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CHAPTER 1 INTRODUCTION

1.1 Background

1.1.1 Fixed Point Theory and Iteration

Fixed point theory is one of the most powerful instrument of modern math-

ematics. Fixed point theory concern the existence and properties of fixed points.

Fixed point theory is a gorgeous fusion of analysis, topology and geometry. Fixed

point theory has been applied in such field as engineering, physics, economics, biol-

ogy, chemistry game theory,optimization theory and approximation theory etc. In

1886, Poincare [1] was the first to work in in the field of fixed point theory. Afterward

Brouwer [2] proved fixed point theorem for the solution of the equation f(x) = x, a

square, a sphere and their n-dimensional counter parts which was further extended

by Kakutani [3]. In 1922, Banach [4] proved that a contraction mapping in the

complete metric space maintain a unique fixed point. Thereafter it was extended

by Kannan [5]. The fixed point theory as well as Banach contraction principle, has

been studied and generalized in different spaces and various fixed point theorem

were developed.

In 1953, Mann [10] introduced the well-known iteration process, called Mann

iteration, for approximating fixed point of a mapping T , which start from x0 ∈ E

and defined the sequence {xn}∞n=0 iteratively by

xn+1 = (1− αn)xn + αnTxn, ∀n ≥ 0, (1.1.1)

where {αn}∞n=0 ⊂ [0, 1] satisfy the appropriate conditions.

In 1974, Ishikawa [11] introduced the iteration for approximating fixed point of

a mapping T as follows: the sequences {xn} defined by yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn, ∀n ≥ 0,
(1.1.2)

where x0 ∈ C is arbitrary and {αn}, {βn} are real sequences in [0, 1]. After the work

of Mann [10] and Ishikawa [11] a new direction took place in the field of fixed point
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theory for approximating fixed point and convergence of iterative of sequences.

In 1976, Korpelevich [21] introduced the well-known iteration process, called

extragradient method, which the sequence {xn} was defined as follows:
x0 = x ∈ C,

yn = PC(xn − ιTxn),

xn+1 = PC(xn − ιTyn), ∀n ≥ 0,

(1.1.3)

where ι ∈ (0, 1
L
) and T is a monotone and L-Lipschitz continuous mapping. He

proved that, if the set of solutions of variational inequality problem is nonempty,

then the sequences {xn} converges to an element in the set of solutions of variational

inequality problems.

In 2000, Moudafi [24] introduced the viscosity approximation method for non-

expansive mappings. Starting with an arbitrary initial x0 ∈ H, define a sequence

{xn} recursively by

xn+1 = σnf(xn) + (1− σn)Txn, n ≥ 0 , (1.1.4)

where {σn} is a sequence in (0, 1). It is proved that under certain appropriate

conditions imposed on {σn}, the sequence {xn} strongly converges to the unique

solution x∗ in C of the variational inequality

⟨(I − f)x∗, x− x∗⟩ ≥ 0, x ∈ C. (1.1.5)

In 2006, Marino and Xu [22] introduced a general iterative method for nonex-

pansive mapping. Starting with an arbitrary initial x0 ∈ H, define a sequence {xn}

recursively by

xn+1 = ϵnγf(xn) + (I − ϵnA)Txn, n ≥ 0. (1.1.6)

They proved that if the sequence {ϵn} of parameters satisfies appropriate condi-

tions, then the sequence {xn} generated by (1.1.6) strongly converges to the unique

solution x̃ = PF (T )(I − A+ γf)x̃ of the variational inequality

⟨(A− γf)x̃, x− x̃⟩ ≥ 0, ∀x ∈ F (T ), (1.1.7)

which is the optimality condition for the minimization problem

min
x∈F (T )

1

2
⟨Ax, x⟩ − h(x), (1.1.8)
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where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

In 2007, Moudafi [55] intoduced the following Krasnoselski-Mann algorithm:

xn+1 = (1− αn)xn + αn(βnSxn + (1− βn)Txn), (1.1.9)

where S, T : C → C are two nonexpansive mappings, {αn} and {βn} are two

sequences in (0, 1). Then he showed that {xn} converges weakly to a fixed point of

T which is a solution of a hierarchical fixed point problem: Find x∗ ∈ F (T ) such

that

⟨x∗ − Sx∗, x− x∗⟩ ≥ 0, ∀x ∈ F (T ). (1.1.10)

For obtaining a strong convergence result, Mainge and Moudafi in [56] introduced

the following algorithm:

xn+1 = (1− αn)f(xn) + αn(βnSxn + (1− βn)Txn), (1.1.11)

where f : C → C is a contraction mapping, S and T : C → C are two nonexpansive

mappings, {αn} and {βn} are two sequences in (0, 1). Then they showed that {xn}

converges strongly to a fixed point of T which is a solution of problem (1.1.10).

In 2009, Iiduka [7] introduced an iterative algorithm for the following triple

hierarchical constrained optimization problem, the sequence {xn} defined by the

iterative method below, with the initial guess x1 ∈ H is chosen arbitrarily, yn = T (xn − λnA1xn),

xn+1 = yn − µαnA2yn, ∀n ≥ 0,
(1.1.12)

where αn ∈ (0, 1] and λn ∈ (0, 2α] satisfies certain conditions. Let A1 : H → H be

an inverse-strongly monotone, A2 : H → H be a strongly monotone and Lipschitz

continuous and T : H → H be a nonexpansive mapping, then the sequence con-

verge strongly o the set solution of the triple hierarchical constrained optimization

problem.

On the other hand, Cianciaruso et al. [53] introduced a two step algorithm as

follows:  yn = βnSxn + (1− βn)xn,

xn+1 = αnf(xn) + (1− αn)Tyn,
(1.1.13)

where f : C → C is a contraction mapping, S and T : C → C are two nonexpansive

mappings, {αn} and {βn} are two sequences in (0, 1). Under some certain restrictions
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on parameters, the authors proved the sequence {xn} converges strongly to x∗ ∈

F (T ), which is a unique solution of the following variational inequality:

⟨(I − f)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F (T ). (1.1.14)

By changing the restrictions on parameters, the sequence {xn} converges strongly

to x∗ ∈ F (T ), which is a unique solution of the following variational inequality:

⟨1
τ
(I − f)x∗ + (I − S)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F (T ), (1.1.15)

where τ ∈ (0,∞) is a constant.

