nF(z*)+y" — 2o —y*) >0 Ve F(T),

(EF(x*)+ 2" —a* 0 —2%) >0 VYee F(T).
Corollary 4.1.12. Let C' be a closed convezr subset of a real Hilbert space H and
VI(C,A)) #0. Let Ay =1—Po,VI(C, A1), Ky and K, 5 satisfy the conditions (C1)
and (C2). Let f; - H — H be contractions with a contractive constant h; € (0,1),
for all i =1,2,3. Let {x,},{yn} and {z,} be three sequences defined by

(

To, Yo, 20 € H,
Tpa1 = (1= o) Ky g + an f1(K1pyn),
Ynt1 = (1 — an) K1 gyn + an fo( K1 p20),
| 21 = (1 — ) Ky gzn + an f3( Ky pxn), n=0,1,2,...,

where {a, } is a sequence in (0, 1) satisfying a,, — 0 and y oy, = 00. Then the se-
quences {x,}, {yn} and {z,} converge to x*,y* and z* respectively, where (z*,y*, 2*)
s the unique element in C' x C' x C' such that the following three inequalities are

satisfied
N x—a*) >0, VreCl,

),z —y*) >0, Voel,
— f3(z*),z—2*) >0, Vzel.
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Corollary 4.1.13. Let C be a closed convexr subset of a real Hilbert space H and
VI(C,Ay) #0. Let Ay = 1—Po,VI(C, A1), K1 and Ky g satisfy the conditions (C1)
and (C2). Let F': H — H be a p-Lipschitzian and r-strongly monotone mapping.
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Let {z,},{yn} and {z,} be three sequences defined by

(

To, Yo, 20 € H,

Tpa1 = (1 — an) K1 g0 + o f1(K1,Yn),

Yni1 = (1 — an) K1 gyn + o f2 (K1 p20),

Zni1 = (1 — an) K1 g2y + an f3 (K4 gay), n=20,1,2,...,

\
where f1 := I — pF, fo := I —nF, f3 := I — £F with p,n,§ € (0,%) and {ay,}
is a sequence in (0,1) satisfying o, — 0 and )" - o, = co. Then the sequences
{z,},{yn} and {z,} converge to x*,y* and z* respectively, where (x*,y*, z*) is the

unique element in C' x C x C' such that the following three inequalities are satisfied

(pF(y*) +2* —y*,x —a*) >0 Vz e C,
MF)+y —z5x—y") >0 Vorel),
(EF(x*)+ 2" —a* 0 —2%) >0 Veel.
Setting Ay = Ay = Az, fi = fo = f3 and xg = yy = z9 in Theorem 4.1.2, we

obtain the following corollary.

Corollary 4.1.14. Let C be a closed convexr subset of a real Hilbert space H and
VI(C,Ay) # 0. Let Ay, VI(C,Ay), K, and K,z satisfy the conditions (C1) and
(C2), and let f: H — H be contractions with a contractive constant h € (0,1). Let

{z,} be the sequences defined by

l’oeH,

Tny1 = (1 — ap) Ky gy, + o f (K1 gxy), n=0,1,2,...,

where {a,} is a sequence in (0,1) satisfying o, — 0 and Y2 o, = 0o. Then the
sequences {x,} converge to z* € VI(C, Ay) such that the following three inequalities
are satisfied

(x* = fi(a*),z —a*) >0, VaxeVI(C, A).

Corollary 4.1.15. Let C' be a closed convexr subset of a real Hilbert space H and
VI(C,A)) # 0. Let Ay, VI(C,Ay),K, and K,z satisfy the conditions (C1) and
(C2), and let F : H — H be a p-Lipschitzian and r-strongly monotone mapping.
Let {x,} be the sequences defined by

To € H,
Tp1 = (1 — o) Ky gy, + o (I — pF) (K gxy), n=0,1,2,...,
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where p € (0, %) and {a,} is a sequence in (0,1) satisfying oy, — 0 and Y7 o, =
o0o. Then the sequences {xz,} converge to x* € VI(C,Ay) such that the following

three inequalities are satisfied
(F(z*),x —2*) >0, VexeVIC, A).

Corollary 4.1.16. Let C be a closed convexr subset of a real Hilbert space H and
VI(C,Ay) #0. LetT : H— H be nonexpansive mapping and Ay = I-T,VI(C, Ay), K3
and K g satisfy the conditions (C1) and (C2). Let f : H — H be contractions with

a contractive constant h € (0,1). Let {z,,} be the sequences defined by

xo € H,
Tpr1 = (1 — ap) K1 gy + an f (K1 gxn), n=0,12,...,
where {a,} is a sequence in (0,1) satisfying o, — 0 and Y2 o, = 0o. Then the
sequences {x,} converge to x* € F(T') such that the following three inequalities are
satisfied
(¥ — fi(z"),x — 2%y >0, Ve F(T).

Corollary 4.1.17. Let C' be a closed convexr subset of a real Hilbert space H and
VI(C,Ay) #0. Let T : H— H be nonexpansive mapping and Ay = I-T, VI(C, Ay), K,
and K g satisfy the conditions (C1) and (C2). Let F : H — H be a u-Lipschitzian

and r-strongly monotone mapping. Let {x,} be the sequences defined by

xo € H,

Tpy1 = (1 — ) Ky gy, + o (L — pF) (K gxy), n=0,1,2,...,
where p € (0, ng) and {a,} is a sequence in (0,1) satisfying oy, — 0 and Y7 o, =
oo. Then the sequences {x,} converge to x* € F(T) such that the following three

inequalities are satisfied
(F(z%),x —2*) >0, VxeF(T).

Corollary 4.1.18. Let C' be a closed conver subset of a real Hilbert space H and
VI(C,Ay) #0. Let Ay = 1—Po,VI(C, A1), Ky and K, g satisfy the conditions (C1)
and (C2). Let f : H — H be contractions with a contractive constant h € (0,1).
Let {x,} be the sequences defined by

Xo € H,

Tni1 = (1 — o) Ky gy, + an f (K1 gxn), n=0,1,2,...,
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where {a,} is a sequence in (0,1) satisfying o, — 0 and Y " o, = oco. Then
the sequences {x,} converge to x* € C' such that the following three inequalities are
satisfied

(" — fi(z*),z — 2"y >0, VzeCl.

Corollary 4.1.19. Let C' be a closed convex subset of a real Hilbert space H and
VI(C, A1) #0. Let Ay = 1—Po,VI(C, A1), K and K s satisfy the conditions (C1)
and (C2). Let F': H — H be a p-Lipschitzian and r-strongly monotone mapping.
Let {x,} be the sequences defined by

xo € H,
Tpy1 = (1 — o) Ky gy + o (I — pF) (K pxy), n=20,1,2 ...,

where p € (0, i—g) and {a,} is a sequence in (0,1) satisfying o, — 0 and Y7 o, =
o0o. Then the sequences {x,} converge to x* € C' such that the following three

inequalities are satisfied

(F(z*),x —2*) >0, Vzxel.

4.2 Systems of Hierarchical Variational Inclusion Problems

Throughout this section, we always assume that the following conditions are

satisfied:

(C1) M; : H — 2% is a multi-valued maximal monotone mapping, A4; : H — H
is an qy-inverse-strongly monotone mapping and §2; is the set of solutions
to variational inclusion problem with A = A;, M = M; and Q; # 0, for all
1=1,2,3;

(C2) K; and K, 5,0 € (0,1),i = 1,2, 3, are the mappings defined by

Ki = JMi,A(I - /\Az)7 A€ (0, 2()éi]7
Ki,ﬁ = (1 - 5)1 +BK17 /8 € (07 1)7

(4.2.1)

respectively.

Next, there are our main results.
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4.2.1 Existence Result

Theorem 4.2.1. Let A;, M;,Q;, K; and K; 5 satisfy the conditions (C1) and (C2),
and let f; : H — H be contractions with a contractive constant h; € (0,1), for all
i =1,2,3. Then there exists a unique element (x*,y*, 2*) € Q1 X Qo x Qg such that

the following three inequalities are satisfied

(* — fily*),x —z*) >0, Vx e Qy,

(" = f2("),y —y") 20, Vy€Q, (4.2.2)

(z* — f3(2*),z — 2") >0, VzeQs.
Proof. The proof is a consequence of the Banach’s contraction principle but it is
given here for the sake of completeness. By Proposition 2.7.9 (4) and Lemma 2.7.10
(1), 241, Q5 and 23 are nonempty closed and convex. Therefore the metric projection
Pq, is well defined for each © = 1,2, 3.

Since f; is a contraction mapping for each ¢ = 1,2, 3, then, we have Py, f; is a

contraction and also have
Pao, fi1 0 Pa, f20 Po, f3

is a contraction. Hence there exists a unique element x* € H such that
x* = (Pa, fi 0 Po, f2 0 Po, f3)z".

Putting z* = Py, f3(z*) and y* = Pq,f2(2%), then z* € Q3, y* € Qy and 2* =

PQ1 fl (y*)
Suppose that there is an element (z,7, 2) € €1 X Q5 x Q3 such that the following

three inequalities are satisfied

<g_f2(2)7y_g>207 V?JGQ%
0

(32— f3(2),2—2) >0, VzeQs.
Then
&= Po, [1(9),
§ = Pa, fo(2),
z = Py, f3(2)
Therefore

& = (Po, fi0 Pa,f0 Po, f3)2

This implies that £ = z*, y = y* and 2 = z*. This completes the proof. O
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4.2.2 Approximation Result

Theorem 4.2.2. Let A;, M;,Q;, K; and K; 5 satisfy the conditions (C1) and (C2),
and let f; : H — H be contractions with a contractive constant h; € (0,1), for all

i=1,2,3. Let {x,},{yn} and {z,} be three sequences defined by

4

To, Yo, 20 € H,

Tt = (1 = o) K1 g + o [1(K2,8Yn),

Ynt1 = (1 — ) Ko gy + an f2( K3 52,),

| Zne1 = (1 — ) K5 20 + an f3( K1 pxn), n=20,1,2,...,

(4.2.3)

where {a,} is a sequence in (0,1) satisfying o, — 0 and Y " o, = oco. Then
the sequences {x,},{y.} and {z,} generated be (4.2.3) converge to z*,y* and z*

respectively, where (x*,y*, 2*) is the unique element in 2y X Qo X Q3 verifying (4.2.2).

Proof. (i) First we prove that sequences {z,}, {y,} and {z,} are bounded.

From Lemma 2.7.10, it follow that K,z is strongly quasi-nonexpansive and
F(K;p) = F(K;) = for each i = 1,2,3. Since f; is contraction with the co-
efficient h; for each i = 1,2,3 and z* € F(K,3),y* € F(Kyp) and 2* € F(K3p), it
follows that

[#n1 — 2™ <

IA

n)llon = 2" + anl[ f1 (Ko pyn) = [i(y)]| + anl[ f1(y") — 27

)
)
T — 2| + anha [ Kz pyn — ¥ || + anll fi(y") — 2]
)
)

—_
|
Q

IA
—_
|
Q
3
B
3
|
8
=
—+
L
3
=
=
3
|
<
_*
+
S
S
==
—~
<
*
|
8
_*

IN
—~ —~ —~ —~ —~
—_
|
L

IN

where h = max{hy, ho, h3}. Similarly, we can also compute that

[y = ¥l < (1= an)llyn — y* [ + anhllzn = 2%|| + [ f2(z7) = y7 ||
and

[2n1 = 27|l < (1 = an)llzn = 2" + amhllan — 27| + anl| f5(27) = 27]].

This implies that



[enir = 21+ lynsr = 97l + 120 — 27|

< (—an(l—h) [uxn — o+l = 5 + 12 — z*u}

ran = W) =L G — )+ A6 - )

1—~h
< max{uxn—x*u+Hyn—y*u+uzn—z*u,

1f1(y") — 2| + [[fa(z") =yl + [ fa(z") — =7 }
1—h '

By induction, we have

[zn1 = 2 + [gnsr =yl + 1201 — 27

< max{||xo—x*||+||yo—y*||+||20—z*||,

1f1(y") — 2 + [[fo(z") — g™l + [ fa(=") — 27| }
1—-nh ’

for all n > 1.

(ii) Next we prove that for each n > 1 the following inequality holds.

l2nsr = 27 + llynsr = ¥ II1* + [lzngn — 2712

< (1 =) (|n — 2+ lgm — ¥* 1 + 20 — 2*|°)
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Hence {z,},{y,} and {z,} are bounded. Consequently, {K; sx,}, {K2sy,} and
{K3532,} are bounded.

F2anh((lenis = 2 |llyn = 47l + llgnsr = 97120 = 27l + 12000 = 27 l2n = 27]))

+2an(<f1(y*) - ‘T*v Tp+1 — I*> + <f2<Z*) - y*ayn—l—l - y*>

+(f3(x*) = 2%, zpp1 — 27)).

(4.2.4)
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From (4.2.3) and Lemma 2.7.15, we have

[Zni1 —2*? = (1 — an) (K120 — 27) 4+ on(f1(Kapyn) — 2%)|1?
< [[(1- O‘N)(Kl,ﬂxn - x*)HQ + 2an<f1(K2ﬁyn) — 2, Ty — 7)
= (1= an)?|Kypzn — 2?4 200 (1 (Koyn) — f1(y"), Tnga — 27)

20, (f1(y") — ¥, xpy1 — %)

< (1= on)?llen = 2" [17 + 200 fu(K2pyn) = Sy W@nss — 27]]
+2an(f1(y") — 2%, Tpgr — 27)

< (1= o) o — 2" + 2007 | Ko gy — 37l |nsn — 27|
+200(f1(y") — 2% Tpgr — 27)

< (1= an)llen — 27 + 200k llyn — v | lzns — 27

20, (fi(y") — 27, Tppr — 27). (4.2.5)
Similarly, we can also prove that

[yner =y 1P < (1= an)?llyn — 717 + 200hll 20 — 2" [[|ynrr — 7|

+20,(f2(2") = Y Y1 — Y7) (4.2.6)
and

lonir =217 < (L= n)lzn — 2P + 2auhllen — 2 [l201 — 2°|

200, (f3(x™) — 2%, Zp1 — 27). (4.2.7)

Adding up the inequality (4.2.5), (4.2.6) and (4.2.7), the inequality (4.2.4) is proved.

(iii) Next, we prove that if there exists a subsequence {n;} C {n} such that

0 < lminf {(Jznr = "I + g1 = 5712 + s = 2°IP)
—(ne = "+ g = 51 + 12, — =)}

then

0 > limsup {(fl(y*) — 2, Ty 1 — )+ (f2(27) = Y Ynr1 — ¥T)

k—o0

+<f3(l'*) - Z*a Zng+1 — Z*>}
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Since the norm || - ||? is convex and lim,, ., o, = 0, By (4.2.3), we have
0 < liminf {(|lzn,1 = 2"[° + lgmer = ¥ I° + Nzness = 2°I1°)

k—

=l = 217 + lyn. = ¥ I* + iz, — 2"11%)}

IN

lining (1~ a0, )[[ Ky, — 0+ 0 i (B ) — 277

+(1 = an )1 Ka,8Yn, — ¥ II° + o, || f2(K3 20,) — 7|

+(1 = an )1 K3 520, — 2°[1* + an, | fs(Kygn,) — 2|12

—(#n, = I + lym, = ¥ I + 20, — 2°11°)}

= liminf {1 K1 pn, — %> = |20, — 2*11%) + (I1K2,89n, — 411> = Ny, — ¥°1°)

+(1Ks,520, = 2°[1° = ll2m, — 2711%) }

IN

lim sup {12, = 2"1* = llzn, — 2°1°) + (1K29m, — ¥ I1* = Nm, — ¥71°)
—00

+(I[ K5 820, = 27[1° = ll2n, — 2711%) }

< 0.
This implies that
dim (12, = | = llam, = 2°7) =l (162 9m, = 471 = llyn. = 7[1%)
= lim (|| K pz, — 2|2 = 20, — %) = 0.

Since the sequence {[| K, gwn, — %[ + [[wn, — 2"}, {[K25yn, = y" I + lyn, — y7[I}

and {||Ks3p2n, — 2*|| + ||2n, — 2*||} are bounded, we have

Jim (1K, = ol = llon, = a*ll) = lim (| Ka,p9m, = o7l = l9n, = 91D
= lim (|| Ky sz, — 2" = |20, = 2'Il) = 0

By Lemma 2.7.10, K g, Ky g and K3 g are strongly quasi-nonexpansive. We have

Kipgxyn, —xn, =0, Kopgln, —Yn, — 0 and Kszpgz,, — 2,, — 0.
Consequence, we obtain that
Tnp = Topt1 —+ 0 Ynp — Ynp+1 — 0 and 2, — 25,41 — 0.
It follows from the boundedness of {z,,} and H is reflexive that there exists a

subsequence {zy, } of {z,,} such that z,, — p and

lim (fi(y") = a%, an,, —2%) = limsup(fi(y") — 2% 2, —27)

l—00 k—o0

= limsup(fi(y*) — =", zp,+1 — 7).
k—ro0
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By Lemma 2.7.10, I — K; g is demiclosed at zero, and so p € F(K;3) = (.

Hence from (4.2.2) we have
i (") — 2,2y, — %) = ([i(y7) — 2.p — 2) < 0.
Therefore

limsup(fi(y*) — 2%, o1 — 2%) = lim (fi(y") — 2", 2, — ") < 0.

k—oo l—o00

Similarly, we can also prove that

lim sup(fa(2*) — y*, Yn,+1 — y*) <0

k—00

and

lim sup(fs(z*) — 2%, 2,41 — 27) < 0.
k—o0

Hence, we have the desired inequality.
(iv) Finally, we prove that the sequence {z,}, {y,} and {z,} generated be (4.2.3)
converge to z*,y* and z* respectively.

It is clearly that
1nsr = 2 Mlym = 3° 1|+ Ngnss = 5 120 = 21+ Iznss — 2 [ll2n — 2|
< (lan = 2P + lgn — 012 + [l20 — =27
% (ner = 2" 2+ e = 0712 + lzns = 2 [2)E. (428)
Substituting (4.2.8) into (4.2.4), we have
Vs = 2P + [gnsr — 0°1% + 201 — 2°1
< (1= an)(ln — &2+ lyn = v 7 + 20 — =*[17)
20t (o0 = 2P + g — v 12 + 120 — 2°]2)?
% (|nes = 212 + g — 512 + [z — 2°]2) 2}

+2an(<f1(y*) - m*axn-i-l - l'*> + <f2<2*) - y*>yn+l - y*>

+(fs(x"*) — 2", zpy1 — 27)). (4.2.9)
Set
Ap = ”xn - x*HQ + ||yn - y*H2 + ||Zn - Z*||27
b = (A0 — 2 Bt — )+ (D) — 0 s — 0)

H(fs(2") = 27 2nn = 27)).

Then, we have the following statement:



100

e From (i), {a,} is bounded sequence;

o From (4.2.9), any1 < (1 — o) ?nGy/ay\/Gni1 + by, V0 > 1;

e From (iii), whenever {a,,} is a subsequence of {a,} satisfying

li}gg}f(ankﬂ — ap,) >0,
it follows that limsup;_, ., bn, < 0;
By Lemma 2.7.17, we have
i (i — a2 + ly — oI + 120 — 2°[) = 0.

Hence, we obtain that

lim ||z, —2*|| = lim ||y, —y*|| = lim ||z, —2*|| = 0.
n— 00 n—00 n—00
This completes the proof. O

4.2.3 Consequence Results
Using Theorem 4.2.2, we can prove the following results.

Theorem 4.2.3. Let A;, M;, S, K; and K, g satisfy the conditions (C1) and (C2),
and let F : H — H be a p-Lipschitzian and r-strongly monotone mapping. Let
{zn}, {yn} and {z,} be three sequences defined by

;

To, Yo, 20 € H,

Tt = (1 = o) K1 g + o [1(K2,8Yn),

Ynv1 = (L = o) Ko pyn + an f2( K5, 520),

Znt1 = (1 — ay) K3 520 + o f3( K5 g2s), n=20,1,2,...,

where f1 := I — pF, foy := I —nF, f3 := I — &F with p,n,§ € (0,%) and {ay,}
is a sequence in (0,1) satisfying o, — 0 and Y~ a, = co. Then the sequences
{zn}, {yn} and {z,} converge to x*,y* and z* respectively, where (x*,y*, z*) is the

unique element in 1 X Qg X Q3 such that the following three inequalities are satisfied
(pF(y*) + 2" —y*,x —2*) >0, Vo e,

(MF(z*)+y* =25y —y*) >0, Vyey, (4.2.10)
(EF(x*) + 2* —a*,2 — 2*) >0, Vz€ Q.
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Proof. 1t is easy to see that fi, fs, f3 are contraction mappings and all the condition
in Theorem 4.2.2 are satisfied. By Theorem 4.2.2; we have the sequences {x,}, {y»}
and {z,} converge to (z*,y*,z*) € O x Qy x Q3 such that the following three

inequalities are satisfied

(x* = fily*),x —x*) >0, Vz e,
(" — f2(z%)y —y*) >0, Vy ey, (4.2.11)
(z* = f3(z*),z = 2*) >0, Vze€Q;.