In 2010, Yao et al.[8] modified the two step algorithm (1.1.13) to extend Range

of f from C to H by using the metric projection of H onto C. They introduced the

following iterative scheme: yn = βnSxn + (1− βn)xn,

xn+1 = PC [αnf(xn) + (1− αn)Tyn],
(1.1.16)

where f : C → H is a contraction mapping, S and T : C → C are two nonexpansive

mappings, {αn} and {βn} are two sequences in (0, 1). The authors proved the

sequence {xn} generated by (1.1.16) converges strongly to x∗ ∈ F (T ), which is a

unique solution of one of the variational inequalities (1.1.14) and (1.1.15).

On the other hand, Tian [23] considered the following iterative method for a

nonexpansive mapping T : H → H with F (T ) ̸= ∅,

xn+1 = αnγf(xn) + (I − µαnF )Txn, ∀n ≥ 1, (1.1.17)

where F is a k Lipschitzian and η-strongly monotone operator on H. He proved

that the sequence {xn} generated by (1.1.17) converges to a fixed point q in F (T ),

which is the unique solution of the variational inequality

⟨( γf − µF )q, p− q⟩ ≤ 0, ∀p ∈ F (T ).

Meanwhile, Maingè [25] proposed the viscosity approximation scheme for quasi-

nonexpansive mappings in Hilbert spaces as follows:

xn+1 = αnf(xn) + (1− αn)Twxn, ∀n ≥ 0,

where {αn} ⊂ (0, 1) and Tw was generated by Tw = (1−w)I+wT for all w ∈ (0, 1).

He also proved the convergence theorem under the suitable conditions.
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In 2011, Yao et.al [9] studied new algorithms. For x0 ∈ C is chosen arbitrarily,

let the sequence {xn} be generated iteratively by

xn+1 = βnxn + (1− βn)TPC [I − αn(A− γf)]xn, ∀n ≥ 0,

where the sequences {αn} and {βn} are two sequences in [0, 1]. Then {xn} converges

strongly to x∗ ∈ F (T ) which is the unique solution of the variational inequality:

Find x∗ ∈ F (T ) such that ⟨(A− γf)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F (T ). (1.1.18)

At the same time, Gu et al. [54] introduced the following iterative algorithm:
yn = PC [βnSxn + (1− βn)xn],

xn+1 = PC [αnf(xn) +
n∑

i=1

(αi−1 − αi)Tiyn], ∀n ≥ 1,
(1.1.19)

where f : C → H is a contraction mapping, S : C → H is a nonexpansive mapping,

{Ti}∞i=1 : C → C is a countable family of nonexpansive mappings, α0 = 1, {αn} and

{βn} are two sequences in (0, 1). The authors proved the sequence {xn} converges

strongly to a common fixed point of a countable family of nonexpansive mappings

which is a solution of a hierarchical fixed point problem.

Meanwhile, Yu and Liang [51] introduced the following iterative algorithm:

xn+1 = αnu+ βnxn + γnΣ
r
m=1δ(m,n)PC(λ̂mBmxn − λmAmxn), ∀n ≥ 1,

where C is a nonempty closed and convex subset of a real Hilbert spaceH, Am : C →

H is a relaxed (ηm, ρm)-cocoercive and νm-Lipschitz continuous mapping, Bm : C →

H is a relaxed (η̂m, ρ̂m)-cocoercive and ν̂m-Lipschitz continuous mapping for each

1 ≤ m ≤ r, u ∈ C is a fixed point, {αn}, {βn}, {γn}, {δ(1,n)}, {δ(2,n)}, ..., {δ(r,n)} are

sequences in (0, 1), They proved the sequence {xn} strongly to a common element

x̃ ∈ ∩r
m=1GV I(C,Bm, Am), which is the unique solution of the following:

⟨u− x̃, x− x̃⟩ ≤ 0, ∀x ∈ ∩r
m=1GV I(C,Bm, Am). (1.1.20)

Later, He and Du[52] introduced the iteration as follows: a sequence {xn} defined
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by 

x1 ∈ C,

uin = T i
rnxn, ∀i = 1, 2, . . . , l,

zn = u1
n+u2

n+···+ul
n

l
,

yn = (1− λ)xn + λTzn,

xn+1 = αnf(xn) + (I − αn)yn,

(1.1.21)

where T i
rnx =

{
z ∈ C : Fi(z, y) +

1
rn
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
, αn ⊂ (0, 1) and

rn ⊂ (0,+∞). They proved that if the sequence {αn} and {rn} of parameters sat-

isfies appropriate conditions and Ω = (∩l
i=1EP (Fi)) ∩ F (T ) ̸= ∅, then the sequence

{xn} generated by (1.1.21) strongly converges to the unique solution c = PΩf(c) ∈ Ω.

In 2012, Kraikaew and Saejung[58] introduced the sequence {xn} and {yn} gen-

erated by
x0, y0, z0 ∈ H,

xn+1 = (1− αn)T1xn + αnf1(T2yn),

yn+1 = (1− αn)T2yn + αnf2(T1xn), n = 0, 1, 2, . . . ,

(1.1.22)

where T1, T2 : H → H are quasi-nonexpansive mappings, f1, f2 : H → H are con-

traction mappings and {αn} is a sequence in (0, 1). They proved that the sequence

{xn} and {yn} converge to x∗ and y∗, which is the unique solution of bi-level hierar-

chical optimization problems, i.e, find (x∗, y∗) ∈ F (T1)× F (T2) such that for given

positive real numbers ρ and η, the following inequalities hold: ⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0 ∀x ∈ F (T1),

⟨ηF (x∗) + y∗ − x∗, y − y∗⟩ ≥ 0 ∀y ∈ F (T2),
(1.1.23)

Recently, Chang et al. [59] introduced bi-level hierarchical variational inclusion

problems, i.e, find (x∗, y∗) ∈ Ω1×Ω2 such that for given positive real numbers ρ and

η, the following inequalities hold: ⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨ηF (x∗) + y∗ − x∗, y − y∗⟩ ≥ 0, ∀y ∈ Ω2,
(1.1.24)

where F,A1, A2 : H → H are mappings andM1,M2 : H → 2H are multi-valued map-

pings, Ωi is the set of solutions to variational inclusion problem with A = Ai,M =

Mi for i = 1, 2. They solved the convex programming problems and quadratic min-

imization problems by using Maingés scheme.
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1.1.2 Fixed Point Theory in Fuzzy Metric Spaces

The concept of fuzzy sets was coined by Zadeh [115] in his seminal in 1965.

Many authors have introduced the concept of fuzzy metric in different ways; see, e.g.,

[96, 104]. Thereafter, Kramosil and Michalek [105] introduced the concept of fuzzy

metric spaces which could be considered as a reformulation, in the fuzzy context, of

the notion of probabilistic metric space due to Menger [106].

The concept of fixed point theory in fuzzy metric spaces was introduced by

Heilpern [98]. He introduced the concept of fuzzy mappings and proved some fixed

point theorems for fuzzy contraction mappings in metric linear spaces, which is a

fuzzy extension of the Banach contraction principle. Afterward, George and Veera-

mani [96, 97] gave the notion of fuzzy metric spaces which constitutes a modification

of the one due to Kramosil and Michalek. From now on, by fuzzy metric we mean a

fuzzy metric in the sense of George and Veeramani. Many authors have contributed

to the development of this theory and apply to fixed point theory, for instance

[93, 95, 99, 112, 113].

On the other hand, Jungk [100] introduced the notion of commuting mappings.

In 1982, Sessa [114] gave the notion of weakly commuting mappings. Thereafter,

Jungck [101] defined the notion of compatible mappings to generalize the concept of

weak commutativity and showed that weakly commuting mappings are compatible

but the converse is not true. Afterward, a number of fixed point theorems have been

obtained by various authors utilizing this notion (see [91, 92, 94, 103, 109]). In 1997,

Pathak et al. [108] introduced the concept of R-weakly commuting of type (Ag).

In 2002, Aamri and El Moutawakil [90] introduced the concept of E.A. property

in metric spaces. Afterward, Mihet [107] proved two common fixed point theorems

for a pair of weakly compatible mappings in fuzzy metric spaces by using E.A. prop-

erty. Thereafter, Sintunavarat and Kumam in [111] obtained the results of Mihet

[107] require some special condition. However, some case is not satisfying this con-

dition (see [111] for more details). So the results of Mihet [107] can not be used for

this case. They introduced the concept of the common limit in the range property for

solve this problem and also established existence of a common fixed point theorems

for generalize contractive mappings satisfy this property in fuzzy metric spaces. Re-

cently, Sintunavarat and Kumam [117] gave the concept of R-weakly commuting of
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type (Ag) in fuzzy metric spaces and establish the existence of common fixed point

theorems by using the common limit in the range property.

1.1.3 Fixed Point Theory in Abstract Metric Spaces

The concept of K-metric spaces was reintroduced by Huang and Zhang under

the name of cone metric spaces [74] which is the generalization of a metric space. The

idea of cone metric spaces is to replace the codomain of metric from the set of real

numbers to an ordered Banach space. They reintroduce the definitions of convergent

and Cauchy sequences in sense of interior point of the underlying cone. They also

continued with results concerned with the normal cones only. One of the main

results of Huang and Zhang in [74] is fixed point theorems for contractive mappings

in normal cone spaces. In fact, the fixed point theorem in cone metric spaces is

appropriate only in the case when the underlying cone is non-normal and its interior

is nonempty. Janković et al. [80] studied this topic and gave some examples showing

that theorems from ordinary metric spaces cannot be applied in the setting of non-

normal cone metric spaces. Many works for fixed point theorems in cone metric

spaces were appeared in [61, 62, 64, 65, 73, 63, 66, 68, 82, 81, 84, 86, 88, 75, 76, 77, 78].

In 2011, Abbas et al. [61] introduced the concept of w-compatible mappings and

obtained a coupled coincidence point and a coupled point of coincidence for such

mappings satisfying a contractive condition in cone metric spaces. Very recently,

Aydi et al. [67] introduced the concept of W -compatible mappings for mappings

F : X × X × X → X and g : X → X, where (X, d) is an abstract metric space

and established tripled coincidence point and common tripled fixed point theorems

in these spaces.

On the other hand, Sintunavarat and Kumam [85] coined the idea of common

limit range property for mappings F : X → X and g : X → X, where (X, d) is

metric space (and fuzzy metric spaces) and proved the common fixed point theorems

by using this property. Afterward, Jain et al. [79] extend this property for mappings

F : X × X → X and g : X → X, where (X, d) is metric space (and fuzzy metric

spaces) and established coupled fixed point theorem for mappings satisfy this prop-

erty. Several common fixed point theorems have been proved by many researcher
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in framework of many spaces via common limit range property (see [70, 71, 72, 87]

and references therein).

Starting from the background of the coupled fixed points; the concept of tripled

fixed points was introduced by Samet and Vetro [83] and Berinde and Borcut [69]

which motivated by the fact that, through the coupled fixed point technique we can

not solve the solution of some problems in nonlinear analysis such as a system with

following form: 
x2 + 2yz − 6x+ 3 = 0

y2 + 2xz − 6y + 3 = 0

z2 + 2yx− 6z + 3 = 0.

1.2 Summary of Dissertation

Motivated and inspired by the above works, the purposes of this dissertation is

as follows:

(1) We study new property, tools, and procedure for prove the existence of tripled

fixed point theorems. Moreover, we generalize and extend the existence of tripled

fixed point theorems in fuzzy metric spaces and abstract metric spaces and give

illustrate examples to validate the some results in this thesis.

(2) We study the iterative procedure for approximating common solutions of

problems involving variational inequality and fixed point for nonlinear operators.