Substituting f, := I — pF, fo ;=1 —nF, f3 := I — {F into (4.2.11), we obtain that
the sequences {z,}, {y,} and {z,} converge to (z*,y*, z*) € 1 x Qs x Q3 such that

the following three inequalities are satisfied

(pF(y") + " —y*,x —a*) >0, VzeQ,
MF(z*)+y* — 2y —y*) >0, VyeQ,
(EF(x*) +2* —a*,2 — 2°) >0, Vze€ Q.

This completes the proof [
Setting A; = Ay = Aj in Theorem 4.2.2, we obtain the following corollary.

Corollary 4.2.4. Let Ay, My, 0, Ky and K, 5 satisfy the conditions (C1) and (C2),
and let f; : H — H be contractions with a contractive constant h; € (0,1), for all
i=1,2,3. Let {z,,},{yn} and {z,} be three sequences defined by

)
%0, Yo, 20 € H,

Tpt1 = (1 — Oén)KLﬁxn + Oénfl (Kl,ﬁyn)a
Yn+1 = (1 - an)Kl,,Byn + O-/an(Kl,ﬁzn)a
L Zntl = (1 - an)Kl,ﬁzn + anf3(K1,ﬁxn)a n=0,1,2,...,

(4.2.12)

where {a,} is a sequence in (0,1) satisfying a, — 0 and Y .~ o, = oco. Then
the sequences {x,},{y.} and {z,} generated be (4.2.3) converge to x*,y* and z*
respectively, where (x*,y*, z*) is the unique element in ; x Qy x Qy such that the

following three inequalities are satisfied

(x* — fi(y*),r —2*) >0, Voe,
(y* — fo(2"),2 —y*) 20, Vz ey, (4.2.13)
(z* = f3(x*),x — 2*) >0, Vr€ Q.



102

Corollary 4.2.5. Let Ay, M;,Q, Ky and K, g satisfy the conditions (C1) and (C2),
and let F : H — H be a p-Lipschitzian and r-strongly monotone mapping. Let
{zn}, {yn} and {z,} be three sequences defined by

4

To, Yo, 20 € H,

Tni1 = (1 = o) K1 g + a [1(K1,8Yn),

Ynt1 = (1 — an) K1 gyn + an f2( K1 520),

Zni1 = (1 — an) K1 gz + an f3(K4 gay), n=20,1,2,...,

\
where f1 ;= I — pF, fo := I —nF, f3 := I — £F with p,n, & € (0,%) and {a,}
is a sequence in (0,1) satisfying o, — 0 and Y " oy, = co. Then the sequences
{z,},{yn} and {z,} converge to x*,y* and z* respectively, where (x*,y*, z*) is the

unique element in Q1 x 2y X Qy such that the following three inequalities are satisfied

(pF(y*) +a* —y*,x —2*) > 0, Vo€ Q,
(MF(z") +y* — 22 —y*) >0, Yoe, (4.2.14)
(EF(z*) + 2" —a*,0 — 2*) >0, Vre Q.

Setting Ay = Ay = Az, fi = fo = f3 and xg = yy = z9 in Theorem 4.2.2, we

obtain the following corollary.

Corollary 4.2.6. Let Ay, My, , Ky and K, g satisfy the conditions (C1) and (C2),
and let f: H — H be contractions with a contractive constant h € (0,1). Let {z,}

be the sequences defined by

xo € H,
’ (4.2.15)

Tpy1 = (1 — ) Kq gy + o f (K gy, n=0,1,2,...,

where {a,} is a sequence in (0,1) satisfying o, — 0 and Y~ o, = 0o. Then the
sequences {x,} converge to x* € Qy such that the following three inequalities are
satisfied

(" — fi(z"),z —x%) >0, Vz ey,

Corollary 4.2.7. Let Ay, My, 4, Ky and K, g satisfy the conditions (C1) and (C2),
and let F : H — H be a p-Lipschitzian and r-strongly monotone mapping. Let {x,}
be the sequences defined by

Xo € H,
Tpi1 = (1 — an) Ky gy + o (I — pF) (K gxn), n=0,1,2,...,

(4.2.16)
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where p € (0, %) and {a,} is a sequence in (0,1) satisfying oy, — 0 and Y7 o, =
o0o. Then the sequences {x,} converge to x* € Qp such that the following three

inequalities are satisfied

(F(z"),x —a*) >0, VzeQ, (4.2.17)



CHAPTER 5 ITERATION ALGORITHMS FOR FIXED
POINT AND OPTIMIZATION PROBLEMS

5.1 TIterative Algorithms for Solving Hierarchical Fixed Point

Problem of Nonexpansive Mapping

In This section deals with a method for approximating a solution of the fixed
point problem: find # € F(T), where H is a Hilbert space, C' is a closed convex
subset of H, f is a p-contraction from C'into H, 0 < p < 1, A is a strongly positive
linear bounded operator with coeffient ¥ > 0, 0 < v < 7/p, T is a nonexpansive
mapping on C' and Pp(r) denotes the metric projection on the set of fixed point of
T. We prove a strong convergence theorem by using the projection method which
solves the variational inequality ((A —~vf)Z +7(I — S)Z,x — ) > 0 for x € F(T),

where 7 € [0, 00).

Theorem 5.1.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let f : C — H be a p-contraction with p € (0,1). Let S,T : C — C be two
nonexpansive mappings with F(T) # 0. Let A be a strongly positive linear bounded
operator on H with coefficient ¥ > 0. {a,,} and {B,} are two sequences in (0,1) and
0 <~ <#¥/p. Starting with an arbitrary initial guess xy € C and {x,} is a sequence

generated by

Yn = PBnSn+ (1= Pn)on,
Tor1 = Polawyf(z,) + U —a,A)Ty,]|, Yn > 1. (5.1.1)
Suppose that the following conditions are satisfied:
(C1) limy, oo 0, =0 and 7 | @, = 00;
(C2) lim,, o g—z =7=0;
(C3) lim, o0 %L’H' =0 and lim,,_,~ W"_ﬁ%”' =0 or

(C4) 2205 lan — ana| <00 and 3207 |By — Bpa| < oo.
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Then the sequence {x,} converges strongly to a point & € H, which is the unique

solution of the variational inequality:
e F(T), (A-~f),z—2)>0, Vee F(T). (5.1.2)
Equivalently, we have Ppiry(I — A+~f)T = 2.

Proof. We first show the uniqueness of a solution of the variational inequality
(5.1.2), which is indeed a consequence of the strong monotonicity of A—~f. Suppose
z € F(T) and £ € F(T) both are solutions to 5.1.2, then ((A —~f)z,z —2) <0
and ((A—~f)z,z —z) <0. It follows that

(A=7)7,2-0) +(A=7f)3,2—7) = (A-~f)z,7—7)
—((A=n~f)z,z—1T)
= (A=) = (A=7f)T,T - I)
0.

IA

The strongly monotonicity of A — ~f (Lemma 2.7.11) implies that z = & and the
uniqueness is proved.

Next, we prove the sequence {x,} is bounded. Since a,, — 0 and lim, g—z =0
by condition (C'1) and (C2), respectively , we can assume, without loss of generality,

that oy, < ||A||™! and 8, < a, for all n > 1. Take u € F(T') and from 5.1.1, we have

[en —ull = [Pelonyf(zn) + (I — anA)Tyn] — Polul|
|’an7f<xn) + (I - anA)Tyn - UH

< any[f(@n) = fu)] + anllyf(w) = Aull + [(T = anA)(Tyn — u)l.

IA

Since || — a,Al| <1 — a,7 and by Lemma 2.7.2, we note that

[enia —ull < anyl[f(2n) = F(W)l + anllyf(u) = Aull + (1 = an¥)[[Tyn — ull
< anypllan — ull + a7 f(u) = Aull + (1 = @) Tyn — Tul]
< apypllen — ull + anllvf (u) — Aull + (1 = any)|lyn — ul
< anypllen —ull + anllvf(u) — Auf

(1= an9) | BallSza = Sull + BallSu — ull + (1 = Bo)l|n — ull



106

IN

o ypllEn — ]| + |y f () — Aul|
(1= an) | Ballzn = ull + BullSu = ull + (1= Bo)l|en — ul
= (1= a3 = 90) ) llzn — ull + el () — Au|

+(1 - O‘n'_)/)ﬁnusu - u”

IN

(1= (3 = 70) ) llan = ull + anllyf () = Aull + B} Su — u]
(1= an(3 = 70) )l = ull + w7 (u) = Aull + al|Su — u]
(1= a5 = 90) )z = ull + an I (w) = A + | Su = ul|

(7 =)

<1—0¢n

+04n(:y - Vp)

I IA

vp )H:vn — ul|
[7f (1) = Aul| + [|Su — ul|
(7 —p) '

By induction, we can obtain

_A Su—
|21 — ul] < Max{”xo — uf], A Su) }

which implies that the sequence {z,} is bounded and so are the sequence {f(z,)},
{Sxz,}, and {ATy,}.
Set  wy, = a,vf(z,) + (I — a,A)Ty,, n>1. We get

||xn+1 - xn” - ||PC[wn+1] - Pc[wn]H

< s — wall (5.13)

It follows that

[Zns1 — znl| < [y f(zn) + (I — and)Tyy)
—(an-17f(@n-1) + (I = an-14)Tyn1)|
< Y [lf(@n) = f(@a-) | + lom — |17 f (@n-1) — ATy |
+(1 = anN[Tyn = Tyl
< onypllwn — Tl + fom — anal[[7f (@n-1) — ATYn1 ||

(1 = ) |yn = Y- (5.1.4)

By (5.1.3) and (5.1.4), we get

[0t — 2l < anypllwn — wnall + |om — anall[vf (@n-1) — ATYn-||

+(1 _an:y)Hyn_yn—IH (515)
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From (5.1.1), we obtain

[yn = yn1ll = [[(BuSzn + (1 = Ba)2a) = (Ba-15%n-1 + (1 = fo1)Tn-1)||
= [|Bn(Szn — Stn_1) + (Bn — Br1)(STp-1 — Tp_1)

+(1 = Ba)(@n — @n-1)|

[2n = Tn—1ll + |8n = Bl STn-1 — Tl

S ||$n - $n—1|| + |5n - ﬁn—1|Ma (516)

IN

where M is a constant such that

sup {9 (@n1) = ATy || + S0t — zail|} < M.

neN

Substituting (5.1.6) into (5.1.4) to obtain

|01 = 2l < owypllen — znll + lan — an-all|7f (@n-1) — ATy ||

+(1 = )|l = T | + 18, = Buca|M]

IN

nYpl|lTn = Tl + [ — ana|[M

+(1 = ) [l =zt | + 18, = Buca|M]

= (1= an@=9) lon = 20

+M [Jan = | + By = B (5.1.7)

IN

(1= 0@ =9)) v = s
M [l = aa] + 18 = .

At the same time , we can write (5.1.7) as

[ni =l < (1= an(y =79) lwn = wasl
Ay — Qp— n ~— Mn—
[‘ 1 i B — B 1’]

Qn Qn

+May,,

< (1= a3 =19) lwn = woa
|an - an—1| |Bn - ﬁn—1|
—|—Man[ TRk ] (5.1.8)

From (5.1.7), (C4) and Lemma 2.7.2 or (from (5.1.8), (C3) and Lemma 2.7.2), we

can deduce that ||z,41 — z,|| — 0, respectively.
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From (5.1.1), we have
|20 = Tzn| < 20 — Zoga |l + [[Tng1 — Trw||

= @ = 2ol + [[Pelwn] = Po[Tw,]|

< lwn = 2ol + [Jwn — T |

= lzn = zpall + llomyf(2n) + (I = anA)Tyn — T |

< Nl = wnall + anll7f (2n) = ATza || + (1 = an¥)|[Tyn — Tn||
< len = @ngall + anllvf (2n) — AT2n || + (1 = any) lyn — 2al

= |lon = zagall + ol f (2n) = ATza || + (1 = an¥) Bul| Sy — 20|

Notice that o, — 0, 5, — 0, and ||x,41 — x,|| — 0, so we obtain
|xn, — Txy,|| — 0. (5.1.9)

Next, we prove

limsup(yf(z) — Az, z, — z) <O0. (5.1.10)

n—o0

where z = Ppp)(I — A+ 7 f)z. Since the sequence {z,} is bounded we can take a

subsequence {x,, } of {x,} such that

limsup(vf(z) — Az, x, —2) = lim (yf(z) — Az,x,, — 2)

n— 00 k—o0

and x,, — Z. From (5.1.8) and by Lemma 2.7.1, it follows that & € F(T"). Hence,
by Lemma 2.7.13 that
lin sup(r/(2) = Az 0 —2) = Jim (1(2) — Az, — )
= (1f(2) = Az 7 - 2)
= (I-A+7f)z—2,T—2)
0

IN

Now, by Lemma 2.7.13, we observe that

(Pclwn] — wn, Polw,] — 2) <0,

and so
[2ns1 =217 = (Polwa] — 2, Polw,] — 2)
= (Pc[w,] — wy, Polw,] — 2) + (w z, Polwn] — 2)
< A(w, — z, Polw,] — 2)
= <05n7f(xn) + (I = anA)TYy — 2,Tp41 — Z>
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< a1l f (@) = F st = 2l + an(yf(2) = Az, 204 - 2)
+(1 = )Ty = 2|01 — 2|

< anyplan = #llllenss = 2l + an(vf(2) = Az w0 = 2)
+(1 = @) lgn = 2l 01 — 2]

= anypllen = 2y = 2l + an(vf(2) = Az, 2up - 2)
(1= @) 1BuSn + (1= Bu)n — 2| nss — |

< anyplan = 2llllenss = 2l + an(vf(2) = Az wui - 2)
+(1 = auy) | Bl Sz = Sz + BullSz = 2|
(1= B)llan = 2] Iznss - I

< anypllan = 2llllenss = 2l + an(vf(2) = Az wup - 2)
+(1 = an) | Ballza = 2ll + Bull Sz — 2]
+(1 = Ba)llzn = 2] znss = I

= (1- a3 =79)llzw = lllzass — =
+an(1f(2) = Az, Zni1 = 2)
+(1 = @u7)Bu1S2 = 2l lansr — 2|

R T

tan(vf(2) — Az, 00 — 2)

(L= ) BullSz — zlll#ns — 2]

Hence, it follows that

[

(Vf(2) = Az w1 = 2)

+ -
L+ an(y —p)
2(1 - anﬁ/)ﬁn
L+ (¥ —vp)

200, (7 — vp) 1 CAs .
1+an(7—7p)] [an(ﬁ—w)mc@ A2 Tor =)

152 = 2|[l|#n 41 — =]l

n 1- (o7%
B VT A
an(y —vp)

+

20 (7 — 7p)
1— — lzn — 2|
L+ an(y —7p)
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We observe that

. 1 Bn 1-— an_

limsup | ————(vf(z) — Az, @1 — 2) + MHSZ = 2||[|zn41 = 2[l| < 0.
oo | (Y —p) an(Y = 7p)

Thus, by Lemma 2.7.6, x,, — z as n — 0o0. This is completes. O

Under different conditions on data we obtain the following result.

Theorem 5.1.2. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let f : C — H be a p-contraction (possibly nonself) with p € (0,1). Let
S, T : C — C be two nonexpansive mappings with F(T) # (. Let A be a strongly
positive linear bounded operator on a Hilbert space H with coefficient ¥ > 0 and
0<~vy<7/p. {an} and {B,} are two sequences in (0,1). Starting with an arbitrary

initial guess xo € C' nd {x,} is a sequence generated by

Tp+1 = PC[an’Yf(xn) + (I - anA)Tyn]7 vn Z 1.
Suppose that the following conditions are satisfied:
(C1) limy, oo 0y =0 and > 07 | a, = 00;

(C2) lim, e g—z =71 € (0,00),

(C5) Tty (200t tBa=Bust] _ .

nfBn

L|L _ 1
an ! Bn Bni1

< K.

(C6) there exists a constant K > 0 such that

Then the sequence {x,} converges strongly to a point & € H, which is the unique

solution of the variational inequality:
1
ze (T), (-(A—=~flz+I—-S)T,z—x)>0, VYee F(T). (5.1.11)
T

Proof. First of all, we show that (5.1.11) has the unique solution. Indeed, let z

and T be two solutions. Then
(A=qf)i, @ —z) <7((I — 8)i, & — ). (5.1.12)
Analogously, we have

(A=~f)z,z—2) <7((I— Sz, — I). (5.1.13)
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Adding (5.1.12) and (5.1.13), by Lemma 2.7.11, we obtain

IN

(A=)t —(A—~f)z,& —T)
—7m{((I -8 —(I—-95)z,T—x)

(¥ — o)z — z|?

IA
~

IA

0,

and so & = z. From (C2), we can assume, without loss of generality, that 3, <

(T + 1)ay, for all n > 1. By a similar argument in Theorem 5.1.1, we have

s —ull < anvpllen — ull + anllvf(w) — Au|
(1= )] e = ull + BallSu = ull + (1 = Bl — vl
= (1= au(3 =) llzw = ull + aullf () — Au
+(1 = 0 7)Bal|Su — v
(1= (3 = 70) ) llan = ull + anllyf () = Aull + B | Su — u]
(1= an(® =99 ) lza = ull + anllyf () — Au
+(1+1)
(1= an(¥ =70 ) lea = ull + an|I1f(w) — Au
)
§

IN

IN

o |[Su — ul|

+(r+ 1D)1Su —u |

= (1—an

+Oén(’7 - ’Yp)

= 9)) Il = ul
I/ () = Aull + (7 + D|Su — u]
(Y = p) '

By induction, we obtain

Hxn—UH§7mw{Hx

1
= [nvf(u) ~ Aull + (4 1)Su - uu] }

which implies that the sequence {z,} is bounded. Since (C5) implies (C4) then,
from Theorem 5.1.1, we can deduce ||z,+1 — || — 0.