Moreover, we extend and improve the previous mentioned iterative procedure for

approximating common solutions of problems involving variational inequality and

fixed point for nonlinear operators and Construct the convergence theorems for the

generated iterative procedure and apply its results to another kind of problems as

its applications.

(3) We establish the new existence theorems of solutions of the system of hierar-

chical variational inequality problems and hierarchical variational inclusion problem

and new iterative algorithms for approximating solution of the system of hierarchical

variational inequality problems and hierarchical variational inclusion problem.

We studied and followed the above objectives and already reached all of our main

goal. Throughout this dissertation, we summarize and divide this literature into 6

Chapters as shown in the following:
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In Chapter 1, we review the background of this thesis for fixed point theorems

and fixed point iteration

In Chapter 2, we give the necessary notations, definitions, some useful lemmas

and the previous related theorems which will be used in the later chapter.

In Chapter 3, we introduce new property and new condition of contraction map-

pings for prove the existence of tripled fixed point theorems in fuzzy metric spaces

and abstract metric spaces. Moreover, we establish and prove the new existence of

tripled fixed point theorems in fuzzy metric spaces and abstract metric spaces. We

also give some examples to validate some results in this section.

In Chapter 4, we present the new iterative algorithms for approximating a com-

mon solution of several mathematical problems which consist of hierarchical fixed

point problems, hierarchical variational inequality problems and hierarchical opti-

mization problems. Exactly, its convergence theorem of the new iterative algorithms

are also proved and presented.

In Chapter 5, we show the new existence theorems of solutions of the system

of hierarchical variational inequality problems and the system of hierarchical varia-

tional inclusion problem and new iterative algorithms for approximating solution of

the system of hierarchical variational inequality problems and the system of hierar-

chical variational inclusion problem. Exactly, we prove the new existence theorems

and convergence theorem of the new iterative algorithms.

Finally, in Chapter 6, we give the summary of all the results and the conclusion

of this dissertation.



CHAPTER 2 PRELIMINARIES

In this chapter, we give some basic concepts including with definitions, notations

and some useful lemmas which are all necessary to the later chapters. Throughout

this dissertation, let R and N stand for the set of all real numbers and the set of all

natural numbers, respectively.

2.1 Fundamental Definitions

Definition 2.1.1. Let X be a nonempty set. Assume that, for any x ∈ X and

α ∈ R, there exists a unique element α · x, which is called the scalar multiplication.

Also, assume that, for any x, y ∈ X, there exists a unique element x + y, which is

called the addition. The system (X, ·,+) is called a linear space over R or a vector

space over R if the following conditions are satisfied: for all x, y, z ∈ X and α, β ∈ R.

(1) x+ y = y + x;

(2) x+ (y + z) = (x+ y) + z;

(3) α(x+ y) = αx+ αy;

(4) x+ y = x+ z ⇒ y = z;

(5) (α + β)x = αx+ βx;

(6) (αβ)x = α(βx);

(7) 1x = x.

Definition 2.1.2. Let X be a nonempty set. A metric on X is a real function

d : X → R satisfying the following conditions:

(1) d(x, y) ≥ 0 for all x, y ∈ X;

(2) d(x, y) = 0 ⇐⇒ x = y for all x, y ∈ X;

(3) d(x, y) = d(y, x) for all x, y ∈ X;

(4) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

A set X with a metric d is called a metric space. The elements of X are called

the points of the metric space (X, d).
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Definition 2.1.3. Let X be a linear space over the field K (R or C). A function

∥ · ∥ : X → R is called a norm on X if the following conditions are satisfied:

(1) ∥x∥ ≥ 0 for all x ∈ X;

(2) ∥x∥ = 0 ⇐⇒ x = 0;

(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X;

(4) ∥αx∥ = |α|∥x∥ for all x ∈ X and α ∈ K.

The distance induced by its norm such that d(x, y) = ∥x − y∥ for all x, y ∈ X.

A linear space X equipped with the norm ∥ · ∥ is called a normed linear space or a

normed space.

Definition 2.1.4. A sequence {xn} in a normed space is said to be strongly con-

vergent to a point x ∈ X if lim
n→∞

∥xn − x∥ = 0. That is, if, for any ϵ > 0, there exists

a positive integer N such that ∥xn − x∥ < ϵ for all n ≥ N. We denote the strong

convergence by the notation xn → x.

Definition 2.1.5. A sequence {xn} in a normed space is called a Cauchy sequence

in X if lim
m,n→∞

∥xm − xn∥ = 0. That is, if for any ϵ > 0 there exists a positive integer

N such that ∥xm − xn∥ < ϵfor all m,n ≥ N.

Theorem 2.1.6. [33] Let {xn} be a sequence in a normed linear space, then xn →

x ∈ X if and only if, for any subsequence {xni
} of {xn}, there exist a subsequence

{xnij
} of {xni

} converging to x.

Definition 2.1.7. Let X and Y be linear spaces over the field K (R or C).

(1) A mapping L : Y → X is called a linear operator if L(x+ y) = Lx+Ly and

L(αx) = αLx for all x, y ∈ Y and α ∈ K;

(2) A linear operator L : Y → K is called a linear functional on Y ;

(3) A mapping L : Y → X be a continuous at x0 ∈ Y if, for any ϵ > 0, there

exists δ > 0 such that ∥L(x)−L(x0)∥ < ϵ whenever ∥x−x0∥ < δ. If L is continuous

at each x ∈ Y , then L is called continuous on Y ;

(4) A linear operator L : X → Y is said to be bounded on X if there exists a real

number M ≥ 0 such that ∥L(x)∥ ≤M∥x∥ for all x ∈ X.

Definition 2.1.8. A sequence {xn} in a normed space is said to be convergent

weakly to a point x ∈ X if limn→∞ f(xn) = f(x) holds for every continuous linear

functional f . We denote the weak convergence by the notation xn ⇀ x.
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Definition 2.1.9. A sequence {xn} in a normed linear space X is said to be bounded

if there exists a real number M > 0 such that ∥xn∥ ≤M for all n ≥ 1.

Definition 2.1.10. A normed space X is said to be complete if every Cauchy se-

quences in X converge to an element in X.

Definition 2.1.11. A complete normed linear space over the field K is called a

Banach space over the field K.

Definition 2.1.12. A subset C of a normed linear space X is called a closed subset

in X if {xn} is a sequence in C and xn → x then x ∈ C.

Definition 2.1.13. A subset C of a normed linear space X is said to be convex in

X if λx+ (1− λ)y ∈ C for all x, y ∈ C and λ ∈ [0, 1].

2.2 Hilbert Spaces

Definition 2.2.1. The real-value function of two variables ⟨·, ·⟩ : X × X → R is

called the inner product on a real vector space X if the following conditions are

satisfied: for any x, y, z ∈ X and α, β ∈ R

(1) ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩;

(2) ⟨x, y⟩ = ⟨y, x⟩;

(3) ⟨x, x⟩ ≥ 0;

(4) ⟨x, x⟩ = 0 ⇐⇒ x = 0.

A real vector space X equipped with an inner product ⟨·, ·⟩ is called a real inner

product space.

Definition 2.2.2. A Hilbert space is an inner product space which is complete under

the norm induced by its inner product such that ∥x∥ =
√

⟨x, x⟩ for all x ∈ X.

Lemma 2.2.3. [33] (The Schwarz inequality) If x and y are any two vectors in an

inner product space X, then

|⟨x, y⟩| ≤ ∥x∥∥y∥.

Lemma 2.2.4. [33] Let H be a real Hilbert space. Then the following inequalities

are satisfied:

(H1) ∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2;
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(H2) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(H3) ∥x+ y∥2 ≥ ∥x∥2 + 2⟨y, x⟩;

(H4) ∥λx+(1−λ)y∥2 = λ∥x∥2+(1−λ)∥y∥2−λ(1−λ)∥x− y∥2 for all λ ∈ [0, 1];

(H5) ∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2⟨x− y, y⟩.

Definition 2.2.5. Let H be a Hilbert space and C be a nonempty closed and convex

subset of H. Let f be a function of C into (−∞,∞], where (−∞,∞] = R ∪ {∞}.

Then f is called lower semi-continuous if, for any a ∈ R, the set {x ∈ C : f(x) ≤ a}

is closed.

Lemma 2.2.6. [33] Let H be an inner product space and {xn} be a bounded sequence

of H such that xn ⇀ x. Then the following inequality holds:

∥x∥ ≤ lim
n→∞

inf ∥xn∥.

Lemma 2.2.7. [34] Let X be an inner product space. Then, for any x, y, z ∈ X

and α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

∥αx+ βy + γz∥2

= α∥x∥2 + β∥y∥2 + γ∥z∥2 − αβ∥x− y∥2 − αγ∥x− z∥2 − βγ∥y − z∥2.

Lemma 2.2.8. [35] Each Hilbert space H satisfies Opial’s condition, that is, for

any sequence {xn} with xn ⇀ x,

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥

for all y ∈ H with y ̸= x.

Lemma 2.2.9. [36],[37] Each Hilbert space H satisfies the Kadec-Klee property, that

is, for any sequence {xn} with xn ⇀ x and ∥xn∥ → ∥x∥ together imply ∥xn−x∥ → 0.

Definition 2.2.10. A mapping PC : H → C is called the metric projection from H

onto C if, for all x ∈ H, there exists the unique nearest point in C, denoted by PCx

satisfying the property

∥x− PCx∥ ≤ ∥x− y∥, ∀y ∈ C.
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Lemma 2.2.11. [33] Let C be a closed and convex subset of a real Hilbert space H

and x ∈ H, y ∈ C. Then the following inequalities are satisfied:

(P1) z = PCx⇐⇒ ⟨z − x, y − z⟩ ≥ 0 for all y ∈ C;

(P2) ∥PCx− PCy∥ ≤ ∥x− y∥ for all x, y ∈ H;

(P3) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ for all x, y ∈ H;

(P4) ⟨x− PCx, y − PCx⟩ ≤ 0 for all x ∈ H and y ∈ C;

(P5) ∥x− y∥2 ≥ ∥x− PCx∥2 + ∥y − PCx∥2 for all x ∈ H and y ∈ C;

(P6) ∥(x− y)− (PCx− PCy)∥2 ≤ ∥x− y∥2 − ∥PCx− PCy∥2 for all x, y ∈ H.

Lemma 2.2.12. [38] Let C be a closed and convex subset of a real Hilbert space H.

Let {xn} be a sequence in H and u ∈ H. Let q = PCu. If {xn} is ωw(xn) ⊂ C and

satisfies the condition ∥xn − u∥ ≤ ∥u− q∥ for all n ≥ 1. Then xn → q.

Lemma 2.2.13. [39] Let C be a closed and convex subset of a real Hilbert space H.

Let {xn} be a bounded sequence in H. Assume that

(1) The weak ω-limit set ωw(xn) ⊂ C;

(2) For each z ∈ C, limn→∞ ∥xn − z∥ exists.

Then the sequence {xn} is weakly convergent to a point in C.

2.3 Banach Spaces

Definition 2.3.1. [37] Let E be a Banach space and E∗ be the dual space of E.

For each x ∈ E, we associate the set

J(x) = {f ∈ E∗|⟨x, f⟩ = ∥x∥2 = ∥f∥2},

where ⟨·, ·⟩ denotes the duality pairing between E and E∗. The multivalued operator

J : E → E∗ is called the normalized duality mapping or the duality mapping of E.

Theorem 2.3.2. [37] Let E be a Banach space and J be the duality mapping of E.

Then we have the following:

(1) For all x ∈ E, J(x) is nonempty bounded closed and convex;

(2) J(0) = {0};

(3) For all x ∈ E and α ∈ R, J(αx) = αJ(x);
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(4) For all x, y ∈ E, f ∈ J(x) and g ∈ J(y), ⟨x− y, f − g⟩ ≥ 0;

(5) For allx, y ∈ E and f ∈ J(y), ∥x∥2 − ∥y∥2 ≥ 2⟨x− y, f⟩.