From (5.1.1), we note that

Tp+1 = PC[wn]_wn+wn+yn_yn

- PC[wn] — Wy + Oén’)/f(xn> + (Tyn - yn) + (yn - anATyn)



Hence, it follows that

Tn = Tpsr = (wn — Polwn]) + on(Azn — 7 f (2n) + (yn — Tyn)
+(z0 — Yn) + an(ATy, — Azy,)
= (wn — Pelwn]) + an(A =y f)on + I = Ty
+Bn (I — S)xy) + 0y A(Tyn — )
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and so
Tp — Tpp1 1 _
o 1
" (A— wt———(I—Ty,
+(1—an)6n( vf)z +(1—an)ﬁn( )y
1 Qay,
Set v, := é”:oz’sgi Then, we have
Un = m(wn — Fe[wn])
Q 1
— (A -— nt———UI-T)y,
1 o,
From (5.1.7) in Theorem5.1.1 and (C6), we obtain
Hanrl - xn” _ ||xn - xn71|| ‘Oén - Oén71| |ﬁn - ﬁn71|
il ) e e A

= (1man ) mmtl( g) Lo 2l

B

6n—1

_(1 o Oén(i’ _f)/p)> ”xn _xn—IH + M|:|an - an—1| + |Bn

/Bn—l

_ |Zn — 2y
= (1 —an(7 — w)) T
n—1
1 1

+<1 — (7 — w)) e = 2naall 5 = 5]

+M[|O‘n — Qi i | Br — ﬂn—1|i|

B

Bn Bn
- |en — Zpea| 1 1
< <1 —an(y — 7P)>T + [lzn — ffn—1||‘—n T3
|an - an—l' |ﬁn - 677,—1‘
e

e
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Tpn — Tp—
< (1 —ozn("y—w)) Iz = 2nca 5 l + anK||zn — zn ||
n—1
’Oén - O‘nfll |5n - ﬁnfl‘
+M[ + ]
B B
Wy — Wp—
< (1—%(7—71))) “ 5 l + o K|z — 2|
n—1
|an - O‘n—l’ |6n - 6n—1|
+M[ + ]
B Bn

This together with Lemma 2.7.6 and (C2) imply that

fig Fe25ml = gy el =y el
From (5.1.14), for z € F(T), we have
(Vs m — ) = mwn ~ Pofwn), Pofwn-] - 2)
*ufyTnnwn“A — )T, Tn = 2)
+m<u Ty = 2+ g (U= S =)
+<1f‘m<m@yn — ), T — 2)
- e Pelunl Pefu] - 2)
+m<wn — Pefwn), Pe[wn_1] — Polw])
e (A ) = (A= )20 = 2)
+<1_C“T”n)ﬁn<@4 — )z, = 2)
+ _1%> (I = S)tn — (I — )z, 20 — 2)
a _1%) (I =5)z,2n — 2)
ey (0 = T =3
+(1_‘)‘m<<A<Tyn — 3,), 2 — 2). (5.1.15)

By Lemma 2.7.13 and Lemma 2.7.11, we obtain

o
(1 - O‘n)/ﬁn

G 0000 et (A= )z — 2

(U, Ty — 2) > (wn, — Polwy], Polwn—1] — Polw,])

_|_
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1 1
oy U= Sz =2+ (U = Ty, o = 2)
+(1féT"nw<(A(Tyn ), T — 2).
Now, we observe that
— 2|2 wvm—z—L —S)z,x, — 2
T L
1 1
—W«A =)z @ —2) = m((] — T, n — 2)
= (AT = )., = 2
e = Pelun], Polun ] = Polu)
w UV, Ty — 2 P - 2, Tp — 2
G =) T T G ey TSR
1 1
_W«A —7f)z a0 — 2) — m((] = T)yn, Tn — 2)
I S N /1 TS
(’_Y—’Yp)<<A(Tyn n)a n >+ (,—Y_,Ym H n PC[ n]H

From (C1) and (C2), we have 3, — 0. Hence, from 5.1.1, we deduce ||y, — x| — 0

and ||z,+1 — Ty, || — 0. Therefore
19n = Tyull < lyn — 2all + 20 = Tpga | + lTps1 — Tyull = 0.

Since v, — 0, (I = T)y, — 0, A(Ty),, — z,,) — 0 and % — 0, every weak
cluster point of {x,} is also a strong cluster point. Note that the sequence {x,} is
bounded, thus there exist a subsequence {z,, } converging to a point £ € H. For all

z € F(T), it follows from (5.1.15) that

<(A - /Yf)xnka Lpy, — Z> = (1 - ank)ﬂnk <Unk7xnk - Z> - ! <(] - T)ynmxnk - Z>
Qe Qp,
Bnk
_Oé <<[ - S)xnk7xnk - Z) - <A(Tynk - :Unk)’xnk - Z)>
ng
1
- <wnk - Pc[wnk]> PC[wnkq] - Z)
n
(1 —ap,)Bn 1
< 22 o, Ty, — 2) — — (L = T)Yny, Ty, — 2)
Oénk k k ank k k
o (= )1y 70, — )~ (AT, ~ 30,70, — )

1

N <wnk - Pc[wnk]7 Pc[wnk—l] - Pc[wnk]>
_<A<Tyn/c - xnk)7$nk - Z)>

1
__<wnk - Pc[wnk]7 Pc[wnk:—l] - Z)
ng



115

1—Oén 5n 1
(a#<vnk>$nk - Z> - _<(I - T)ynk’xnk a Z>

k O,

<

k
[y, = wn,_, |

o7

[wn,, = Pelwn |-
k

Letting £ — 0o, we obtain
(A=~f)i, & —2) < —7((I = S)i,% — 2), Vz€ F(T).

By Lemma 2.2.13, (5.1.11) has the unique solution, it follows that w,(x,) = {Z}.

Therefore, x,, — T as n — oo. This is completes the proof. O

From Theorem 5.1.2, we can dedude the following interesting corollary.

Corollary 5.1.3. [8] Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let f : C — H be a p-contraction (possibly nonself) with p € (0,1). Let
S, T : C — C be two nonexpansive mappings with F(T) # 0. {a,} and {5,} are
two sequences in (0,1) Starting with an arbitrary initial guess o € C' and {x,} is a

sequence generated by

Yn = anxn + (1 - ﬂn)xna

Tn+1 = PC[anf<xn) + (1 - an)Tyn]a vn > 1.
Suppose that the following conditions are satisfied:
(C1) limy, oo 0, =0 and > 7 | @, = 00;

(C2) lim, s fj—z =71 € (0,00);

(05) 11mn—><x> |on—an—1|+|Bn—Pn-1| — 0’,

nfn

<K.

(C6) there exists a constant K > 0 such that ikﬁ% — 61‘1

Then the sequence {x,} converges strongly to a point T € H, which is the unique

solution of the variational inequality:

i€ F(T), é(z i+ (I—-S)ia—F) >0, Vee F(T).  (5.1.16)
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Proof. As a matter of fact, if we take A = [ and v = 1 in Theorem 5.1.2. This

complete the proof. O

Corollary 5.1.4. [8] Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let S,T : C — C be two nonexpansive mappings with F(T) # 0. {a,}
and {B,} are two sequences in (0,1). Starting with an arbitrary initial guess o € C

and suppose {x,} is a sequence generated by

Yn = anxn + (1 - ﬁn)mm

Tpr1 = Pol(1—ay)Ty,|, Vn>1. (5.1.17)
Suppose that the following conditions are satisfied:
(C1) limy, oo 0, =0 and > 7 | @, = 00;

(C2) limyyoe 22 =1;

(C5) limy, o L=t =bnoa] _ ().

nfn

< K.

(C6) there exists a constant K > 0 such that $|Bin — ,31‘1

Then the sequence {x,} converges strongly to a point T € H, which is the unique
solution of the variational inequality:

e F(T), ((I- g

)T, x—2) >0, Vre F(T). (5.1.18)
Proof. As a matter of fact, if we take A =1, f =0 and v = 1 in Theorem 5.1.2 .

This is completes the proof. O

Remark 5.1.5. Prototypes for the iterative parameters are, for example, a,, = n=?

and 3, = n™% (with §,w > 0). Since |a,, — a,_1| ® n~? and |8, — Bn_1| = n7¥, it
is not difficult to prove that (C5) is satisfied for 0 < 6, w < land (C6) is satisfied if
0+ w<1.

Remark 5.1.6. Our results improve and extend the results of Yao et al. [8] by we

take A =T and v =1 in Theorems 5.1.1 and 5.1.2.
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Example 5.1.7. Let H =R, C' = [_%ul;]’ T=1I1S=-I,A=1, f(x)=2% Po =
1, Bn:\/iﬁ, an:\/iﬁforeveryneN,wehaveTzlandchoose"y:%, p:%and

v = 1. Then {xz,} is the sequence

z? 1 2 .
Tpt1 = %’F(l )(1 \/ﬁ) n

and x, - T = 0 as n — 0o, where T = 0 is the unique solution of the variational

(5.1.19)

inequality
e (M) = -2 Y im0, veerm=1-11 (5120
47 4 ) 9 — ) 47 4 * b
5.2 TIteration Algorithm for Solving Hierarchical Fixed Point
Problem of Strictly Pseudo-Contractive Mapping

In this section, we introduce a new iterative scheme that converges strongly to a
common fixed point of a countable family of strictly pseudo-contractive mappings in
a real Hilbert space which is also a solution of variational inequality problem related
to quadratic minimization problems.

Let us consider the net iterative scheme as follows:

Yn = PC[BnSCCn + (1 - /Bn)xn]a

(5.2.1)
Tni1 = Polanf(zn) + D (i1 — ag)Viyn], Vn>1,
i=1

where V; = k;I + (1 — k;)T;, f : C — H is a p-contraction mapping, S : C — H
is a nonexpansive mapping, {7;}3°, : C' — C is a countable family of k;-strict
pseudo-contraction mappings and Z:ﬁlF(T@) # 0. Set ag = 1, {a,} C (0,1) is a
strictly decreasing sequence and {3,} C (0,1). As we will see the convergence of
the scheme depends on the choice of the parameters {a,,} and {3,}. We list some

possible hypotheses on them:
(H1) there exists v > 0 such that 5, < yay;

(H2) lim B, /0, = 7 € [0, 00);

n—oo

(H3) lima, =0 and > a, = o0;
n=1

(H4) > |an — ap-1| < o0

n=1
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(H5) 3= (8, = B, < o
(HG) Tim o, — vy /e, = 0
(H7) T |8, — Boal /B = 0
(HS) Tt [Ja — ctpt] + |8 — Bucsl] /B = 0

n—oo

< K.

(H9) there exists a constant K > 0 such that aLlﬁi — ﬂl_
n n nil

Proposition 5.2.1. Assume that (H1) holds. Then {x,} and {y,} are bounded.

Proof. Let z € ﬁlF(m = ir%lF(vi)

|Tns1 — 2| = ||Pelonf(x,) + Z(Oéifl — ;) Viyn) — Pol?]
=1
S anf(xn) + Z(az 1 az)vyn
=1
= l'n _Z +Z az 1= Vyn )
< onllf(@n) = fR) + anll f(2) — 2] + Z(ai—l — a;)||Viyn — 2|
< ompllan — 2l + onl f(2) — 2]l +Z i1 — )|y — 2|
< onpllen — 2l + onl| f(2) — 2
+ > (@ie1 — @) [|BaST + (1= Bz — 2|
< anpllan — 2l + onl f(z) — 2|
+3 (i1 — @) (Bull Sz — S2|| + BallSz — 2|
=1
+(1 = Bu)llzn — 2])
<

cnplltn — 2l + anllf(2) — 2]
+3 (0 — ) Bullr — 21 + BullSz — 2|
(L= ) — =)

— auplln 2l + () 3|

+ D (i1 = a)(|en — 2] + Ball Sz — 2]))
i=1
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= anpllrn =zl + anl f(2) = 2] + (1 = an)([[2n — 2] + Bl Sz — 2]])
= (1= an(l=p))llzn = 2] + anllf(2) = 2l + (1 = @) Bl Sz — 2|
(1= an(l = p))llzn = 2| + anl| f(2) = 2l + Ball Sz — z]|

< (=@ =p)llen = 2] + anlllf(2) = 2l + 7115z = 2]]]. (5.2.2)

IN

So, by induction, one can obtain that

1
o — 2]l < max{uxo — all () — 2l + 52 - zu}. (5.23)
Hence {z,} is bounded. Of course {y,} is bounded too. O

Proposition 5.2.2. Suppose that (H1) and (H3) hold. Also, assume that either
(H4) and (H5) hold, or (H6) and (H7) hold. Then

(1) {x,} is asymptotically reqular, that is,

h_glo |Zns1 — x| =0, (5.2.4)

(2) the weak cluster points set wy,(x,) C CiF(TZ)
Proof. Set u, = a,f(xz,) + > (i1 — @;)Viy,. From (5.2.1) and since P¢ is a
i=1
nonexpansive mapping, we have

Hxn+1 - xn” = HPC[un] - PC[un—l]“

<y — up—a|| (5.2.5)
an(f(rn) = f(@n-1)) + (n — an_1) f(Tn-1)

+ Z(ai—l - az)(‘/;yn - V;yn—l) + (an—l - an)vnyn—l
i=1

IA

nll f(@n) = F@n) | + D> (st — )|y — Yo

=1

| = cna|(Lf ()| + [Vatnal)

IN

npl|Tn — Tpa|l + (1 = an) |Yn — Yn-1l|
+lan = a1 |(|f (@n-0) | + [[Vagn-1l])- (5.2.6)

By definition of y, one obtain that

[Yn = ynall = NPe[BuSzn + (1 = Bn)tn] = PolBn-1S2n1+ (1 = Bu1)zn ]|

S ||(ﬁnsxn + (1 - Bn)xn) - (Bn—lsxn—l + (]- - ﬁn—l)xn—l)”
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= H/Bn(sxn - S$n—1) + (ﬁn - 6n—1)5$n—1
+(1 - Bn—1>(xn - xn—l) + (677,—1 - 6n)xn—1||

< len = znall + 180 = Baal(1Sznal + [lnl)- (5.2.7)
So, substituting (5.2.7) in (5.2.6), we obtain

21 —all < amplln = zpall + (1= an){llen — 20l
B = B (1520l + lzn-])]

Han = an (1 f(Zn-2)]| + [[Vagnl))

IN

(1= (1 = p)an)|[zn = zn]]
+1Bn = Bl (152n-all + lzn-l])

How = aw sl Dl + Wl (528)
By Proposition 5.2.1, we say
= max {sup 1511+ il supl ) + Vi

So, we have

||$n+1 - an < (1-(1- p)an)”xn - xn—IH

+ M — nt| + |Bn — Bl (5.2.9)

So, if (H4) and (H5) hold, we obtain the asymptotic regularity by Lemma 2.7.6, if
instead, (H6) and (H7) hold, from (H1), we can write

[Zn1 —znll < (1= (1= play)||vy — 201 +
|05n - C]571—1| |ﬁn - Bn—1|:|

Mo, +
an an

(1= (1 = p)an)||zn — 2ol +
‘Oén - Ofnfl| + ,->/|/8n - Bn1|‘| ‘

IN

Ma, (5.2.10)

oy, Bn

By Lemma 2.7.6, we obtain the asymptotic regularity.

In order to prove (2), since Vjx,, € C for each i > 1 and Y (1 —ay)+a, =1,
n=1

we have
n

> (i — a)Vizy +anp € C, VpeC. (5.2.11)

i=1
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Now, fixing a p € ‘CiF(Vi), from (5.2.1), we have

n

Z(ai—l — )Ty — Viz,) = Polup] + (1 — o), + anp — Tyt

1=1

_ ( zn:(ai_l —a;)Vix, + anp)

i=1

= FPelun] — Fe {i(%l — ;) Viy + anp}

=1
+(1 - O‘n)(xn - xn—&-l) + O{n(p - xn—&-l)'

It follows that

Z?:l(ai—l

IN

IN

IA

— o) {xy, — Viz,, x, — 2)

<Pc[un] - Fe LG;(%—l — o) Vizn + anp} T — Z>

+(1 — an) (T — Tpy1, T — 2) + (P — Tpy1, Ty — 2)

Up — Z(ai—l - ai)‘/ixn + anp
i=1
(1 = an)llzn = niallllen — 2l + anllp — Zngall[|2n — 2]

an(f(xn) =) + D (i1 — ;) (Vign — Vi)
i=1
+(1 - O‘n)Hxn - xn—l—l”“xn - ZH + O‘an - xn—&-lHHxn - Z”

[z = 2|

+

”xn - Z”

anl|f(zn) = pllllzn — 2] +Z i1 = ) ||lyn = Zalll|zn — ]|
+(1 = an)llen — g fln - ZII +anlp = znpalllon — ||
anl|f(xn) = pllllon — 2l + Z i1 = ;) | Swn — wnllllon — ||
H(1 = an)lzn = zopallllzn — ZH +anlp = znpalllon — ||
anllf(zn) = pllllzn = 2l + (1 = o) BullSzn — @[ 2n — 2]]

H(1 = an)llen = zngallllzn = 20 + anllp = znsallllzn = 2] (5.2.12)

Now, from Lemma 2.7.5 and (3.12), we get

n

a Z az 1 — ||xn V;:L‘nHQ S Z(ai—l - ai)<xn - ‘/imna Ly — Z>

i=1
< anllf(zn) = plllzn — 2|l

+(1 = an) BullSn — 0 ||l|20 — 2|
+(1 = an) |0 — Tpga [l 2n — 2]

—i—Oanp - xn—HH ”xn - Z”
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By (H1) and (H3), it follows that 3, — 0, as n — oo , so that

n

lim > (i1 — )|z — Vi |” = 0. (5.2.13)

i=1

Since (a;_1 — a;)||zn — Viza||* < S (i1 — ay)||zn — Vix, || for each i > 1 and {a, }
i=1

is strictly decreasing, one has

lim ||z, — Vix,|| =0, Vi>1. (5.2.14)
n—oo
Hence, we obtain
lim ||z, — Tiz,| = lim lwn = Vil =0, Vi>1.
n—00 n—00 (1 — /{;z)

Since {x,} is asymptotically regular and demiclosedness principle, we obtain the

proposition. 0
Corollary 5.2.3. Suppose that the hypotheses of Proposition 5.2.2 hold. Then
(i) 1 [, — g = 0;
(i)l |l — Vil =0, Vi > 1;
fii) 1 g = Vi = 0, Vi = 1,
Proof. To prove (i), we can observe that
20 = ynll < Bullzn — Swnl].

Since B, — 0 as n — oo, we obtain (7).

To prove (ii), we observe that
[yn = Vizall < llyn — zall + llon = Viza|l, Viz1

and

Since ||y, — || — 0 and ||z, — Viz,|| — 0 as n — oo, Vi > 1, then ||y, — Vix,|| — 0,

that is, we obtain (i7). To prove (#ii), we can observe that

By (i) and (i7), we obtain (). O
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Theorem 5.2.4. Let C' be a nonempty closed and convex subset of a real Hilbert
space H. Let f : C'— H be a p-contraction mapping, S : C — H be a nonexpansive
mapping and {T;}2, : C — C be a countable family of k;-strict pseudo-contraction
mappings and F = ziF(T’) # (). Let ag = 1, and x1 € C and define the sequence
{zn} by

n (5.2.15)
Tnt1 = PC’[anf<mn) + Z(ai—l - Ofi)‘/iyn]v n Z ]-a
i=1

where {a,} C (0,1) and {a,} is a strictly decreasing sequence, V; = k;I + (1 —k;)T;,
{6,} € (0,1) and {a,} and {B,} are sequences satisfying the conditions (H2) with
T =0, (H3), either (H}) and (H5) , or (HG) and (H7). Then the sequence {z,}
converges strongly to a point z € F, which is the unique solution of the variational
imequality:

(I—-f)z,x—2)>0, VeeF. (5.2.16)

Proof. First of all, since Prf is a contraction. By Banach contraction principle, so
there exists a unique z € F such that z = Pzf(z), Moreover, from Lemma 2.7.13,

we have

(f(z2) —zy—2) <0, VyeF.

Since (H2) implies (H1), thus {z, } is bounded. Moreover, since either (H4) and (H5),
or (H6) and (HT7), then {z,} is asymptotically regular. Similarly, by Proposition
5.2.2, the weak cluster points set of z,,, that is, wy(x,), is a subset of F.

Let {z,, } be a subsequence of {z,} such that

limsup(f(z) — z,z, — z) = lim (f(2) — 2z, 2z, — 2),

n—00 k—oo

and z,, — «’. By Proposition 5.2.2 it follows that 2’ € F. Then

lim (f(2) — 2,20, — 2) = (f(2) — z,2" — 2) <0.

k—o00

Set u, = an f(x,) + D (-1 — ;) Viy,, we obtain
i=1

|Zni1 — 2||* = (Polun] — tn, Polun] — 2) + (uy — 2, 2041 — 2). (5.2.17)

By Lemma 2.7.13, we have

(Polun] — un, Polu,) — 2) < 0. (5.2.18)
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From (5.2.17) and (5.2.18), it follows that
lTner = 2l < (un — 2, 2040 = 2)
= an(f(zn) = f(2), ni1 = 2) + o (f(2) = 2, 8041 — 2)

n

Z(Oﬁ—l — ;) (Viyn — 2, Tpy1 — 2)

=1

< anpllen = 2ll|#n — 2l + anlf(2) = 2, 2041 = 2)
(1= an)llyn — 2l|lzns — 2|
< awpllen = 2ll[|enn = 2 + onlf(2) = 2, 2041 — 2)
(1= an)[[BnSwn + (1 = Bn)an — 2[[[[ 2041 — 2]|
< anpllen = 2|0 — 2l + anlf(2) = 2, 20410 — 2)
(1= )0 = 2lllzss — 2] + (1 = n)BallS= = 2l 0s1 — 2
= [ =an(l =p)lllzn = zl[llzne — 2l + n{f(2) = 2, 2n41 — 2)
(1 = an)Bull Sz = 2[[[[ 2041 — 2]|
[1 — (1 —
LS | LR e
+an(f(2) = 2, Tpi1 — 2) + (1 — ) Ball Sz — 2| Tns1 — 2|
[ 2(1 —p)ay,
s 1= %] |l — 2|2
1+ (1 —-p)ay,
20,
+ [m] (f(2) = 2,%n41 — 2)
2(1 — ) fn
+| 22 s sl -
2(1 = p)an 2
S el S e (B _
A, o
2(1—p)ay, 1
(1 — an)ﬂn
H 5 = - 2}
Let
2(1—p)ay,
Tn =
1+ (1—pa,
and
_ 2(1=play 1 (1 — )b
Op = T+ (- p)an{l — p(f(z) 2, Tpp1 — 2) + 1=, 1Sz — z||||ens1 — 2| ¢

for all n > 1. Since

{0 = s = 2+ S22 s o 21} <0,

lim sup
1—p (1-pa

n—oo
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Ean = 00 and % > (1 — p)ay,, we have

o0 5n
Z% = oo and limsup — < 0.
n=1

n—oo In

Hence, by Lemma 2.7.6, we conclude that x,, — 2z as n — oo. This completes the

proof. n

Remark 5.2.5. In the iterative scheme (5.2.15), if we set f = 0, then we get
xn, — z = Pr0. In this case, from (5.2.16), it follows that

(z,z—1x) <0, Ve eF.

That is

12|12 < (z,2) < |||||z]|, Vz € F.

Therefore, the point z is the unique solution to the following quadratic minimization
problem:

_ - 2
2 = argmin Il ||

By changing the restrictions on parameters in Theorem 5.2.4, we obtain the

following results.

Theorem 5.2.6. Let C' be a nonempty closed and convex subset of a real Hilbert
space H. Let f : C — H be a p-contraction mapping, S : C — C be a nonexpansive
mapping and {T;}2, : C — C be a countable family of k;-strict pseudo-contraction
mappings and F = EIF(Ti) # 0. Let ag = 1, and x1 € C and define the sequence
{za} by

n (5.2.19)
Tpt+1 = PC[anf(xn) + Z(ai—l - a/i)‘/;ynL \V/TL 2 1
=1

where {a,,} C (0,1) and {a,} is a strictly decreasing sequence, V; = k;I + (1 —k;)T;
{Bn} € (0,1) and {a,} and {B,} are sequences satisfying the conditions (H2) with
€ (0,00), (H3), (H8) and (H9). Then the sequence {z,} converges strongly to a

point x* € F, which is the unique solution of the variational inequality:

(%U—fﬂ“+ﬂ—5ﬁﬂx—ﬁ)2& Vo € F. (5.2.20)



126

Proof. First, we shows that (5.2.20) has the unique solution. Let 2’ and z* be two

solutions. Then, since z’ is solution, for y = z* one has
(I = fa 2" —a*) <7((I - S)a', 2" — 2)

and

(I — fla*,z* —2) <7((I — S)z*, 2" — z*).

Adding (5.2.21) and (5.2.22), we obtain

(L =plla" =2"|* < (I = fa'= (= fla",2’ —a7)

< —p{(I—=9)2' — (I —=8)z*, 2" —2*) <0

(5.2.21)

(5.2.22)

so ' = x*. Also now the condition (H2) with 0 < 7 < oo implies (H1) so the

sequence {x,} is bounded. Moreover, since (H8) implies (H6) and (H7), then {z,}

is asymptotically regular.

Similarly, by Proposition 5.2.2, the weak cluster points set of z,, i.e., w,(z,), is a

subset of F.
From (5.2.5)-(5.2.9), we observe that

|Znir =zl s = tn|

Bn - anll

Bn - Bn,
< (- - oy Il gyl s
. 1 |Zn — 21|
~ 1= (- o, Lzl
1 1
HL= (1= el = ol | 5 = 5]
|an - O{n,ﬂ |ﬁn - ﬁn1|:|
+M[ +
Bn Bn,
< - -l 1H[ﬁn
|an_an 1| |6n /Bn 1|:|
+M[
Bn,
< 1-(1-pa A““”””Bn“’j Uy K, — 2l
| — Op— 1| |6n /Bn 1|
+M
i B, B
< p-(- p))anJ%—“j‘l” K| — 2]
-|Oén B an—l‘ |6n - /Bn—1|-
+M + .
I Bn Bn,

Bn
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Let v, = (1 — p)ay, and 6, = a, K|z, — zpq|| + M la"_;;”_l‘ + m"_ﬁn”‘l' . From
condition (H3) and (HS8), we have

Z%‘ =00 and lim 5—" = 0.
By Lemma 2.7.6, we obtain
n—00 B n—00 B n—00 o,
From (5.2.19), we have
Ty —Tu1 = (1—ay)z, — lPC[un] — Up + ap f(xy,)
+ > (it — @) (Vi — yn) + (1 = o)y
i=1
= (1—ayn)Bu(zy — Sz,) + (u, — Poluy))
+ Z(O‘ifl - ai)(@/ﬂ - V;yn) + an(xn - f(xn))
i=1
It follows that
IOl (g Su) 4 (1w — Polua))
(1 - an)ﬁn " " (1 - O‘n)ﬁn " ol
1 u Ol
+—— Qi1 — Q4 yn_‘/zyn —i——xn—fxn

Let v, = £2-2L Forall 2 € F = ,ir?lF(Tl-) = ir%lF(Vi), we get

1
(Un, Ty, — 2) = m(un — Polunl, Poltn1] — 2)
+(1 — an)ﬁn'«l = [)an, @ = 2) + (n = Stn, & — 2)
1 n
+m Z.Zlmi_l — ) (Yn — Viyn, Tn — 2). (5.2.23)

By Lemma 2.7.11, we have
(xp — S,z —2) = (I =8)x,— (I —9z,2, —2)+ (I —95)z,2, — 2)

> (I = 95)z2,—2), (5.2.24)

(= Han,en—2) = (T =g =T = fz,zn—2) + (= )z, 20 = 2)

> (1= pllen — 27 + (T~ fz2,— 2) (5.2.25)
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and
+<(I - V;)yn - (] - V;)Z, Yn — Z)
Z <(I - ‘/z)yn - (I - ‘/z)zaxn - yn>
= Gu{(I = Vi)yp,xpn — Sxp), Vi>1. (5.2.26)

By Lemma 2.7.13, we obtain

(up, — Poluy), Polun—1] — 2) = {(un — Polun], Polun-1] — Polu,))
+(un — Pelun), Polun] — 2)
> (u, — Polun), Polun—1] — Polu,)). (5.2.27)

Now, from(5.2.23)-(5.2.27), it follows that

W2 mwn‘%[%%[un—ﬂ — Polua))
+m<(1 — z,xn —2) +{(I = 5)z,2, — 2)
1 n
= ag) 21 = N = Vst = )
(1 B p)ozn _ 2
+ml|xn 17 (5.2.28)
We observe from (5.2.28) that
— 2 (1_O‘n)/6n o T — 2 CSVsm — s
lzn — 2] < T s {( ns o — 2) — (I = S)z, 2, — 2)
||un_1 — un_” Up — u — ; — Z,Lp — %
0 e lun = Pelun]ll = 1 (I = Dz, )
/Bn n
“1=pan Zzl(%—l — @) {(I = Vi)yn, xp — Szs),  (5.2:29)

since v, — 0 and (I —V;)y,, — 0, as n — oo , then every weak cluster point of {z,}
is also a strong cluster point. By Proposition 5.2.2, {z,} is bounded, thus there

exists a subsequence {z,, } converging to z*.
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For all z € F by (5.2.23), we compute

(L Pngrag =7 = L0l o)

1

__<unk - PC’[unk]a PC’[unk—l] - Z>
O{nk

1 - Ln n
_%@nk — Sty Ty — 2)
Q.

1
- Z(aifl — i) Yy, — Vilngs Ty, — 2)

O i=1

11— n n
< Uz, 0, —2)
Qo

nj
_ B Z(Oéi—l — ai(({ = Vi)Yn,., Tny — Sp,)

(o, i=1

1
__Hunk—l - unkHHunk - PC[unk]H
Nk

Op

(I —98)z,xy, — 2). (5.2.30)

k
Since v, — 0, (I — V;)y,, — 0 for all i > 1, and ||u,, — up—1]|/cn, — 0, letting k — oo

in (5.2.30), we obtain
(I = flaz*,a" —z) < —7((I = S)z,2" — z), Vz € F.

Since (5.2.20) has the unique solution, it follows that w,(z,) = {z*}. Since every
weak cluster point of {x,} is also a strong cluster point, we conclude that x,, — z*

as n — oo . This completes the proof. O]

If we take T; =T, for all + > 1, where T': C' — C'is a k-strict pseudo-contraction

mapping in Theorem 5.2.4, then we get the following result:

Corollary 5.2.7. Let C' be a nonempty closed and convex subset of a real Hilbert
space H. Let f : C'— H be a p-contraction mapping, S : C — H be a nonexpansive
mapping and T : C' — C be a k-strict pseudo-contraction mapping such that F(T') #
(). Let 1 € C and define the sequence {x,} by

Yn = PC[/BnSIn + (1 - ﬂn)xn],

(5.2.31)
Tpi1 = Polanf(x,) + (1 — an)Vy,], Vn>1,

where V= kI + (1 — k)T, {a,} C (0,1) and {B,} C (0,1) are sequences satisfying
the conditions (H2) with T = 0, (H3), either (H4) and (H5) , or (H6) and (H7).
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Then the sequence {x,} converges strongly to a point z € F(T'), which is the unique

solution of the variational inequality:
(I—=flz,x—2) >0, Yee F(T).
Taking k; = 0, for all ¢ > 1 in Theorem 5.2.4, then we get the following result:

Corollary 5.2.8. Let C' be a nonempty closed and convex subset of a real Hilbert
space H. Let f : C'— H be a p-contraction mapping, S : C — H be a nonexpansive
mapping and {T;}52, : C' — C be a countable family of nonexpansive mappings and

F = aF(E) # 0. Let ag = 1, x1 € C and define the sequence {x,} by

Yn = PC[ﬁnSIn + (1 - 6n)xn]7
Tnr1 = Polon f(zn) + 2o (i1 — o) Tiyn], Yno =1,

" (5.2.32)
=1

where {a,} C (0,1) and {a,} is a strictly decreasing sequence, {8,} C (0,1) and
{an} and {B,} are sequences satisfying the conditions (H2) with T = 0, (H3), either
(H4) and (H5) , or (H6) and (H7). Then the sequence {x,} converges strongly to a

point z € F, which is the unique solution of the variational inequality:
(I—-f)z,z—2)>0, VeeF.
If we take £ = 0 in Corollary 5.2.7, then we get the following result:

Corollary 5.2.9. Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let f : C'— H be a p-contraction mapping, S : C — H be a nonexpansive
mapping and T : C — C be a nonexpansive mapping such that F(T) # 0. Let
x1 € C and define the sequence {x,} by

Yn = PC[BnSl‘n + (1 - ﬂn)an
Tnt1 = PC’[anf(xn) + (1 - an)Tyn], vn > 17

(5.2.33)

where {a,} C (0,1),{8,} C (0,1) and {a,} and {B,} are sequences satisfying the
conditions (H2) with T =0, (H3), either (H4) and (H5) , or (H6) and (H7). Then
the sequence {x,} converges strongly to a point z € F(T), which is the unique

solution of the variational inequality:

(I—=f)z,x—2) >0, Yee F(T).
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If we take T; =T, for all © > 1, where T': C' — C'is a k-strict pseudo-contraction

mapping in Theorem 5.2.6, then we obtain the following result:

Corollary 5.2.10. Let C' be a nonempty closed and convex subset of a real Hilbert
space H. Let f : C' — H be a p-contraction mapping, S : C — C be a nonexpansive
mapping and T : C'— C' be a k-strict pseudo-contraction mapping and F = F(T) #
(. Let z1 € C and define the sequence {x,} by

(5.2.34)
Tpy1 = PC[a/nf(xn) + (1 - Oén)Vyn], vn > 17

where V.= kI + (1 — k)T, {a,} C (0,1), {B.} C (0,1) and {a,} and {B,} are
sequences satisfying the conditions (H2) with T € (0,00), (H3), (H8) and (H9).
Then the sequence {x,} converges strongly to a point ©* € F, which is the unique

solution of the variational inequality:
1
(-(I—=fla*+({I = S)z" 2 —2%) >0, VxelF. (5.2.35)
-
If we take k; = 0, for all ¢ > 1 in Theorem 5.2.6, then we get the following result:

Corollary 5.2.11. Let C' be a nonempty closed and convex subset of a real Hilbert
space H. Let f : C'— H be a p-contraction mapping, S : C — C be a nonexpansive
mapping and {T;}2, : C' — C be a countable family of nonexpansive mappings and

F = aF(Tl) # (. Let ap = 1, z1 € C and define the sequence {x,} by

Yn = BnStp + (1 — Bn)zn,

0 (5.2.36)
Tn4+1 = PC[anf<xn) + Z(aifl - OéZ)len]a vn > 17
=1

where {a,} C (0,1) and {a,} is a strictly decreasing sequence, {8,} C (0,1) and
{an} and {B,} are sequences satisfying the conditions (H2) with T € (0,00), (H3),
(H8) and (H9). Then the sequence {x,} converges strongly to a point x* € F, which

is the unique solution of the variational inequality:
1
(- = fla*+ (I —=9S)a", o —a") >0, VrelF. (5.2.37)
-

If £ =0 in Corollary 5.2.10, then we get the following Corollary:
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Corollary 5.2.12. Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let f : C'— H be a p-contraction mapping, S, T : C — C' be nonexpansive
mappings and F = F(T) # 0. Let xy € C and define the sequence {x,} by

n — nsxn+ L = Bn)Tn,

b =B S (5.2.38)
Tnt1 = PC[anf(xn) + (1 - O‘n)T?/n]a Vn > L,

where {a,} C (0,1), {B.} C (0,1) and {a,} and {B,} are sequences satisfying the

conditions (H2) with 7 € (0,00), (H3), (H8) and (H9). Then the sequence {x,}

converges strongly to a point x* € F, which is the unique solution of the variational

imequality:
1

T

{

Remark 5.2.13. Theorem 5.2.4 and Theorem 5.2.6 extend and improve the result

(I—flz*+(I—-S)z*,x—2") >0, VeelF. (5.2.39)

of Gu et al. [54] from the countable family of nonexpansive mappings to more

general the countable family of strictly pseudo contraction mappings.

5.3 Iterative Algorithm for Solving Triple Hierarchical Fixed
Point Problem

In this section, we introduce an iterative algorithm for solving the monotone
variational inequality over triple hierarchical fixed point problem. Always in this
section, we may assume that the set © := VI(Y, I — ¢) is nonempty where 2 :=
VI(F(T),A—~f)and T :=VI(Q,B).

Theorem 5.3.1. Let H be a real Hilbert space, C be a closed convex subset of H.
Let A : C — H be a strongly positive linear bounded operator, f : C — H be a
p-contraction, v be a positive real number such that 777?1 << %. LetT :C — C
be a nonexpansive mapping, B : C' — C be a (3-strongly monotone and L-Lipschitz
continuous. Let ¢ : C — C be a k-contraction mapping with k € [0,1). Suppose

{z,} is a sequence generated by the following algorithm xy € C' arbitrarily
zn = TPc[l — 0,(A =7 [)lan,
Yn = (I — pB,B)zy, (5.3.1)
Tpi1 = nd(T,) + (1 — a)yn, Vn >0,

where {an}, {6,} C [0,1]. If p € (0,23) is used and if {B,} C (0,1] satisfy the

following conditions:
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(C1): 391 |0n41 — 0n| < 00, X220, = oo,
(C2): 35211 Bn+1 — Bul < 005
(C8): X5 a1 — | < 00, limy, o v, = 0
(C4): 6, < By and B, < ay,.
Then {x,} converges strongly to x* € Y, which is the unique solution of the varia-

tional inequality:
Find x* € Y such that (I — ¢)z*,x —z*) >0, Vo € T, (5.3.2)
where T := VI(Q, B) := VI (VI(F(T), A—7f), B).

Proof. We will divide the proof into four steps.
Step 1. We will show {x,} is bounded. For any ¢ € O, we have

20 —all = TPl = 0u(A =7 f)|zn — TPcql

I = 6u(A =7 f)lan —qll

nllvf(zn) =1 (@ + 0nllvf(q) — Ag|l + [ = SnAlll|l2n — gl
onvpllTn — qll + dullvf(a) — Agll + (1 = 6u7) ||z — 4

(1= =vp)0n]llzn — all + dull7vf(q) — Aql]. (5.3.3)

ININ A

By Lemma 2.7.7, it is found that

lyn —all = (I = pBaB)zn — (I — pBuB)q||
< (1= Bur)llzn gl
< (- 8{0 -G =70)llen —dl
+8ll7f(a) — Agl }. (5.34)

A

From (5.3.1), we get

IN

all$(@a) = (@)l + anllé@) — all + (1 = @)y — al
< anklan = all + aulléla) = (@) + (1 = an)lly. —

< aukllen = all + (1= ) (1 = Bur){ [1 = (7 = 10)d] 2 — al
+8,11f(a) — Aql }

lzns1 — gl

AN
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IN

anllan = all + (1= an)(1 = Bar)[1 = (7 = 7p)du]llen — al
+(1 = an)(1 = Bu7)dull7f(g) — Agl
= anllzn — gl + (1 = o)1 = (5 = 7p)0n — BT
+Bum(¥ — 1P)0n] 20 — 4l
+(1 = an)(1 = Bu7)dnllvf(q) — Ad
= aullzn =gl + (1 = @) [1 = {(7 = 3)00 + BT
~But (7 = 0)0}]llz — al
+(1 = an)(1 = Bu7)dn 7/ (a) — Adl
= anllen —all+ 1= an = {(7 = 10)bu + B
~Ba7(7 = 193} (1 = )|l — al
+(1 = an)(1 = Bur)dn 7/ (a) — Adl
= (L= (L= (5= 0)0 + But = BT (5 = 10)00}] 7 — g
+(1 = o) (1 = Bum)énllvf(q) — Adqll
= 1= (1= a{(7 = 99)3u(1 = Bu7) + BT} llz = gl
+(1 = an)(1 = Bur)dn 7/ (a) — Adl
= 11— (1= an)(3 = 1)0u(l = Bu) = (1 = @) Bu7] 2 — al
+(1 = ) (1 = Bu)énllvf(q) — Adq||
= 1= (1= an)(7 = 1)0u(L = Bun)l o — all = (1 = @) Bu7llen — al
+(1 = an)(1 = Bu7)dn 7/ (a) — Adl

< =7 =101 = )1 = Bu7)d]|lzn — g
_ a1 — g fla) — Ad|
+(7 =)L — o) (1 = By )5n—7_w
= (1= o)ea — gl + o, 212 = Adl]
¥ =p

~—

where o, := (7 —vp)(1 — ) (1 — 5,7)d,. Then, by mathematical induction implies

that
—A
fon—all < max {Jlro — g, LAY v
TP
Therefore {z,} is bounded and so are {y,}, {z.}, {4z.}, {Bx.}, {¢(z,)} and
{f(zn)}-

Step 2. We claim that lim, o |41 — 2,| = 0 and lim,, . ||z, — Tx,|| = 0.