Remark 2.3.3. If, E is a Hilbert space, then J = I, where I is the identity mapping.

Definition 2.3.4. [40] Let E be a normed space. Suppose that, for each x ∈ E,

there corresponds a unique bounded linear functional gx ∈ E∗∗ given by gx(f) =

f(x), f ∈ E∗. A mapping h : E → E∗∗ defined by x 7→ gx is called the canonical

mapping.

Definition 2.3.5. [40] A normed space E is said to be reflexive if the canonical

mapping h : E → E∗∗ is surjective.

Definition 2.3.6. [40] Let x be an element and {xn} be a sequence in a normed

space E. Then {xn} converges strongly to x ∈ E, written by xn → x, if

lim
n→∞

∥xn − x∥ = 0.

Definition 2.3.7. [40] Let x be an element and {xn} a sequence in a normed space

E. Then {xn} converges weakly to x, written by xn ⇀ x, if f(xn) → f(x) wherever

f ∈ E∗.

Definition 2.3.8. [40] The weak∗ convergence of a sequence {x∗n} to x∗, written by

x∗n ⇀ ∗x∗, where x∗ ∈ E∗ and {x∗n} is a sequence in E∗.

Theorem 2.3.9. [40] A normed space E is reflexive if and only if each of its bounded

sequence has a weakly convergence subsequence.

Definition 2.3.10. [40] A nonempty subset C of a Banach space E is said to be

weakly sequentially compact if every sequence {xn} in C has a subsequence converg-

ing to a point of E in the weak topology.

Theorem 2.3.11. [37] Let E be a reflexive Banach space. Then a nonempty subset

C of X is weakly sequentially compact if and only if C is bounded.

Definition 2.3.12. [37] A Banach space E is said to be:

(1) strictly convex if ∥x+y
2
∥ < 1 whenever x, y ∈ S(E) = {x ∈ E : ∥x∥ = 1} and

x ̸= y,
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(2) uniformly convex if, for each ϵ ∈ (0, 2], there exists δ > 0 such that ∥x+y
2
∥ <

1− δ whenever x, y ∈ S(E) and ∥x− y∥ ≥ ϵ.

Definition 2.3.13. [37] The modulus of convexity of E is the function δ̃ : [0, 2] →

[0, 1] defined by

δ̃(ϵ) = inf{1− ∥x+ y

2
∥ : x, y ∈ E, ∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ϵ}.

Note that a Banach space E is uniformly convex if and only if δ̃(ϵ) > 0 for all

ϵ ∈ (0, 2].

Definition 2.3.14. [37] Let E be a Banach space and let S(E) = {x ∈ E : ∥x∥ = 1}.

A Banach space is said to be smooth provided the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.3.1)

exists for each x, y ∈ S(E). In this case, the norm of E is said to be Gâteaux

differentiable. The space E is said to have a uniformly Gâteaux differentiable norm

if for each y ∈ S(E), the limit (2.3.1) is attained uniformly for x ∈ S(E). The norm

of E is said to be a Fréchet differentiable norm if, for each x ∈ S(E), the limit

(2.3.1) is attained uniformly for y ∈ S(E). The norm of E is said to be uniformly

Fréchet differentiable (E is said to be uniformly smooth) if the limit (2.3.1)(∗) is

attained uniformly for (x, y) ∈ S(E)× S(E).

Remark 2.3.15. The following basic properties were proposed by Cioranescu [41]:

(1) If E is a strictly convex, then J is strictly monotone;

(2) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on

each bounded subset of E;

(3) If E is a reflexive and strictly convex Banach space, then J−1 is norm-weak*-

continuous;

(4) If E is a reflexive smooth and strictly convex, then the normalized duality

mapping J is single valued, one-to-one and onto;

(5) If E is a reflexive strictly convex and smooth Banach space and J is the duality

mapping from E into E∗, then J−1 is also single valued, bijective and is also

duality mapping from E∗ into E and thus JJ−1 = IE∗ and J−1J = IE;
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(6) If E is a uniformly smooth, then E is a smooth and reflexive;

(7) E is a uniformly smooth if and only if E∗ is uniformly convex.

Definition 2.3.16. [37] Let E be a linear space and C be a convex subset of E.

A function f : C → (−∞,∞] is said to be convex on C if, for any x, y ∈ C and

t ∈ (0, 1),

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Definition 2.3.17. [33] A Banach space E is said to satisfy Opial’s condition if

xn → x weakly as n→ ∞ and x ̸= y imply that

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥.

Definition 2.3.18. [33] A Banach space E is said to have theKadec-Klee property if,

for every sequence {xn} in E, xn ⇀ x and ∥xn∥ → ∥x∥ together imply ∥xn−x∥ → 0.

Remark 2.3.19. Each uniformly convex Banach space E has the Kadec-Klee prop-

erty, that is, for any sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ∥xn∥ → ∥x∥, then

xn → x.

2.4 Fuzzy Metric Spaces

Definition 2.4.1. [110] A continuous t-norm is a binary operation ∗ : [0, 1]×[0, 1] →

[0, 1] satisfying the following conditions:

(i) ∗ is commutative and associative;

(ii) a ∗ 1 = a for all a ∈ [0, 1];

(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]);

(iv) ∗ : [0, 1]× [0, 1] → [0, 1] is continuous.

Example 2.4.2. The following examples are classical examples of a continuous

t-norms.

(TL) (The Lukasiewicz t-norm) A mapping TL : [0, 1]× [0, 1] → [0, 1] which defined

through

TL(a, b) = max{a+ b− 1, 0}.
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(TP) (The product t-norm) A mapping TP : [0, 1] × [0, 1] → [0, 1] which defined

through

TP (a, b) = ab.

(TM) (The minimum t-norm) A mapping TM : [0, 1]× [0, 1] → [0, 1] which defined

through

TM(a, b) = min{a, b}.