From (5.3.1), we have

H2n+1 - Zn||

and

IA A

IN

IN
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[T Pe[l = 0n1(A = yf)wni1 = TPc[l — 0,(A — 7 f)]an|
|1Pell = 6p41(A = vy )lwnsr — Pe[l = 0n(A =7 f)]zn|

I = 0ns1(A = v )]wni1 = [I = 0n(A = 7f)]zn]
1001 (Vf (@nr1) = 7f (@n)) + (Ont1 — 0n)7f (@) (5.3.5)
(L = a1 A) (s — ) + (6 — Gren) A

OtV f (@ns1) = f@n) [ + (1 = Gpr V) (|01 — 2|

F0n1 = On|([[7f (@) || + (| Aznl[)

On 17l Tns1 — all + (1 = 01 ¥) |21 — @]

041 = [ (17 (@) || + [[Azal])

(1= = vp)bnslllzns — all

F0n1 = On|([[7f (@) || + (| Aznl[) (5.3.6)

[yns1 = wnll = I = 1Bns1B)zni1 — (I — pBnB)

S H([ — ,uﬁn+1B)Zn+1 - ([ - :uﬁnJrlB)ZnH
(I = 81 B)2n — (I — 1183 B) 2z

< (U= Bum)llznsr = zall + plBnga = Bull| Bznll.— (5.3.7)

Using (5.3.5) and (5.3.8), we get

”:E?H-Z — Tn41 H

IN

IN

IN

[atnt10(Tnt1) + (1 — @ng1)Ynr1 — and(@n) — (1 — o) ynl|
nr1l|@(Tn1) — G(@a) || + [amsr — anll|d(@nr1) |

(1 = ) Ynr1 = Yall + |1 — anll[yal

1k Tnr1 — Toll + [omsr — an|([[@(@nra) [ + [[yal)

+(1 — a1 |[Yn+1 — vall

ni1k||Znar — @all + (a1 — on|([|@(@ns1)]] + 1ynll)

+(1 = @) { (1= Bur)llznsr = zall + lBuss = Bl | B2l }
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= n1kl|Tni1 — 2ol + lansr — anl(|é(zn )] + llyall)
+(1 - an+1)(1 - ﬁnT)Hzn—H - zn”

(1= apia)alBss — Bulll Bl

< st uss = 2all + s — anl (I6@asn)ll + llyal)
(1 = @)1l Bart — Bul | Bzl
+(1 = ani){[1 = (7 = 90)8nsilllznes —
011 = Sl ()| + 1 Aa]) }
< st uss = 2all + lanss — anl (I6@asn)ll + llyal)
(1 = @) i1lBart — Bul | Bzl
+(1 = s )1 = (3 = 19)usalnss — 2l
(1= ) lbars — Sal (17 (@)l + ([ Az )
< =0 =70)0n41(1 = )]l @n1 — ]
st = @l ([ $(@ns)ll + lal)
4l Buss — Ball Bzall + 18ns1 — Sal (17 (@) | + 1Az ])
< [1=&=70)0n11(1 = any1)l[|Tng1 — 20|

Hlantr — an| + [Bur1 — Bul + [0ns1 — 0ul} M, (5.3.8)
where M is some constant such that

sup {160 |+ lwall Bzl I ()| + 1A} < .

From (C1)-(C3) and the boundedness of {z,}, {y.}, {Ax,}, {Bz.}, {¢(z,)} and
{f(z,)}. By Lemma 2.7.6, then we have

nh_)r{)lOHan — 1z, = 0. (5.3.9)
On the other hand, we note that

|zn = Tan|| = TPl —6,(A =7 f)]zn — Ty

”TPC[[ - 571(14 - 7f)]xn - TPanH
1[I = 6n(A — v f)]n — 2]
< Onll(A =)zl

by (C3)-(C4) and it follows that

IN

A

lim ||z, — Tx,|| = 0. (5.3.10)
n—oo
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From (5.3.1), we compute

[Znt1 — 2l = llnd(@n) + (1 — )y — 2all
land(xn) + (1 — )] — p1BnB)2n — 2|
an|[@(@n) = znll + (1 = ) [[(I = pBnB)zn — 2

< ankl|zn = zal + onll@(zn) = 2all + (1 = an)pbBnl| Bza||-

IA

By (C3) and (C4), it follows that
nll_f}lolo |Znst1 — 2nl] = 0. (5.3.11)
Since
[en = Tanl < llen = Znaall + 12y = 2ol + 120 = Tnl|
By (5.3.9), (5.3.10) and (5.3.11), we obtain
nlgr;o \|n, — Tz,|| = 0. (5.3.12)
From (5.3.1), we compute

|Znt1 — Unll = [loand(@n) + (1 — @n)yn — ynll

< ullo(zn) — all- (5.3.13)
By (C3), it follows that
lim ||z,41 — ynl = 0. (5.3.14)
n—oo

Since
[2n = ynll < Nlon = Zngall + lzns — wall-
From (5.3.9) and (5.3.14), we obtain
Tim ||z — gl = 0. (5.3.15)

Step 3. First, limsup,_, . (u, — z*,vf(z*) — Az*) < 0 is proven. Choose a
subsequence {x,,} of {z,} such that

limsup(z, — z*,vf(z*) — Az") = lim (z,,, — 2™, v f(z") — Az™).
1—00

n—o0
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The boundedness of {z,,} implies the existences of a subsequence {xmj} of {x,,}
and a point € H such that {acn]} converges weakly to . We may assume without
loss of generality that lim; o (z,,,w) = (Z,w), w € H. Assume & # T(z&). By
lim,, o0 || — T2,|| = 0 with F(T') # () guarantee that

liminf ||z,, — 2|] < liminf|z,, —T(2)||
1—00 1—00

i—00

= liminf |T(z,,) — T(2)||
71— 00

IN

liminf ||z, — z|.
1—00

which has a contradiction. Therefore z € F(T'). From z* € VI(F(T),A — ~f), we
find

limsup(z,, — 2", vf(z*) — Az") = lim(x,, — 2", vf(a") — Az™)
n—0o0 100
= (&—-2"7f(2") — Az")
< 0.

Setting u, = [I — §,(A — vf)]z, and by (C3)-(C4), we notice that
[un = 2]l < 0nll(A =)l = 0.

Hence,we get

limsup(u, — x*,vf(z") — Az*) < 0. (5.3.16)
n—oo
Second, lim sup,, , . (x*—x, 11, Bx*) < 0is proven. From lim,, . ||z,11—2,| =0

guarantees the existences of a subsequence {x,, 1} of {z,, } and a point Z € H such
that imsup,,_, . (" — Tpt1, Be*) = limy_,oo (@* — 2y, 41, Bx*) and limg_,oo (2, , w) =
limy oo (Tn 11, w) = (T,w), w € H. By the same discussion as in the proof of
& € F(T), we have & € F(T). Let y € F(T) be fixed arbitrarily. Then, it follows
from T : C — C is a nonexpansive mappings with F(T) # 0, A : C — H be a
strongly positive linear bounded operator and f : C' — H be a contraction that, for

all n € N. From (5.3.1)

lzn =yl = [T Poun — TPyl

IN

[un =yl (5.3.17)
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By (C3)-(C4), we observe that

lun =yl = (Il = 6n(A = 7f)]zn =y

IN

[z = yll + 0nl[(A = 7. f)zal
< law =yl (5.3.18)

Using (5.3.17) and (5.3.18)

[l

which implies that

A

IN

IN

[T = 00(A =)l —yl?

On(7f (2n) — Ay) + (I = 6,A) (20 — y)
(1= 6,7l — yll* + 200 (v f (20) — Ay, up — y)

(1= 26,7 + 637 lzn — ylI” + 2007l 20 — ylllun — v
+20, (v f(y) — Ay, un — y)

(1= 26,7 + 6:7°) |20 — ylI? + 26,70l — y?
+20,(7f(y) — Ay, un — y)

1= 26,( = vp)llln — ylI* + 6272120 — 91> +

20, (vf(y) — Ay, un — y),

2

0 < (o = yll® = llun = 91) = 2605 = v0)lln — yll* + 82922 — y*

+26,(7f(y) — Ay, un — y)

= (e =yl + llua = yID N2 =yl = luw = yll) = 20.(5 = vp)llzn — yI®

+027% |z — y||? + 200 (v f () — Ay, u, — y)

IN

M|z, — un|| — 26,(F — vp) || 70 — y”2 + 5721’72”%1 - y||2

+26, (v f(y) — Ay, un — ),

where My := sup{||z, — y|| + |lun — y|| : n € N} < oo, for every n € N. By the

weak convergence of {u,,} to z € F(T), lim, . ||u, — x,]| = 0 and (C3)-(C4), we

get ((vf — A)y,z —y) <0 for all y € F(T). A mapping A be a strongly positive

linear bounded operator and f be a contraction ensures {(vf — A)y,z —y) < 0 for

ally € F(T), that is, z € VI(F(T), A —~f). Thus 2* €e VI(VI(F(T),A—~f), B),
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we have

limsup(z* — z,, Bz*) = limsup(z* — z,,, Bz")
n—>00 1—00
= (¥ — 1z, Bx")
< 0.

From (5.3.15), we notice that
limsup(z* — y,, Bz*) < 0. (5.3.19)
n—,oo

Third, limsup,,_,. (x, — 2*, ¢(z*) — z*) < 0 is proven. Choose a subsequence

{@n, } of {x,} such that
limsup(z,, — 2", ¢(2*) — 2%) = lim (z,, — 2", p(2*) — z7).
n—00 g—+o0

The boundedness of {z,,} implies the existences of a subsequence {z,, } of {z,,}
and a point & € H such that {l’ngh} converges weakly to Z. By lim, o [[Tpe1 —
zo| = 0, we have limy, o0 (Tn,, +1,w) = (Z,w), w € H. We may assume without
loss of generality that lim; ,o(z,,,w) = (Z,w), w € H. Assume T # T'(z). By
lim,, o0 || 20 — T2,|| = 0 with F(T') # () guarantee that

hggglf |zn, — || < llgIgg)lf |zn, —T(Z)||

= liminf||z,, — T'(2n,) + T(zn,) — T(2)||

g—o0

= liminf ||T(x,,) — T'(Z)||
g—00

IN

liminf ||z, — Z|.
g—o0

This is a contradiction, that is, # € F(T). From z* € VI(V[(VI(F(T),A -
7f),B), 1 = 6), we find

limsup(z, — 2", ¢(z*) —2*) = lim(z,, — 2", ¢(z") — 27)
n—00 g—o©
= (T —a"¢(z") —2")
< 0. (5.3.20)
Step 4. Finally, we prove lim,_,, ||z, — z*|| = 0. By Lemma 2.7.7, we compute
201 =217 = [land(@n) + (1 = an)ys, — 2"

2

an(P(wn) — d(2")) + an(d(z”) — 27) + (1 — an)(yn — =7)




IN

IN

IN

IN

IN

IN

IN

IN

nllp(n) = o(2")* + (1 = ) [y — 27|

200 (P(2") — 27, Tpay — 27)

ank?|Jzn — 2"* + (1 = an)|(1 = pBuB)2zn — 2"

+2a,(p(z") — 2%, Ty — 27)

k|2 = 2** + (1 = ) |[(20 — 1BuBzn)

(@ = pBuBE") — pBaBE | + 20n(0(a) — 2 s — o)
ank?lfe = 12+ (1= @) {[|(on = paBn) = (a* = B Ba)|
+205,(x™ — Y, Bw*)} + 20, (p(x") — 2", xpyy — x¥)

k|l — 2" |* + (1 = an)(1 = 780)% |20 — 27|

+208,(x* — yp, Bx™) + 20, (d(2") — 2%, 201 — TF)

k|2 — 2" + (1 = an) (1 = 78,) [[un — 2"|*

+205,(x™ — yp, Bx™) + 200, (d(2") — 2%, xpyq — TF)

ank? ||z, — 2"+ (1 = an) (1 = 7B)I[T — 6n(A — 7]z — 2*||?
+208,(x* — yp, Bx™) + 200, (d(2") — 2%, 201 — TF)

ank? ||z — 2| + (1 = an) (1 = 78a) | (I = 6 A) (2 — )
+0n(71.f (2n) — A2")|* + 20, (2" — yu, Ba”)

20, (p(x") — 2%, T — 27)

k|, = o2+ (1= an)(1 = 78 { (1 = 6,7l — 2|
+26, (v f(x) — Ax™ uy — x*)} + 2uBn(z* — yn, Bx™)
+2a,(p(2") — 2%, Ty — 27)

anbllzn — 2P + (1= an)(1 = 7B,){ (1 = 26,7 + 627) [ — 7|
F26,(0f () = (0°), w0 = 27 4 2,0 () = A w0 |
+205,(x* — yp, Bx™) + 200, (d(2") — 2", xpyq — T°)

ankl|z, — 2| + (1 — a,)(1 - Tﬁn){(l — 20,7 |0 — =77

141

482920 — 2+ 26,9l — o [ — 27| + 260 (1 (2") — A — 7))

+208,(x* — yp, Bx™) + 20, (d(2") — 2%, 201 — TF)
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< agllen = 2P+ (1= ) (1 = 78,)[1 = 20,(F — o) |z — 2”7
(1 = an)(L = 782) 037" [lzn — 2*||* + 200 (v f(27) — Az™, up — z7)
+208,(x* — yp, Bx™) + 20, (d(2") — 2%, 201 — TF)
= agllzn — 2|+ (1 = an)[1 = 20,7 = vp) — 7B + 7820, (F — v0)] |0 — 2”7
H(1 = an)(L = 782) 0377 lwn — 2™ ||* + 200 (v f(27) — Az™, up — z7)
+208,(x* — yp, Bx™) + 200, (d(2") — 2%, 2501 — TF)
= apllzn — 2+ (1 = an)[1 = {202(F — vp) + 7B — 78220, (7 — o) |20 — 2*?
(1 = an) (1 = 78) 0377 lwn — 2|1 + 20, {7 f (") — Ax™,up — 2)
+2uB, (" — yp, Bx™) + 200, (p(x*) — 2", 21y — F)
= L= (1 = an){26.(7 = 70) + 7B — 782007 — v0)Hllz0 — 2*|?
+(1 = o) (1 = 780) 037 lon — *|I* + 20, {7 f (27) — Az™, un — 27)
2B (2" — Yo, Bx*) + 20, ($(27) — 2%, Tpsy — 27)
= [1- (1= a){20.(5 —v0)(1 = 78,) + 78}l — 27|
+(1 = o) (1 = 78a) 037 lon — 2|1 + 20, {7f (&) — Az™, un — @)
+208, (" — Yp, Bx™) + 20, (p(x*) — ", 21 — &)
= [1= (1= an)26.(7 = 7p) (1 = 78u)]llzn — 2|1 = (1 = ) 7Bu]| — 27|
+(1 = o) (1 = 78a) 037" lwn — 2| + 205 {7f (2") — Az™, un — @)
+208,(x* — yp, Bx™) + 200, (d(2") — 2%, 201 — TF)
< =207 =) (A = an)(1 = 7B,)0ulfln — 27|

(1 = an) (1 = 78) 0377 lwn — 2| + 20,7 f (2") — Az™, u — 2)

+2uB, (" = Yp, Bx™) + 20, (p(x™) — 2", xpp1 — 27). (5.3.21)

Since {z,}, {Az,}, {Bx,}, {¢(z,)} and {f(x,)} are all bounded, we can choose a
constant M; > 0 such that

Sup -

1 {5n72
n 7P

Ll — |} < M.

It follows that

lznss — 2|7 < 1 =207 = 7p)(1 = ) (1 = 750) 0] | — 27|

+2(7 =) (1 — ) (1 = 785)0nSn, (5.3.22)
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where
1
n — é‘n — * _A *7 n *
T R T e ) T AT
M/Bn * *
- naB
T A = an @ =B, ¢ Y BT
Oy

+(’7 —vp)(1 = an)(1 = 706,)d, (") — 2", Tpy1 — 27).

By (5.3.16), (5.3.19), (5.3.20) and (C3)-(C4) then we get limsup,, ,. <, < 0. Ap-
plying Lemma 2.7.6, we can conclude that z,, — 2*. This completes the proof. [

Next, the following example shows that all conditions of Theorem 5.3.1 are sat-

isfied.

Example 5.3.2. For instance, let o, = %, Bn = % and 9, = ?%n We will show that

the condition (C1) is achieves. Then, clearly, the sequences {9, }

1
XX 0, =20 — =
and
Yol i|0n1 — 0u] = Ei’lelm - %

1 1 1 1 1 1
< |ﬁ_ﬁ|+|ﬁ—§|+|ﬁ—3'—4|+...

Wl

The sequence {6, } satisfy the condition (C1).

Next, we will show that the condition (C2) is achieves. We compute

o] Bsr — Bal = Z;L.O:llm - %

1 1 1 1 1 1
|21 — 22l 133 — 23l tlas — 32l +- -

VAN

1
5

The sequence {3, } satisfy the condition (C2).

Next, we will show that the condition (C3) is achieves. We compute

220=1|O‘n+1 - O‘n| = 230:1‘%“ - %
< Bl
=1
and
. 1
lim a,, = lim — =0,
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The sequence {a,,} satisfy the condition (C3).
Finally, we will show that the condition (C4) is achieves.

1
— < — and

1
3n 2n m <

S

Corollary 5.3.3. Let H be a real Hilbert space, C' be a closed convex subset of H.
Let A : C' — H be an inverse-strongly monotone. Let T : C' — C be a nonerpansive
mapping. Let B : C — C be a B-strongly monotone and L-Lipschitz continuous.

Suppose {x,} is a sequence generated by the following algorithm xq € C' arbitrarily

zn =T (I = 0pA)zn,
Yn = (I — puBnB)zn, (5.3.23)
Tpi1 = (1 — ayp)yn, Vn >0,

{an}, {6,} C [0,1]. If € (0,23) is used and if {B.} C (0,1] satisfy the following
conditions:

(C1): 35 |0ns1 — 0n| < 00, 32,0, = oo,

(C2): T3y |Bnr1 — Bl < 00;

(C8): X0 a1 — | < 00, limy, o v, = 0

(C4): 6, < B and B, < ay,.
Then {x,} converges strongly to x* € VI(F(T), A), which is the unique solution of

the variational inequality:
Find x* € VI(F(T), A) such that (Bx*,x —x*) >0, Vo € VI(F(T),A). (5.3.24)

Proof. Putting P¢ is the identity and f, ¢ = 0 in Theorem 5.3.1, we can obtain

desired conclusion immediately. O
Remark 5.3.4. Corollary 5.3.3 generalizes and improves the results of liduka [7].
O

Corollary 5.3.5. Let H be a real Hilbert space, C' be a closed convex subset of H.
Let A : C — H be a strongly positive linear bounded operator, f : C' — H be a
p-contraction, v be a positive real number such that “?le << %. LetT :C — C

be a nonexpansive mapping. Suppose {x,} is a sequence generated by the following
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algorithm xy € C' arbitrarily

2n = TPo[I — 6,(A — v f)]zn,
Yn = (I — 3 B)zn, (5.3.25)

Tnt+1 = an(xn) + (1 - an>yn7 Vn >0,

where {an}, {6,} C [0,1]. If p € (0,23) is used and if {B,} C (0,1] satisfy the
following conditions:

(C1): 351 |0ns1 — 0n| < 00, X220, = oo,

(C2): 5021 1Bnia — Bl < 005

(C8): X0 a1 — | < 00, limy, o v, = 0

(C4): 6n < B and B, < au,.
Then {x,} converges strongly to x* € Q, which is the unique solution of the varia-

tional tnequality:
Find x* € Q such that (Ba*,x — 2*) > 0, VY € Q. (5.3.26)

Proof. Putting ¢ is the identity in Theorem 5.3.1, we can obtain desired con-

clusion immediately. O

Remark 5.3.6. Corollary 5.3.5 generalizes and improves the results of Marino and

Xu [22].

5.4 TIteration Algorithm for Solvig Hierarchical Generalized

Variational Inequality Problem

In this section, we consider and study the convex feasibility problem (CFP)
in the case that each C,, is a solution set of generalized variational inequality
GVI(C, B, Ay) and we introduce an iterative algorithm for solve the following

the HGVIP: find z € N}, _,GVI(C, B,,, A,,) such that
(vf —pG)z,x—2) <0, Veen, GVI(C, B, A,). (5.4.1)

Theorem 5.4.1. Let C' be a nonempty closed and convex subset of a real Hilbert
space H such that C £ C C C. Let f : C — C be a contraction with coefficient

k€ (0,1). Let G : C — C be a &-strongly monotone and L-Lipschitz continuous
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mapping. let A,, : C'— H be a relazed (N, pm)-cocoercive and vy,-Lipschitz continu-

ous mapping and By, : C' — H be a relaxed (M, pm)-cocoercive and Uy, -Lipschitz con-

tinuous mapping for each 1 < m < r. Let p,, = \/1 — 2XmpPm + A2 V2 + 202,

and ¢, = \/1 — 2Dmpm + A2D2 + 2\ b2, where {An} and {\n} are two pos-
itive sequences for each 1 < m < r. Assume that NI _GVI(C, By, An) # 0,
§>0,L>0,0<p<2/L? 0<vy<pul§—pl?2)/k=m/k and pm,qm € [0,3),
for each 1 < m < r. Given the initial guess x1 € C' and {x,} is a sequence generated

by
Tyl = anfyf(a:n)+(I—anuG)E"mzlﬁ(mm)Pc(S\mBmxn—)\mAmxn), Vn > 1, (5.4.2)

where {ou }, {Ban b, {Bem) bs - {Berm) } are sequences in (0,1), satisfying the follow-

g conditions:
(C1) limy, oo vy = 0, 55° 00, = 00 and X2 a1 — | < 00;

(02) E:nzlﬁ(m,n) = ]-avn > 1 72720:1|6(m,n+1) - 5(m,n)| < o0
and 1im, o0 Bamn) = Bm € (0,1),V1 <m <.

Then {x,} converges strongly to a common element © € N _,GVI(C, B, An),

which is the unique solution of the following problem:
(vf—pG)Z, e —7) <0, Yeen, _,GVI(C, B, An). (5.4.3)

Proof. Put T, = PC(S\mBm — AnAn), V1 < m < r. For each z,y € C' and for each

m > 1, we have

[T = Tyl = “PC(;‘mBm — AmAp)T — Pc‘(j‘mBm = A Ay

IN

H(S‘mBm — AmAm)T — O‘mBm — A Ayl
< @ —y) = An(Anz — Any)||

+|(z = y) = An(Bmw — Buy)|l- (5.4.4)

It follows from the assumption that each A, is relaxed (7, pm)-cocoercive and

Vm-Lipschitz continuous that

Iz =) = An(Amz = Au) | = Nz —yl* = 2Xn{Anz — Apy, x —y)

Al Amz — Anyl®
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IN

lz = ylI* = 20 [(= 1) | Az — Amyl|*

+omllz = ylI*] + Avmlle -yl

IN

(1 = 2 mpm + An vl =yl
2\ [l =yl
= phllz =yl
This shows that
1z = y) = Am(Amz — Any) || < pmllz — yll (5.4.5)
In a similar way, we can obtain that
Iz = y) = An(Bmz = Buy)|| < gmllz — . (5.4.6)

Substituting (3.4) and (3.5) into (3.3), we have

[Tz — Tyl < (Pm + @)z — Y|
< oz —yl.

~

Hence T,, is a nonexpansive mapping and F(T,,) = F(Pc(AnBm — Andn)) =
GVI(C, By, Ap) for each 1 <m <.
Put S, = X7,_ 1 Bmn)Tm- By Lemma 2.7.19, we conclude that S, is a nonexpansive
mapping and F'(S,) =N _ GVI(C, B,,, Anm), Vn > 1. We can rewrite the algorithm
(5.4.2) as

Tni1 = oy f(2n) + (I — apuG)Spxy,. (5.4.7)

Step 1: We will show that {x,} is bounded.
Take v € F(S,) =N _GVI(C, B, Ap), from (5.4.7) and lemma 2.7.3, we have

[2n1 —oll = llawvf(2n) + (I — anpG) Sy, — vl
= ||O‘n(7f(xn) - :U“GU) + (I - anMG)Snxn - (I - anNG)v“
an|v(f(zn) = f(v)) +7f(v) = pGo|| + (1 — )|y — v

IN

< ke = vll + anllvf(v) — pGoll + (1 = anm)|ln — o]

= (1= an(m =7k))[[zn — vl + anlyf(v) = pGo|

| 17/ (v) — MGUH}
’ T — vk '

< maa:{”a:n — |
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By induction, we btain

U“, ||7f(v) B MGUH }

|z, — v Smax{“xl— p——

Hence {x,} is bounded.

Since .S,, is nonexpansive mappings for n > 1, we see that

[Snen — v = [|Spzn — Spo|
< lzn =
< max{“xl—vﬂ, ||’Yf(U)—[LG’U||}
™ — vk

Therefore, {S,z,} is bounded. Since G is a L-Lipschitz continuous mapping, we

have

G Snan = Gol| = [|GSpzn — GSyv]|
< L|[Spa, — Sy
< Lz, — vl
< max {LHxl _ UH’LHVf(;)_—V/]vaH }

Hence {GS,x,} is bounded. Since f is contraction, so f(x,) is bounded.
Step 2: We will show that lim,, . |21 — x| = 0.

From (5.4.7), we consider

Tns1 = Tn = |V f(2n) + (I — anpG)Span)
_[an—l’yf(xn—l) + (I - Oén—l,uG)Sn—lxn—l]
= aY(f(@n) = f(zn-1)) + [(I = upG)Snxy — (I — upG)Sp 1751

+(on — A1)V f(Tn1) + (-1 — Q) WG Sp_12p_1,
it follows that

21 —zall < anykllan — znall + (1 = anm)[[Snan — Spa@nl|

Han = ana|(YI[f (@)l + #| GSnrznl)

IN

anvk||x, — x| + (1 — am) || Spn — Sn_1Tn-1]|

+|O[n — Oén_1|M1, (548)
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where My = sup,»{7[|f(zn)|| + p|GSpz,|}. On the other hand, we note that

HSnxn - Sn—lxn—l” S HSnxn - Snxn—l” + ”Snxn—l - Sn—lxn—lu

IN

||xn - xn—l” + ||2Tm:16(m,n)men—1 - Z:rbzlﬁ(m,n—l)T;nmn—l||
< lzn = 2ol + MaX5 [ Bonny — Biman—1); (5.4.9)

where My = max{sup, > || Tmzn|, V1 <m < r}.
Substituting (5.4.9) into (5.4.8) yields

[Zni1 — 2all < anvkl|zn — 2| + (1 = anm) ||z — 201 || + Mi|ay, —

+M22Tm:1 |B(m,n) - 5(m,n—1)|

< anvkllen =zl + (1= anm)lon — 20|

+Ms([oy — a1 | + z:n:1|ﬁ(m7n) - B(m,n—l)‘)a

where Mj is an appropriate constant such that Mz > max{M;, Ms}.
By conditions (C1) and (C2) and Lemma 2.7.6, we obtain that

lim ||zp41 — x| = 0. (5.4.10)
n—oo

Step 3: We will show that lim,, . ||Sx, — 2| = 0.

Define a mapping S : C' — C' by
Se=% _BnThr, Ve C,

where 3, = lim, o Bpm,n). From Lemma 2.7.19, we see that S is a nonexpansive

mapping and
F(S) =" F(Ty) = (V. .GVI(C, By, A), ¥ > 1.
From (5.4.7), we observe that

[Zns1 = Saznll = anllvf(zn) + pGSnzn|
< an(Yllf(2n) = FOI + [0S (0) + pGSnv]| + pl| G Spwn — GSpvl)).

It follows from the condition (C'1) and the boundedness of {f(x,)} and {GS,z,},
we obtain that

lim ||zp41 — Spaa|| = 0. (5.4.11)
n—oo
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We observe that

Hxn - Snan = ”xn — Tn+1 + Tp4+1 — Snan

< lzn = 2ol + |znts = Spall.
From (5.4.10) and (5.4.11), we obtain
lim ||z, — Spz,|| = 0. (5.4.12)
n—oo

Now, we show that Sz, — z,, — 0 as n — co. Note that

ISz, — x| |Sxn — Spxn + Spxn — 24|

IN

||Z;L:15me$n - Zrm:lﬁ(m,n)menH + |Snwn — 20|

< MZ(E:n:ﬂﬁm - B(W,n)D + ||Sn$n - 1771”

By the condition (C2) and (5.4.12), we have

lim ||z, — Sz,| = 0. (5.4.13)
n—oo

From the boundedness of x,, we deduced that z, converges weakly in F(S), say

Z, — p, by Lemma 2.7.1 and (5.4.13), we obtain p = Sp. So, we have
ww(Tn) C F(S). (5.4.14)

By Lemma 2.7.4, uG —~ f is strongly monotone, so the variational inequality (5.4.3)
has a unique solution z € F\(S) =Nl _,GVI(C, By, Am).

Step 4: We show that limsup,,_, . ((vf — pG)Z,x, — ) < 0.

Indeed, since {x,} is bounded, then there exists a subsequence {x,,} C {z,} such

that

limsup((7f — G a0 — &) = lm (vf — pG)E, 2, — ).

n—oo

Without loss of generality, we may further assume that z,, — p. It follows from

(5.4.14) that p € F(S). Since  is the unique solution of (5.4.3), we obtain

limsup((+f — uC), a0, — &) = lim (v — pG). 2, — 3)
= ((vf—pG)z,p—17) <0. (5.4.15)
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Step 5: Finally, we will show that x,, = Z as n — oo.

From Lemma 2.7.15, we have

||xn+1 - j;||2 = ||an(7f(xn) - MG*%) + (I - anNG)Snxn - MG(I - anNG)j:||2
< (1= onm)’[len = Z[° + 200 (7f (20) — pGT, 21 — T)
< (1= awm) o = Zl° + 2007(f (@n) = f(Z), Tnr1 — )
+200 (7 f(T) — pGT, npy — T)
< (1= am)’[len — 2| + 200kl J2n — Z|||20e1 — 2
+2an (V[ (Z) — nGT, Tpyr — )
< (1= anm)?llen — 2l + anvk([lzn — 2l + [[zar — Z[)
+2a, (v f(Z) — pGT, xpy1 — T)
1 — 20,7 + ()2 + apvk N
< — [0 — x||2
1 —ay,vk
20, - ~
T Ak <7f( ) = pGT, Tpi1 — T)
2an( — k) 2 (ov,m)? 2
— =T T T g
1= 2=, — a4 2, — 5
2c0 - -
1 <’7f( ) MGx7xn+1 - 'I>
- anly
= (1= 0n)llzn — Z* + 0,
where 6,, := %m and &, = ;=0 (2|, — Z)|* 4+ 2(7f (%) — pGT, 2pyy — T)).
Note that,
6, — 20, (T — k) < 2(m — 7k>an.
1 —ay,vk 11—~k
By the condition (C1), we obtain that
lim 6, = 0. (5.4.16)
n—ro0
On the other hand, we have
20, (m — vk)
0, = ————= > 2a,,(m — vk).
1 —avk — on(m = k)
From the condition (C'1), we have
> 0, = o (5.4.17)
n=1

Put M = sup,cn{l|zn — Z||}, we have

On 1 2 N N N
= 3r =) [anm* M 4+ 2(vf(Z) — pGZT, xpiq — T)).
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From the condition (C'1) and (3.14), we have

On
lim sup — < 0. (5.4.18)

n—o0 n

Hence, by Lemma 2.7.6, (5.4.16), (5.4.17) and (5.4.18), we conclude that

lim ||z, —Z|| = 0.
n—oo

This completes the proof. n

If B,, = I, the identity mapping and /\Am = 1, then Theorem 5.4.1 is reduced to

the following result on the classical variational inequality (2.6.1).

Corollary 5.4.2. Let C be a nonempty closed and convez subset of a real Hilbert
space H such that C £ C C C. Let f : C' — C be a contraction with coefficient k €
(0,1). Let G : C — C be a &-strongly monotone and L-Lipschitz continuous map-

ping. Let A,, : C — H be a relaxed (N, pm)-cocoercive and vy, -Lipschitz continuous

mapping, for each 1 < m < r. Let p,, = \/1 — 22X pm + A2 V2 4 2N 2,, where
{A\m} is a positive sequence, for each 1 < m < r. Assume that O _VI(C, A.,) # 0,
E>0,L>0,0<pu<2/L? 0<vy<ul&—pnl?/2)/k=n/k and p,, € [0,1), for
each 1 < m < r. Given the initial guess x1 € C and {x,} is a sequence generated

by
Tnt1 = Oén’)/f(xn) + (I - O‘nMG)EInzlﬁ(m,n)PC(xn - )\mAmxn)7 vn > 17

where {an }, {Ban } {Ben s {Ben) } are sequences in (0,1), satisfying the follow-

g conditions:
(C1) limy o0 vy = 0,55° v, = 00 and X2 a1 — | < 00;

(02) Z;’L:lﬁ(m,n) = I,Vn > 1 ;Zzo:1|ﬁ(m,n+1) - B(m,n)l < oo and hmn—)oo 5(m,n) =
Bm € (0,1),V1 <m <,

Then the sequence {x,,} converges strongly to a common elementz € NI _,VI(C, A,,),

which 1s the unique solution of the following problem:
(vf—pG@)z,x—2) <0, Veen, VI(C,A,).

If r =1, then Theorem 5.4.1 is reduced to the following Corollary.
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Corollary 5.4.3. Let C be a nonempty closed and conver subset of a real Hilbert
space H such that C = C C C. Let f : C — C be a contraction with coefficient
k€ (0,1). Let G : C — C be a &-strongly monotone and L-Lipschitz continuous
mapping. Let A : C — H be a relazed (n, p)-cocoercive and v-Lipschitz continuous
mapping. Let B : C — H be a relaxed (7, p)-cocoercive and v-Lipschitz continuous
mapping. Let p = /1 —2\p+ X202+ 2 2 and q = \/1 —2X\p + A20% 4 2002,
where A\ and \ are two positive real numbers. Assume that GVI(C,B,A) # 0,
€>0,L>0,0<p<2/L%0<vy<p—pLl?2)/k =mn/k and p,q € [0,3).

Given the initial guess x1 € C' and {x,} is a sequence generated by
Tni1 = anyf () + (I — auuG)Po(ABx, — MAx,), ¥Yn > 1,
where {ay,} is a sequences in (0, 1), satisfying the following conditions:

lim o, =0, X% 0, =00 and 257|011 — oyl < 00.
n—oo

Then the sequence {x,} converges strongly to a common element & € GVI(C, B, A),

which is the unique solution of the HGVIP (2.6.3):
(vf — p@)E, 2 — 7) <0, VYo € GVI(C,B,A).

For the variational inequality (2.6.1), we can obtain from Corollary 5.4.3 the

following immediately.

Corollary 5.4.4. Let C be a nonempty closed and convex subset of a real Hilbert
space H such that C £ C C C. Let f : C — C be a contraction with coefficient
k€ (0,1). Let G : C — C be a &-strongly monotone and L-Lipschitz continuous

mapping. Let A : C' — H be a relazed (n, p)-cocoercive and v-Lipschitz continuous

mapping. Let p = /1 —2\p + A202 + 2\nv2, where X is a positive real number.
Assume that VI(C,A) # 0, £ >0,L>0,0 < pu<28/L? 0 <~y < u(E—ul?/2)/k =
w/k and p € [0,1). Given the initial guess x1 € C' and {x,} is a sequence generated
by

Tt = oy f(zn) + (I — anpuG)Po(x, — NAx,), Yn > 1,

where {ay,} is a sequences in (0, 1), satisfying the following conditions:

nh_)rrolo a, =0, XX a,=00 and X0 |an11 — ap| < 0.
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Then the sequence {x,} converges strongly to a common element ¥ € VI(C,A),

which is the unique solution of the HVIP (2.6.2):

(vf — uG)a,x —7) <0, Vo€ VI(C, A).

Remark 5.4.5. (1) If we take G = A and p = 1, where A is a strongly positive

(3)

5.5

linear bounded operator on C' in Theorem 5.4.1, then our iterative algorithm
define by (5.4.2) converges strongly to z € N _,GVI(C, B,,, A,,), such that
(vf—Az,x—2) <0, Ve € N, _,GVI(C, By, A,), Equivalently, 7 is the

unique solution to the minimization problem:

1
min —(Az,x) — h(z),
2€NT, _ GV I(C,Bm,Am) 2

where h is a potential function for vf (i.e., h'(z) = vf(x) for x € H).

If we taking G = I and v = o = 1, where [ is a identity mapping in Theorem
5.4.1, then our iterative algorithm define by (5.4.2) converges strongly to a
common element € N _ GVI(C, B,,, An), such that ((f — )T,z — ) <
0, YVeen! GVI(C, B, An,).
In case, f = 0, our iterative algorithm define by (5.4.2) converges strongly to
Z which is the unique solution to the quadratic minimiztion problem:

z = arg min | 2] (5.4.19)

@en” _ GV I(C,Bm,Am)

In case, f = u, where u is fixed element in C, our iterative algorithm define by
(5.4.2) converges strongly to a common element £ € NI _,GVI(C, B,,, An),
such that (u — Z,2 — %) <0, Ve en! GVI(C, B, Ay,).

Note that, our iterative algorithm define by (5.4.2) are more flexible in solving

the HGVIP than the one introduced by Yu and Liang [51].

Iteration Algorithm for Solving Hierarchical Equilib-

rium and Generalized Variational Inequality Problem

In this section, we introduce the convex feasibility problem (CFP) in the case

that each is a solution set of the generalized variational inequality and the equilib-

rium problem and show a new approach method to find a common element in the
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intersection of the set of the solutions of a finite family of equilibrium problems and
the intersection of the set of the solutions of a finite family of generalized variational
inequality problems in a real Hilbert space which is is a unique solution of the hier-
archical equilibrium and generalized variational inequality problems(HEGVIP).
Let I ={1,2,...,1} be a finite index set. For each i € I, let F; be a bi-function from
C' x C into R satisfying (A1)-(A4). Denote T/ : H — C by
T (z) = {z eC: Fi(z,y) + %(y—z,z—x) >0,Yy € C’}.

Theorem 5.5.1. Let C be a nonempty closed and convex subset of a real Hilbert
space H such that C£C C C. For eacht € I, let F; be a bi-function from C'x C into
R satisfying (A1)-(A4). Let f: C — C be a contraction with coefficient k € (0,1).
Let G : C'— C be a &-strongly monotone and L-Lipschitz continuous mapping. let
A, C — H be a relaxed (N, pm)-cocoercive and vy,-Lipschitz continuous mapping

and B, : C — H be a relaxed (N, pm)-cocoercive and Uy,-Lipschitz continuous

mapping for each 1 <m <r. Letp,, = \/1 — 2 P + A2 V2 4 2N V2, and gy, =

\/1 — QAP + A2, 02, + 2\ im0, where { A} and {\,} are two positive sequences
for each 1 < m < r. Assume that Q = (N, EP(F)) N (N _GVI(C, B, A))
£0,6>0,L>0,0<pu<2/L? 0<~y<ul&—ul?)2)/k =x/k and ppm,qm €
[0, %), for each 1 <m <r. Given {x,} is a sequence generated by

(

xr, € C,
ul, =T x,, Vi€l
vy = ui+u%zr-~+u£1, (5.5.1)

Yy = PC(S\mBmvn — AmAnvn), Vm=1,2,...,r,
Tpy1 = an’yf(xn) + ([ - O‘TLMG) Zrm:1 B(m,n)y;na vn > 1a

where {o}, {Bmny} C (0,1),¥V1 < m < r and {r,} C (0,400) satisfying the

following conditions:
(C1) limy ooy, =0, 07y, =00 and Y o |1 — Q| < 00;

(C2) Z;l:l ﬁ(m,n) = Lvn > 1 ;Zzozl |5(m,n+1) - ﬁ(m,n)‘ < 00 and
limy, o0 6(m,n) = Bm € (07 1)7V1 <m<r.