Definition 2.4.3. [96, 97] A fuzzy metric space is a triple (X,M, ∗) where X is a

nonempty set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞) and

the following conditions are satisfied for all x, y ∈ X and t, s > 0:

(GV-1) M(x, y, t) > 0;

(GV-2) M(x, y, t) = 1 ⇐⇒ x = y;

(GV-3) M(x, y, t) =M(y, x, t);

(GV-4) M(x, y, ·) : (0,∞) → [0, 1] is continuous;

(GV-5) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s).

And M(x, y, t) denote the degree of nearness between x and y with respect to t.

Example 2.4.4. Let (X, d) be a metric space, a ∗ b = ab and the mapping M :

X ×X × (0,∞) define by for all x, y ∈ X and t > 0,

M(x, y, t) =
t

t+ d(x, y)
.

Then (X,M, ∗) is a fuzzy metric space, called a standard fuzzy metric space induced

by (X, d). If we take a ∗ b = TM(a, b) also is a fuzzy metric space.

Definition 2.4.5. Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} in X is

said to be convergent to x ∈ X if

lim
n→∞

M(xn, x, t) = 1

for all t > 0.

Definition 2.4.6. Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} in X is

said to be Cauchy sequence if
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lim
m→∞

lim
n→∞

M(xn, xm, t) = 1

for all t > 0 and m,n ∈ N.

Definition 2.4.7. A fuzzy metric space (X,M, ∗) is called complete if every Cauchy

sequence converge to a point in X.

Definition 2.4.8. [100] Let X be a nonempty set. Two mappings f, g : X → X

are said to be commuting if fgx = gfx for all x ∈ X.

Definition 2.4.9. [101] Let (X, d) be a metric space. Two mappings f, g : X → X

are said to be compatible if

lim
n→∞

d(fgxn, gfxn) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = z,

for some z ∈ X.

Definition 2.4.10. [102] Let X be a nonempty set. Two mappings f, g : X → X

are said to be weakly compatible if fgx = gfx for all x which fx = gx.

Definition 2.4.11. [90] Let (X, d) be a metric space and f, g : X → X. Two

mappings f and g are said to satisfy E.A. property if there exists a sequence {xn}

in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t ∈ X.

The class of E.A. mappings contains the class of noncompatible mappings. In a

similar mode, it is said that two self-mappings of f and g of a fuzzy metric space

(X,M, ∗) satisfy E.A. property, if there exist a sequence {xn} in X such that fxn

and gxn converge to t for some t ∈ X in the sense of Definition 2.4.5.

Definition 2.4.12. [111] Let (X, d) be a metric space and f, g : X → X. Two

mappings f and g are said to be satisfy the common limit in the range of g property

if there exists a sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = gx (2.4.1)

for some x ∈ X.
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In what follows, the common limit in the range of g property will be denote by

(CLRg) property.

Example 2.4.13. Let X = [0,∞) be the usual metric space. Define f, g : X → X

by fx = x
2
and gx = 2x

3
for all x ∈ X. We consider the sequence xn = 1

n
. Since

lim
n→∞

fxn = lim
n→∞

gxn = 0 = g0. (2.4.2)

Therefore f and g satisfy the (CLRg) property.

In a similar mode, two self-mappings f and g of a fuzzy metric space (X,M, ∗)

satisfy the (CLRg) property, if there exist a sequence {xn} in X such that fxn and

gxn converge to gx for some x ∈ X in the sense of Definition 2.4.5.

Definition 2.4.14. Let (X,M, ∗) be a fuzzy metric space and f, g : X → X. A

pair of (f, g) is said to be

(i) weakly commuting [116] if

M(fgx, gfx, t) ≥M(fx, gx, t), forall x ∈ X and t > 0.

(ii) R-weakly commuting [116] if there exists R > 0 such that

M(fgx, gfx, t) ≥M(fx, gx,
t

R
), forall x ∈ X and t > 0.

(iii) R-weakly commuting of type (Ag) if there exists R > 0 such that

M(ffx, gfx, t) ≥M(fx, gx,
t

R
), forall x ∈ X and t > 0.

(iv) R-weakly commuting of type (Af ) if there exists R > 0 such that

M(fgx, ggx, t) ≥M(fx, gx,
t

R
), forall x ∈ X and t > 0.

(v) R-weakly commuting of type (P ) if there exists R > 0 such that

M(ffx, ggx, t) ≥M(fx, gx,
t

R
), forall x ∈ X and t > 0.

Notice that

• If (f, g) is weakly commuting then (f, g) is R-weakly commuting with R = 1.
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• (iii) and (iv) are inspired by Pathak et al. [108] whereas (v) seems to be

unreported.

Example 2.4.15. Let X = [1,∞) with the usual metric d and a∗b = ab. LetM be

a usual fuzzy metric space on (X,M, ∗) which is define by M(x, y, t) =
t

t+ d(x, y)
for all x, y ∈ X and t > 0. Let f, g : X → X define by fx = 3

√
x and gx = x3.

Next, we will show that (f, g) is R-weakly commuting.

For x ∈ [1,∞) and R, t > 0, we have

M(fgx, gfx, t) =M(fx3, g 3
√
x, t) =M(x, x, t) = 1 ≥M(fx, gx,

t

R
).

Therefore, (f, g) is R-weakly commuting for all R > 0.

Example 2.4.16. [117] Let X = [1,∞) with the usual metric d and a ∗ b = ab.

Let M be a usual fuzzy metric space on (X,M, ∗) which is define by M(x, y, t) =

t

t+ d(x, y)
for all x, y ∈ X and t > 0. Let f, g : X → X define by

fx =

 1 ; x ∈ {1, 5};

5 ; x ∈ (1, 5) ∪ (5,∞)

and

gx =

 1 ; x ∈ {1, 5};

x+ 4 ; x ∈ (1, 5) ∪ (5,∞).

Then, (f, g) is R-weakly commuting of type (Ag) for all R > 0.

Example 2.4.17. Let X = [0, 1] with the usual metric d and a ∗ b = ab. Let M be

a usual fuzzy metric space on (X,M, ∗) which is define by M(x, y, t) =
t

t+ d(x, y)
for all x, y ∈ X and t > 0. Let f, g : X → X define by

fx =

 0 ; x ∈ [0, 1
100

] ∪ [ 1
10
, 1];

x
2

; x ∈ ( 1
100
, 1
10
)

and

gx =

 0 ; x ∈ [0, 1
100

] ∪ [ 1
10
, 1];

10x ; x ∈ ( 1
100
, 1
10
).