(C3) liminf, soory, >0 and > 00 | |rp1 — 1| < 00;
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Then the sequence {x,} converges strongly to a common element ¢ € €, which is

the unique solution of the HEGVIP:
((vf — pG)e,x —c) <0, Voel (5.5.2)

Proof. We will proceed with the following steps.
Step 1: We prove that PC(S\mBm — AmA,,) is a nonexpansive mapping.
Put T,, = PC(S\mBm — M), V1 <m <r.Ve,y € C and 1 <m <r, we have
|Tnz —Toyll < |l(z—y) — An(Anz — Any)|l

+|(z = y) = An(Bmz — Bny)||- (5.5.3)

It follows from the assumption that each A,, is relaxed (9, pm)-cocoercive and v,,-

Lipschitz continuous that ||(z — y) — A (Amz — Any)||? < p2|lz — y||?. This shows

that ||(z —y) — An(Amx — Any)|| < pwllz — y||. In a similar way, we can obtain that
[ = ) =SB = Bug)| < gmllz — |- So, we have

1Tz — Tyl < (pm+gm)llz —yll < llz =yl (5.5.4)
Hence T, is a nonexpansive mapping and

F(T,,) = F(Pc(AmBm — A\nAn)) = GVI(C, By, Ap),V1 <m <r

. Put S, = E:nzl Bmm)Tm. By Lemma 2.7.19, we conclude that S, is a nonex-
pansive mapping and F(S,) = N, _,GVI(C, By, An),¥n > 1. We can rewrite the
algorithm (5.5.1) as

Tot1 = apyf(zn) + (I — apuG)S,vp,. (5.5.5)

Step 2: We prove that the sequence {x,}, {y™}, {v,} and {u!} are bounded.

Take ¢ € Q. For each i € I, we have
lup, = cll = 117,20 = T el < llzw —cll,  ¥n>1. (5.5.6)
From (5.5.1) and (5.5.6) we have
[on —cll <lzn —cll,  Vn=>1 (5.5.7)
For each 1 < m < r, we have

lyn" = el < (om + gn)llon — ¢l < llzn — €| (5.5.8)
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From (5.5.1), (5.5.8) and Lemma 2.7.3 | we have
lenir— el < anli(Fm) — £(©)) +7F(c) — uGel
(1= anm)|| Y Bommyn' — el
m=1

< max{”xn _C||7 H’Yf(@ _HGCH },VTL > 1.
™ —~k

By induction, we obtain ||z, —¢|| < max{ |x1—¢l, M},Vn > 1. Hence {z,}
Ty

is bounded. Also, we know that {y™}, {v,} and {u’ } are all V1 < m < r V1 <i <.

Since S, is nonexpansive mappings for n > 1, we see that

| |vf(c) —MGCH}
’ T —k '

1Szl < ||xn—c||Smax{||x1—c|

Therefore, {S,z,} is bounded. Since G is a L-Lipschitz continuous mapping, we

have |GS,z, —Gc|| < L|jz, —¢|| < max {LH:UI —|l, L”chf)_—;’,zac} Hence {G'S,z,}

is bounded. Since f is contraction and {z,} is bounded, so {f(z,)} is bounded.
Step 3: We prove that lim, . [|z,11 — z,] = 0.

From (5.5.1), we consider

T

Topt = Tn = [(I = anpiG) D Bummyt — (I = anptG) > Bimn-1)yri]

m=1 m=1

—i—(O&n - Oén—l)Vf(xn—l) + (an—l - an)NG Z ﬂ(m,n_ny;”,l
m=1

+an'7(f(xn) - f(mn—l))v
it follows that

[Tns1 =zl < (1= anm)|| Z Bmm)Yn — Z Bma-1)Yn-ll
m=1 m=1

+anvk|| T, — Tpo1l|| + o — a1 | My, (5.5.9)
where My = sup, s {7/ (za)ll + |G 3201 Bammyyir |}, and
1Y Bonmy = Beoma-1all € Mo By =B+ l[on—=vna], (5.5.10)
m=1 m=1 m=1

where M, = max{sup,,>, [|[y2'|,V1 <m < r}. V€ I, since ul,_,,ul, € C, we have

n—17 “n

Fi(uy,,up,_y) + —(uy_y — uy,u,, — x,) >0, (5.5.11)

’ —1
n n rn
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and

Fi(ufz—la u;) +

<U; - u;—b u’f’b—l - wn71> Z 0. (5512)
Tn—1

From (5.5.11), (5.5.12) and (A2), we see that

T'n

0 < r[Fi(tny, v, y) + Fi(tg oy, )] + (g, =ty iy, — @ — —— (g = Tn1))

Tn—1

. . . T

< (U = Uty — T — —— (U — Ty1))
Tn—1

which implies

T'n

(u' | —xp_1)) <0. (5.5.13)

i i 7 7 i
<un71 Uy Uy = Uy T T = Tyl + Tyl — Uy + r
n—1

It follows from (5.5.13) that

— Tp—1

) ) T i
[y, — il < Nlwn = 2l + | lzn1 —upall, V=1 (5.5.14)

n—1
Without loss of generality, let us assume that there exists a real number d such that
rn >d >0 for all n > 1. Since v, = (uh +u + ... +ul), by (5.5.14), we have

l

1 ) )
o =vnall < D k=i, < llo =]+
=1

|Tn - 7’nfl’

My, V21 (55.15)

where Mz = max{sup,>; 2221 |zn_1 —ul_]|,V1 <i <[}, From (5.5.9), (5.5.10)
and (5.5.17), we have

[0t —zall < (1= an[m = yk])[l2n — 20

+M |:‘04n - O5n—l| + Z |6(m,n) - B(m,nfl)‘

m=1

+w}, (5.5.16)

where M is appropriate constant such that M > max{M;, Ms, M3}. By conditions
(C1),(C2) and (C3) and Lemma 2.7.6 , we obtain that

lim ||z,41 — 2] = 0. (5.5.17)
n—oo
Define a mapping S : C' — C' by

Sz =" BuPo(An Bt — AnApz), VY € C, (5.5.18)

m=1
where 3, = lim, o Bm,n). From Lemma 2.7.19, we see that S is a nonexpansive

mapping and F(S) =N, _F(T,,) =Nl _GVI(C, By, Apm),Vn > 1.
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Step 4: We will show that lim,, . ||Sx, — z,|| = 0.

By Lemma 2.7.21, we see that

lun, —ell* < (T}, w0 =T} ;00 — )

= |lzn —c|® — ||u’, — 2, (5.5.19)
From (5.5.19) and Lemma 2.7.22,
1 1
lon —¢l” < 7 D Mgy = el <l = el ~ 7 D M, = . (5.5.20)
i=1 i=1

From (5.5.20) and Lemma 2.7.15, we have

20 —cl? < (1= anm)?[lon — 2|” + 200 (7 f(2n) — pGe, pi1 —©)

< o — 2|* + 20017 (20) = pGell|nia — ]
l
1 [
< low =l = 3 D Mk = @all® + 20l f (@) = pGeasn ]l
=1
It follows that

1 l
N s, = x"HQ < [Hwn —c| = [[wns — CM [Zni1 — 20|
l

=1

Letting n — oo in the equality (5.5.21), we obtain
lim |lu}, —x,|| =0, Viel. (5.5.22)
n—oo

By Lemma 2.7.22, we get

o=l = |3 Sl — ] < %Z I =zl (55.23)
i=1 i=1
Hence
nh_)rgo |vn, — x| = 0. (5.5.24)
Furthermore, it is easy to prove that
lim o, — ul| =0, Viel. (5.5.25)

From (5.5.5), we observe that

[Zn+1 = Snvnl| = an|lvf(zn) + pGSpvnl|- (5.5.26)
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Hence, lim,, o0 ||Zn+1 — Snvn|| = 0. Since ||z, — Spvn|| < ||Tnr1 — Snvn |+ |20 — Tria ]
it follows that
lim ||z, — Syv,|| = 0. (5.5.27)

n—o0

From (5.5.22), (5.5.24), (5.5.25), (5.5.27) and S,, is nonexapnsive, we have
lim ||z, — Spx,|| = lim [Jv, — Syv.|| = lim ||u!, — S,ul|| =0, Viel. (5.5.28)
n—00 n—00 n—o0

Now, we show that Sz, — z,, — 0 as n — oo. Note that

m=1 m=1

m=1

By the condition (C2) and (5.5.28), we have

lim ||z, — Sz,|| = 0. (5.5.29)
n—oo

From the boundedness of z,, there exists a subsequence {z,,} C {z,} such that

T,, — z as j — 0o, by Lemma 2.7.1 and (5.5.29), we obtain z = Sz. So, we have
ze€ F(S)=n _GVI(C, By, Ap),Vn > 1. (5.5.30)

From (5.5.22), we also have uj, — z as j — 00,Vi € I, since Fi(uj, ,y) + ;—(y —

ul, ul, —x,,) > 0,Yy € C, it follows from (A2) that

n;i? 'ng

1 . ) ) ) 1 ) )
E(y_uil]’7u:’bj _:L.nj> 2 E(y7u:’bj>+F'7/(u;LJ7y)+7<y_uil]7u:’bj _xnj>
ol — Ty, A
-, Ty s R, WyeC (5.5.31)
n;
For (5.5.22) and (A4), we have
Fi(y,z) <0, VyeC. (5.5.32)

Put ys =ty+(1—1t)z,t € (0,1). Then y; € C and Fi(y;, 2) < 0forall i € I. By (Al)
and (A4), we obtain 0 = F;(y, y;) < tFi(ys,y) + (1 — ) Fi(yi, 2) < tF;(y,y), Vi € 1.
By (A3), we get

Fi(2,y) 2 Im Fity + (1 — t)z,y) = lim Fy(y,, y) 2 0,¥i € I.
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It follows that z € ()._, EP(F}). Hence, z € Q. So, we have wy,(z,) C Q. By Lemma
2.7.4, nG — ~f is strongly monotone, so the variational inequality (5.5.2) has a

unique solution ¢ € €.

Step 5: We will show that limsup,,_,. ((vf — pG)e, z, — ¢) < 0.
Indeed, since {x,} is bounded, then there exists a subsequence {x,, } C {z,} such

that
limsup((vf — pG)c, zy — ¢) = lim ((vf — pG)c, zy, —c). (5.5.33)
1— 00

n—0o0

Without loss of generality, we may further assume that z,, — z. It follows from

(5.5.13) that z € Q. Since z is the unique solution of (5.5.2), we obtain

lim Sup<(7f - :U’G)C? Tn — C> = hm <<’Yf - MG)Q Ln; — C>

n—o00 —00

= {(vf—pG)e,z—c) <0.  (5.5.34)

Step 6: Finally, we will show that x,, — ¢ as n — oc.
From Lemma 2.7.3, Lemma 2.7.15 and (5.5.1) we have

l
e — el < (1— OWT)2H% > (g, = P + 2007 (f(n) = f(€)sni1 =€)
=1
+205n<7f(c> - MGQ Tp4+1 — C>
 2ap (1 — k)

2
< N 2 (anm) 2
20,
+m<7f(c) — pGe, Tpy1 =€)
= (1=0o)llzn —c]|* + 00,
where 0,, := %;Jkk) and 6, := =32 (2|, — c||* + 2(vf(c) — uGe, Ty — ).
Note that,
2, (m —vk) _ 2(m — k)
0, = < n- 5.
ok = 1k a (5.5.35)
By (C1), we obtain that lim,_,., 6, = 0. On the other hand, we have
204”(7'(' — ’}/k')
0, = ———>->2 — k). 5.
n ok ap(m — k) (5.5.36)
From (C1), we have ", 6, = co. Put M = sup,,cy{||z, — ¢/}, we have
O 1 5
g = m[@nﬂ' M + 2<’7f(6) — ,uG’c, Tp+1 — C>] (5537)
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It follows that limsup,,_, . g—z < 0. Hence, by Lemma 2.7.6, we conclude that

lim ||z, —¢|| = 0. (5.5.38)
n—oo
Therefore x,, — ¢ as n — o0o. This completes the proof. n n

As direct consequences of Theorem 5.5.1, we obtain corollaries.

Corollary 5.5.2. Let C be a nonempty closed and convex subset of a real Hilbert
space H such that C = C C C. Let F be a bi-function from C' x C into R satis-
fying (A1)-(A4). Let f : C — C be a contraction with coefficient k € (0,1). Let
G : C — C be a &-strongly monotone and L-Lipschitz continuous mapping. let
A, 2 C — H be a relaxed (N, pm)-cocoercive and vy,-Lipschitz continuous map-

ping and B, : C' — H be a relaxed (T, pm)-cocoercive and Uy,-Lipschitz continuous

mapping for each 1 < m < r. Let p, = \/1 — 2 mPm + A2 V2 4 202, and

Gm = \/1 — QP + A2, 02 + 2\ i D2, where {\n} and {A\n} are two positive se-
quences for each 1 < m <r. Assume that A = EP(F)N (N _ GVI(C, By, An)) #
0,6>0,L>0,0<p<2/L?0<vy<ué—pL?/2)/k=m/k and pp,qm € [0, 3),
for each 1 < m <r. Given {x,} is a sequence generated by

(

x € C|

Uy =1}, T,

Yy = Pc(j\mBmun — AmAnuy), Ym=12,...,r,

| o1 = Y f(@n) + (I — anpG) 320y By, Yn =1,

where {ou}, {Bmm} C (0,1),V1 < m < r and {r,} C (0,+00) satisfying the

following conditions:
(C1) limy ooy, =0, 07y, =00 and Y o0 |1 — ay| < 00;

(Cz) Z;l:l B(m,n) = Lvn > 1 ;Zzozl |5(m,n+1) - ﬁ(m,n)‘ < 00 and
limy, o0 6(m,n) = Bm € (07 1)7V1 <m<r.

(C3) liminf, soory, >0 and > 00 | |rp1 — 1| < 00;

Then the sequence {x,} converges strongly to a common element ¢ € A, which is

the unique solution of the HEGVIP: ((vf — nG)c,x — ¢y <0, Vo € A,
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Corollary 5.5.3. Let C' be a nonempty closed and conver subset of a real Hilbert
space H such that C +=C C C. Let F be a bi-function from C x C into R satisfying
(A1)-(A4). Let f : C — C be a contraction with coefficient k € (0,1). Let G :
C — C be a &-strongly monotone and L-Lipschitz continuous mapping. Let A :
C — H be a relaxed (n,p)-cocoercive and v-Lipschitz continuous mapping. Let
B : C — H be a relaxed (70, p)-cocoercive and v-Lipschitz continuous mapping. Let
p = 1-=2Xp+ 02+ 22 and q = \/1 — 20\p + A\202 4+ 2\72, where \ and

A are two positive real numbers. Assume that A = EP(F)NGVI(C,B,A) # 0,
E>0,L>0,0<pu<2/L%0<~y<pé—pl?/2))k=mr/k and p,q € [0,%).

Given the initial guess x1 € C' and {x,} is a sequence generated by

(
$1EC,

Up = Trnxna

Yp = Po(j\Bun — AMuy,),

Tpi1 = AV f(2n) + (I — anuG)y,, Vn > 1,

\

where {a,} C (0,1) and {r,} C (0,+00), satisfying the following conditions:
(C1) limy ooy, =0, 07y, =00 and Y 0 |1 — ay| < 00;
(C2) liminf, soory, >0 and Y 00 | |rpp1 — 1| < 00;

Then the sequence {z,} converges strongly to a common element ¢ € A, which is

the unique solution of the HEGVIP: {(vf — uG)c,z —¢) <0, Va € A.

If Fi(x,y) = 0,Y(x,y) € C' x C' in Theorem 5.5.1, for all i € I. Then, from the

algorithm (5.5.1), we have u, = Pox,, for all i € I. So we have the following result.

Corollary 5.5.4. Let C be a nonempty closed and convex subset of a real Hilbert
space H such that C £ C C C. Let f : C — C be a contraction with coefficient
k€ (0,1). Let G : C — C be a &-strongly monotone and L-Lipschitz continuous
mapping. let Ay, : C — H be a relazed (N, pm)-cocoercive and vy, -Lipschitz continu-

ous mapping and B, : C'— H be a relaxed (N, pm)-cocoercive and Uy, -Lipschitz con-

tinuous mapping for each 1 < m < r. Let pp = /1 — 2X\pppm + A202, + 2N/,

and ¢y, = \/1 — 2hmpm + N2 02 + 2\ b2, where {\n} and {\,} are two posi-
tive sequences for each 1 < m < r. Assume that © = NI _ GV I(C, By,, Ap) # 0,
§>0,L>0,0<pu<2/L?0<y<u&—pnl?/2)/k =7/ and pm,qm € [0, 3),

)
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for each 1 < m < r. Given the initial guess v, € C and {x,} is a sequence generated

by

Tp1 = Qv f(zn) + (I — anuG)Ezlzlﬁ(m’n)Pc(S\mBmxn — AmAnxy), Yn>1,
where {on,} and {Bmn} C (0,1),V1 < m <1 satisfying the following conditions:
(C1) limy, ooy, =0, 7y =00 and Y o i1 — ay| < 00;

(Cz) ZTm:1 B(m,n) = 1,Vn >1 ;Zzozl |/6(m,n+1) - ﬁ(m,n)| < oo and
limy, 00 ﬂ(m,n) = ﬂm € (07 1)7V1 <m<r.

Then the sequence {x,} converges strongly to a common element ¢ € ©, which is

the unique solution of the HGVIP: ((vf — pG)e,z —¢) <0, Vx € ©.

5.6 Some Application to Optimization Problems

From Theorem 5.1.1, we can dedude the following interesting corollary for solving

the quadratic minimiztion problem.

Corollary 5.6.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let f : C — H be a p-contraction (possibly nonself) with p € (0,1). Let
S, T :C — C be two nonexpansive mappings with F(T) # 0.{a,} and {58,} are two
sequences in (0,1). Starting with an arbitrary initial guess xo € C and {z,} is a

sequence generated by

Yo = BuSTn+ (1= Bn)Tn,
Tn1 = Poloanf(zn) + (1 —an)Ty,], ¥Yn>1. (5.6.1)

Suppose that the following conditions are satisfied:
(C1) limy, oo, =0 and > 07 | a, = 00;

(C2) lim, s 5—: =0;

(C3) lim, s W =0 and lim,,_, m"_ﬁ%”' =0 or

(C4) S0 oy —aq| <00 and Y2, |8, — fn — 1] < cc.



165

Then the sequence {x,} converges strongly to a point & € H, which is the unique

solution of the variational inequality:
re F(T), ((I-f)z,x—z)>0, Vee F(T). (5.6.2)

Equivalently, we have Pper)(f)T = &. In particular, if we take f = 0, then the
sequence {x,} converges in norm to the Minimum norm fized point T of T, namely,

the point T is the unique solution to the quadratic minimiztion problem:

: 2
- _ 5.6.3
¢=arg min ] (5.6.3)

Proof. As a matter of fact, if we take A = I and v = 1 in Theorem 5.1.1. This

complete the proof. O



CHAPTER 6 CONCLUSIONS

In this chapter, we conclude all the theorems obtained in this dissertation as

follows:

Let © denote the class of those functions 6 : (0,1]° — [0,1] such that 6 is
continuous and

O(z,1,1,x,2) = .

(1) Let (X, M, ) be a fuzzy metric space and let f, g be self-mappings of X such
that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (A,),
(¢) R-weakly commuting of type (Ay),
(d) R-weakly commuting of type (P).

If the following holds: (7) f and g satisfy the (CLRg) property;
(i) [N (s)ds > [MOPD 4 (s)ds for @,y € X;
(131) OM(fx’ffm’t) P(s)ds > fon(x) Y(s)ds for fx # ffr and

n(x) = 0(M(gz, gfx,t), M(fx, gz, t), M(f fr,gfx,t), M(fr,gfx,t), M(gx, f fr,t))

for some 6 € O,
whenever ¢ : R, — R is a Lebesgue integrable mapping which is summable,

nonnegative and such that

| wtspas =0

for each € > 0, then f and g have a common fixed point.

(2) Let (X, M, *) be a fuzzy metric space and let f, g be self-mappings of X such
that (f, g) is any one of the following:
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(a) R-weakly commuting,
(b) R-weakly commuting of type (A,),
(¢) R-weakly commuting of type (Ay),
(d) R-weakly commuting of type (P).

If the following holds:
(1) f and g satisfy E.A. property and gX is a closed subspace of X;

(i) fOM(fx’fy’t) Y(s)ds > fOM(gx’gy’t) Y(s)ds for x,y € X;

(i14) OM(fm’ffz’t) P(s)ds > fon(x) W(s)ds for fx # ffx and

n(x) = 0(M(gz, gfx,t), M(fx, gz, t), M(f fr,gfx,t), M(fx,gfz,t), M(gx, f fr,t))

for some 6 € O,
whenever ¢ : R, — R is a Lebesgue integrable mapping which is summable,

nonnegative and such that

| wtstas >0

for each € > 0, then f and g have a common fixed point.

Let A denote the class of those functions § : (0,1]* — [0,1] such that § is
continuous and

Sz, 1,2,1) = x.

(3) Let (X, M, *) be a fuzzy metric space and let f, g be self-mappings of X such
that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (A4,),
(¢) R-weakly commuting of type (Ay),
(d) R-weakly commuting of type (P).

If the following holds:
(1) f and g satisfy the (CLRg) property;
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(i1) fOM(fx’fy’t) P(s)ds > fOM(gx’gy’t) P(s)ds for z,y € X;
(ii7) fM(fx’ffm’t) P(s)ds > fon(a:) Y(s)ds for fx # ffx and

n(x) = 0(M(gz,gfx,t), M(fx,gx,t), M(fr,gfx,t), M(ffr,gfr,1))

for some § € A,
whenever ¢ : R, — R is a Lebesgue integrable mapping which is summable,

nonnegative and such that

/0 " u(s)ds > 0

for each € > 0, then f and g have a common fixed point.

(4) Let (X, M, *) be a fuzzy metric space and let f, g be self-mappings of X such
that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (A4,),
(¢) R-weakly commuting of type (Ay),
(d) R-weakly commuting of type (P).

If the following holds:
(1) f and g satisfy the (E.A.) property and ¢X is a closed subspace of X;
(i) fOM(fx’fy’t) V(s)ds > fOM(gx’gy’t) Y(s)ds for z,y € X;

(i11) OM(fx’ffm’t) P(s)ds > fon(r) Y(s)ds for fx # ffxr and

n(x) = 6(M(gz, gfx,t), M(fx, gx,t), M(fx,gfx,t), M(f fz,gfx,t))

for some 6 € A,
whenever ¥ : R, — R is a Lebesgue integrable mapping which is summable,

nonnegative and such that

| wtstas >0

for each € > 0, then f and g have a common fixed point.
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(5) Let (X,d) be a K-metric space with a cone P having non-empty interior
(normal or non-normal) and F : X* — X and g : X — X be mappings satisfy

CLR, property. Suppose that for any z,y, z,u,v,w € X, following condition

d(F(z,y,2), F(u,v,w)) = ad(F(x,y,z),g9x) + axd(F(y, z,x), gy)

+a3d Z X y) gZ) —|—CL4d<F(U,U,U}),gU)

w,u,v), gw)
—l—a7d )

(F(z,

+asd(F (v, w,u), gv) + agd(F(

(F(u, v, w), gz) + asd(F (v, w, u), gy)
+agd(F(w,u,v), 92) + awd(F(z,y, 2), gu)
+and(F(y, z,x),gv) + a12d(F(z, z,y), gw)
+aizd(gr, gu) + arad(gy, gv) + arsd(gz, gw),

15

holds, where a;, ¢ = 1,--- ,15 are nonnegative real numbers such that Zai < 1.
i=1

Then F' and g have a tripled coincidence point.

(6)Let (X,d) be a K-metric space with a cone P having non-empty interior
(normal or non-normal) and F : X* — X and g : X — X be mappings satisfy

CLR, property. Suppose that for any z,y, z, u,v,w € X, following condition

d(F(z,y,2), F(u,v,w)) 3 ard(F(z,y,2),92) + axd(F(y, z, ), gy)
+agd(F(z,2,9), 92) + asd(F(u,v,w), gu)

+asd(F (v, w,u), gv) (

+azd(F(u,v,w), gr) + agd(F (v, w,u), gy)

+agd(F( ), 9%)

+and(F(y, z,x),gv) + a12d(F(z, z,y), gw)

+azd(gz, gu) + aad(gy, gv) + a1sd(gz, gw),

15
holds, where a;, + = 1,--- ,15 are nonnegative real numbers such that Zai < 1.

i=1
If F' and g are W-compatible, then F' and g have a unique common tripled fixed
point. Moreover, common tripled fixed point of F' and ¢ is of the form (u,w,u) for

some u € X.
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(7) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
f: C — H bea p-contraction with p € (0,1). Let S, T : C' — C be two nonexpansive
mappings with F(T) # (. Let A be a strongly positive linear bounded operator on H
with coefficient 5 > 0. {a,,} and {8,} are two sequences in (0,1) and 0 <y < 5/p.

Starting with an arbitrary initial guess xy € C' and {x,} is a sequence generated by
Yo = BpStn+ (1= fo)n,
Tpr1 = Polanyf(z,) + (I — ATy, Yn > 1.
Suppose that the following conditions are satisfied:
(C1) limy, oo 0y =0 and >0 | @, = 00;
(C2) limy, o0 g—z =7=0;

(C3) Timy o @2=22=t = 0 and Timy, o 2=P2=tl = 0 0r

(C4) S0 |y — | < ooand Y07 |6y — Baoi1]| < 0.

Then the sequence {z,} converges strongly to a point & € H, which is the unique

solution of the variational inequality:
e F(T), (A—~f)z,z—x)>0, VYexe F(T).

Equivalently, we have Ppi1y(I — A+~f)Z = .

(8) Let C' be a nonempty closed convex subset of a real Hilbert space H. Let
f:C — H be a p-contraction (possibly nonself) with p € (0,1). Let S,7: C — C
be two nonexpansive mappings with F(T) # ). Let A be a strongly positive linear
bounded operator on a Hilbert space H with coefficient 4 > 0 and 0 < v < 7/p.
{a,} and {f,} are two sequences in (0, 1). Starting with an arbitrary initial guess

zo € C nd {z,} is a sequence generated by

Tny1 = Polonyf(z,) + (I —a,A)Ty,), ¥Yn> 1.
Suppose that the following conditions are satisfied:

(C1) limy oo 0y, =0 and > 7 | @, = 00;
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(C2) lim, s g—z =171 € (0,00);

(05) hmn—>oo lon—an—1|+|Bn—Pn-1| — O,

anfBn

< K.

(C6) there exists a constant K > 0 such that aLlﬁi - ,6’1'1

Then the sequence {z,} converges strongly to a point & € H, which is the unique

solution of the variational inequality:
1
T e F(T), (;(A—vf)f—l—(]—S)j,x—@ >0, Vexe F(T).

(9) Let C' be a nonempty closed and convex subset of a real Hilbert space H.
Let f : C'— H be a p-contraction mapping, S : C' — H be a nonexpansive mapping
and {T;}2, : C'— C be a countable family of k;-strict pseudo-contraction mappings

and F = .aF(Tz‘) # (). Let oy = 1, and 21 € C and define the sequence {z,} by

Yn = PC'Wnsxn + (1 - ﬁTL)xn]v
Lp+1 = PC’[anf(xn) + Z(ai—l - aZ)V;ynL Vn 2 17
=1

where {a,,} C (0,1) and {«,} is a strictly decreasing sequence, V; = k; I+ (1 —k;)T;
{8,} € (0,1) and {«,} and {3,} are sequences satisfying the conditions (H2) with
7 = 0, (H3), either (H4) and (H5) , or (H6) and (H7). Then the sequence {z,}
converges strongly to a point z € F, which is the unique solution of the variational
inequality:

(I —f)z,x—2)>0, VxeF.

(10) Let C' be a nonempty closed and convex subset of a real Hilbert space H.
Let f: C'— H be a p-contraction mapping, S : C' — C be a nonexpansive mapping
and {7;}5°, : C'— C be a countable family of k;-strict pseudo-contraction mappings

and F = aF(E) # (). Let ap = 1, and z; € C and define the sequence {z,} by

Tnt1 = Polon f(2,) + ;(am —a)Viyn], Yn>1

where {a,,} C (0,1) and {«,} is a strictly decreasing sequence, V; = k; I+ (1 —k;)T;
{Bn} € (0,1) and {a,,} and {f,} are sequences satisfying the conditions (H2) with
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7 € (0,00), (H3), (H8) and (H9). Then the sequence {x,} converges strongly to a

point z* € F, which is the unique solution of the variational inequality:
1
(- —=fla*+({I—-9)z", o —2a") >0, VeelF.
-

(11) Let H be a real Hilbert space, C' be a closed convex subset of H. Let
A : C — H be a strongly positive linear bounded operator, f : C' — H be a p-
contraction, v be a positive real number such that L;1 << %. Let T:C — C
be a nonexpansive mapping, B : C' — C be a (-strongly monotone and L-Lipschitz
continuous. Let ¢ : C' — C be a k-contraction mapping with & € [0,1). Suppose

{z,} is a sequence generated by the following algorithm xy € C arbitrarily

Zn = TPC’[I - 6n(A - /Yf)]xna
Yn = (I — pfppB) 2y,
Tl = @ad(z) + (1 — an)yn, Y >0,

where {a,}, {6,} C [0,1]. If € (0,35) is used and if {8,} C (0,1] satisfy the

following conditions:
(C1): E3L[0n41 — bn| < 00, B3L,0,, = 00
(C2): B3 [Bn41 — Bl < 005
(C3): X2, |ans1 — | < 00, limy, 00 vy = 0;
(C4): 6, < B, and B, < a,.
Then {z,} converges strongly to z* € Y, which is the unique solution of the varia-

tional inequality:
Find z* € T such that (I — ¢)z",x —z*) >0, Ve € T,

where T := VI(, B) := V[(VI(F(T), A—~f), B).

(12) Let C be a nonempty closed and convex subset of a real Hilbert space H
such that C £ C C C. Let f : C' — C be a contraction with coefficient k£ € (0, 1).
Let G : C'— C be a &-strongly monotone and L-Lipschitz continuous mapping. let
A, : C — H be arelaxed (0, pm)-cocoercive and v,,-Lipschitz continuous mapping

and B, : C' — H be a relaxed (), pm)-cocoercive and 2,,-Lipschitz continuous

mapping for each 1 < m < r. Let p,, = \/1 — 2 P + A2 V2 4 2\, 2, and

Om = \/1 — 2\mfm + A2, 02 + 2\ D2,, where {\,} and {\,} are two positive
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sequences for each 1 < m <r. Assume that N, _,GVI(C,B,,, An) # 0, >0,L >
0,0 <p<2/L%0<vy < pl€—pL?)2)/k = n/k and pn,qm € [0,3), for each

1 <m <r. Given the initial guess x; € C and {z,} is a sequence generated by
LTntl1 = OénrYf(xn) + (I - O‘nMG)E:nzlﬁ(m,n)PC(j\mBmxn - )\mAmxn)7 vn 2 ]-7

where {on }, {Bam } {Ben s - {Bern) b are sequences in (0, 1), satisfying the follow-

ing conditions:
(C1) limy o0 vy = 0, X5% v, = 00 and X2 |1 — Q| < 00;

(02) ZTmzlﬁ(m,n) = 1,‘v’n > 1 aEzo:1|ﬁ(m,n+l) - 5(m,n)| < oo and hmn—>00 ﬁ(m,n) =
Bm € (0,1),V1 <m <r.

Then the sequence {x,} converges strongly to z € N _,GVI(C, B, A,,), which is
the unique solution of the HGVIP:

(vf—pG)Z, e —2) <0, Yeen _,GVI(C, B, An).

(13) Let I = {1,2,...,1} be a finite index set. For each i € I, let F; be a
bi-function from C' x C into R satisfying (A1)-(A4). Denote T} : H — C by

. 1
1) () = {ZE C’:E(z,y)—l—r—(y—z,z—x) EO,VyGC'}.

n

Let C' be a nonempty closed and convex subset of a real Hilbert space H such that

C+C CC. For each i € I, let F; be a bi-function from C' x C' into R satisfying
(A1) Fi(z,z) =0 for all z € C;

(A2) F; is monotone, i.e., Fij(x,y) + F;(y,x) <0 for all z,y € C;

(A3) for each z,y,z € C, limyo Fi(tz + (1 — t)z,y) < Fi(z,y);

(A4) for each z € C,y — F;(z,y) is convex and lower semicontinuous.

Let f : C — C be a contraction with coefficient k£ € (0,1). Let G : C — C
be a &-strongly monotone and L-Lipschitz continuous mapping. let A, : C — H
be a relaxed (7, pm)-cocoercive and v,,-Lipschitz continuous mapping and B,, :

C' — H be a relaxed (7, pm)-cocoercive and 0,,-Lipschitz continuous mapping

for each 1 < m < r. Let p, = \/1—2)\mpm+)\$nz/fn+2/\mnmyfn and ¢, =
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\/ 1-— 25\mﬁm + 5‘%1’97271 + 25\mﬁm193n, where {)\,,} and {j\m} are two positive sequences
for each 1 < m < r. Assume that Q = (Ni_, EP(F;)) N (N7,_,GVI(C, By, Ap))
#£0,¢&>0,L >0,0 < pu<2/L? 0 <~ < ul&—pul?/2)/k = 7/k and
Pms Gm € [0, %), for each 1 < m < r. Given {x,} is a sequence generated by

;

HAS C,
ul, =T ©,, Viel,

— Uptuptetuy
Up = 1 )

Yy = Pem Bt — AmAmvy),  ¥Ym=1,2,...,r,
Tp+1 = anfyf(xn> + (I - Oén/fLG) Z:nzl ﬁ(m,n)y;na Vn > 17

\
where {ay}, {Bumn} C (0,1),¥1 < m < 7 and {r,} C (0,400) satisfying the

following conditions:
(C1) lim, oo, =0,) 7 ay, =00 and > 7 |ans1 — ap] < 00;

(CZ) Zrmzl B(m,n) - 1,\V/TL Z 1 7220:1 |B(m,n+1) - 5(m,n)| < oo and
hmn—>oo /B(m,n) = ﬂm € (07 1)7V1 <m<r.

(C3) liminf, ,oory, > 0and > 07 | |rpg1 — r| < 00;

Then the sequence {x,} converges strongly to a common element ¢ € , which is

the unique solution of the HEGVIP:
(vf = uG)e,z —¢) <0, Vo eQ.
Assume that the following conditions hold:

(C1) A; : H — H is an qz-inverse-strongly monotone mapping and VI(C, A;) is
the set of solutions to variational inequality problem with A = A;, for all

i=1,2,3:
(C2) K, and K, 5,0 € (0,1),i = 1,2, 3, are the mappings defined by

Ki = PCZ([ - )\Az>7 AE (0,20{1],

respectively.
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(14) Let A; and VI(C, A;) satisfy the condition (C1) and let f; : H — H be
contractions with a contractive constant h; € (0,1), for all i = 1,2,3. Then there
exists a unique element (z*,y*, z*) € VI(C, A;) x VI(C, A2) x VI(C, A3) such that

the following three inequalities are satisfied

(z* = fily"),x —a*) 20, Vo e VI(C, Ay),
(" — fa(2*),y —y*) >0, VyeVI(C,Ay),
(2" — f3(z*), 2 — 2*) >0, Vze€VI(C,As).

(15) Let A;, VI(C, A;), K; and K g satisfy the conditions (C1) and (C2), and let
fi - H — H be contractions with a contractive constant h; € (0,1), for alli = 1,2, 3.

Let {z,,},{yn} and {z,} be three sequences defined by

(

To, Yo, 20 € H,

Tt = (1 — an) K1 g + o f1 (K2, yn),

Ynt1 = (1 — o) Ko pyn + o fo(Ks520),

Zn1 = (1 — o) K3 32, + aun f3(K7 gy, n=20,1,2,...,

\
where {a,} is a sequence in (0,1) satisfying o, — 0 and > . ja, = oo. Then
the sequences {z,},{y,} and {z,} converge to z*,y* and z* respectively, where
(x*,y*, z*) is the unique element in VI(C, A;) x VI(C, As) x VI(C, A3) such that

the following three inequalities are satisfied

(x* = fily*),x —a*) >0, Ve e VI(C,Ay),
(" = f2(27),y —y*) 20, VyeVI(C,Ay),
(z* — f3(x*),z—2*) >0, VzeVI(C,A;3).

(16) Let A;,VI(C,A;), K; and K; s satisty the conditions (C1) and (C2) for
each i = 1,2,3, and let F' : H — H be a pu-Lipschitzian and r-strongly monotone
mapping. Let {z,},{y,} and {z,} be three sequences defined by

)
%o, Yo, 20 € H,

Tpy1 = (1 — o) K1 g + an f1 (K2 5Yn),
Yn+1 = (1 - an)KQ,,Byn + aan(KS,,BZn)a
Zn1 = (1 — ) K3 52 + o f3( K1 gy, n=20,1,2 ...,

\
where fi := I — pF, fo := I —nF, f3 := 1 — {F with p,n, & € (O,%) and {a,}

is a sequence in (0,1) satisfying a,, — 0 and >~ a, = oo. Then the sequences
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{zn},{yn} and {z,} converge to z*,y* and z* respectively, where (z*,y*, 2*) is the
unique element in VI(C, Ay) x VI(C, Ay) x VI(C, A3) such that the following three

inequalities are satisfied

(pF(y*) +x* —y*,x—2*) >0, Vee VI(C, A),
(MF()+y =25y —y) >0, VyeVI(C A),
(EF (") + 2" —a*,2—2) >0 VzeVI(C,As).

Assume that the following conditions hold:

(C1) M; : H — 2 is a multi-valued maximal monotone mapping, A; : H — H
is an q;-inverse-strongly monotone mapping and €2; is the set of solutions
to variational inclusion problem with A = A;, M = M; and Q; # 0, for all
i=1,2,3;

(C2) K, and K, 5,0 € (0,1),i = 1,2, 3, are the mappings defined by

Ki = JM,-,A(I - /\Az)7 A€ (0,2()éi]7
Ki,ﬁ = (1 - 5)1 +5Kl7 6 € (07 1)7

respectively.

(17) Let A;, M;, €, K; and K g satisfy the conditions (C1) and (C2), and let f; :
H — H be contractions with a contractive constant h; € (0,1), for all i = 1,2, 3.
Then there exists a unique element (z*, y*, 2*) € Q1 x Q5 X Q3 such that the following

three inequalities are satisfied

(x* — fily*),x —z*) >0, Vx € Qy,

<y* - fQ(Z*)7y - y*> 2 O) vy € 927
(z* — f3(2*),z — 2") >0, VzeQs.

18) Let A;, M;, ), K; and K, 5 satisfy the conditions (C1) and (C2), and let
75
fi - H — H be contractions with a contractive constant h; € (0,1), for alli = 1,2, 3.

Let {x,},{yn} and {z,} be three sequences defined by

(

To, Yo, 20 € H,

Tpr1 = (1 = ) K1 g0 + an f1(K2,6Yn),

Ynt1 = (1 — an) Ko gyn + an f2( K3 52,),

Zn1 = (1 — ) K3 52 + o f3( K1 gy), n=20,1,2 ...,
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where {a,} is a sequence in (0,1) satisfying o, — 0 and >~ a, = oo. Then
the sequences {x,},{y,} and {z,} generated be (4.2.3) converge to z*,y* and z*
respectively, where (z*,y*, z*) is the unique element in )y x Q5 x Q3 such that the

following three inequalities are satisfied

(" = fily"),z —2%) 20, Vo e,
(" = ("), y —y") 20, Vy ey,
(z* — f3(z*), 2 —2*) >0, VzeQs.

(19) Let A;, M;,Q;, K; and K 3 satisfy the conditions (C1) and (C2), and let
F : H — H be a p-Lipschitzian and r-strongly monotone mapping. Let {z,}, {y.}
and {z,} be three sequences defined by

(

To, Yo, 20 € H,

Tpp1 = (1 — o) K1 20 + i f1 (K2,Yn),

Ynt1 = (1 — o) Ko gyn + o fo (K3 520),

Zn1 = (1 — ) K3 52 + o f3( K1 gxy), n=0,1,2,...,

\
where f1 :== [ — pF, fy := 1 —nF, f3 := 1 — £F with p,n, & € (O,%) and {a,}
is a sequence in (0,1) satisfying a,, — 0 and >~ a, = oco. Then the sequences
{z,},{yn} and {z,} converge to z*,y* and z* respectively, where (z*,y*, 2*) is the

unique element in €24 x €25 x €23 such that the following three inequalities are satisfied

(pF(y*) +a* —y*,x —a*) >0, Vo€,
(MF(z*)+y*—z5y—y*) >0, VyeQy,
(EF(x*) +2* —a*,2 = 2") >0, Vze Qs
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