Next, we will show that (f, g) is R-weakly commuting of type (Af ).
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For x ∈ [0, 1
100

] ∪ [ 1
10
, 1] and R, t > 0, we have

M(fgx, ggx, t) =M(f0, g0, t) =M(0, 0, t) = 1 ≥M(fx, gx,
t

R
).

For x ∈ ( 1
100
, 1
10
) and R, t > 0, we get

M(fgx, ggx, t) =M(f10x, g10x, t) =M(0, 0, t) = 1 ≥M(fx, gx,
t

R
).

Now, we have

M(ffx, gfx, t) ≥M(fx, gx,
t

R
)

for all x ∈ X and R, t > 0.

Therefore, (f, g) is R-weakly commuting of type (Af ) for all R > 0.

Example 2.4.18. Let X = [0, 1] with the usual metric d and a ∗ b = ab. Let M be

a usual fuzzy metric space on (X,M, ∗) which is define by M(x, y, t) =
t

t+ d(x, y)
for all x, y ∈ X and t > 0. Let f, g : X → X define by

fx =

 0 ; x ∈ [0, 1
4
] ∪ [1

2
, 1];

x
4

; x ∈ (1
4
, 1
2
)

and

gx =

 0 ; x ∈ [0, 1
4
] ∪ [1

2
, 1];

x
2

; x ∈ (1
4
, 1
2
).

Next, we will show that (f, g) is R-weakly commuting of type (P ).

For x ∈ [0, 1
4
] ∪ [1

2
, 1] and R, t > 0, we have

M(ffx, ggx, t) =M(f0, g0, t) =M(0, 0, t) = 1 =M(fx, gx,
t

R
).

For x ∈ (1
4
, 1
2
) and R, t > 0, we get

M(ffx, ggx, t) =M(f
x

4
, g
x

2
, t) =M(0, 0, t) = 1 ≥M(fx, gx,

t

R
).

Now, we have

M(ffx, gfx, t) ≥M(fx, gx,
t

R
)

for all x ∈ X and R, t > 0.

Therefore, (f, g) is R-weakly commuting of type (P ) for all R > 0.

It is well known (Imdad and Ali [? ]) the independence of R-weakly commu-

tativity of type (Ag) with R-weakly commutativity of type (Af ) or (P ) and the

independence of R-weakly commutativity of type (Af ) with R-weakly commutativ-

ity of type (P ).
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2.5 Cone Metric Spaces

In this dissertation, we denote from now onX ×X · · ·X ×X︸ ︷︷ ︸
k terms

byXk where k ∈ N

and X is a non-empty set. The following definitions and results will be needed in

the sequel.

Definition 2.5.1. Let E be a real Banach space and 0E be the zero element in E.

A subset P of E is called a cone if satisfy the following conditions:

(a) P is closed, non-empty and P ̸= {0E},

(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax+ by ∈ P ,

(c) P ∩ (−P ) = {0E}.

Given a cone P of real Banach space E, we define a partial ordering ≼ with

respect to P by x ≼ y if and only if y − x ∈ P . We shall write x ≪ y for

y − x ∈ Int(P ), where Int(P ) stands for interior of P . Also we will use x ≺ y to

indicate that x ≼ y and x ̸= y.

The cone P in normed space (E, ∥·∥) is called normal whenever there is a number

k > 0 such that for all x, y ∈ E, 0E ≼ x ≼ y implies ∥x∥ ≤ k∥y∥. The least positive

number satisfying this norm inequality is called the normal constant of P . In 2008,

Rezapour and Hamlbarani [82] showed that there are no normal cones with normal

constant k < 1.

In what follows we always suppose that E is a real Banach space with cone P

satisfying Int(P ) ̸= ∅ (such cones are called solid).

Definition 2.5.2 ([74, 89]). LetX be a non-empty set. Suppose that d : X×X → E

satisfies the following conditions:

(d1) 0E ≼ d(x, y) for all x, y ∈ X and d(x, y) = 0E if and only if x = y,

(d2) d(x, y) = d(y, x) for all x, y ∈ X,

(d3) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric or K-metric on X and (X, d) is called a cone

metric space or K−metric space.

Remark 2.5.3. A concept of a K−metric space is more general than a concept of

a metric space, because each metric space is a K−metric space where X = R with

usual norm and cone P = [0,∞).
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Definition 2.5.4 ([74]). Let X be a K-metric space and {xn} be a sequence in X.

We say that {xn} is

(C1) a Cauchy sequence if and only if for each c ∈ E with c ≫ 0E there is some

k ∈ N such that d(xn, xm) ≪ c for all n,m ≥ k,

(C2) a convergent sequence if and only if for each c ∈ E with c ≫ 0E there is

some k ∈ N such that d(xn, x) ≪ c for all n ≥ k, where x ∈ X. This limit is

denoted by lim
n→∞

xn = x or xn → x as n→ ∞.

Remark 2.5.5. Every convergent sequence in a K-metric space X is a Cauchy

sequence but the converse is not true.

Definition 2.5.6. A K-metric space X is said to be complete if every Cauchy

sequence in X is convergent in X.

Definition 2.5.7 ([83]). Let X be a nonempty set. An element (x, y, z) ∈ X3 is

called a tripled fixed point of a given mapping F : X3 → X if x = F (x, y, z),

y = F (y, z, x) and z = F (z, x, y).

Berinde and Borcut [69] defined differently the notion of a tripled fixed point in

the case of ordered sets in order to keep true the mixed monotone property.

Definition 2.5.8 ([67]). Let X be a non-empty set. An element (x, y, z) ∈ X3 is

called

(i) a tripled coincidence point of mappings F : X3 → X and g : X → X if

gx = F (x, y, z), gy = F (y, x, z) and gz = F (z, x, y). In this case (gx, gy, gz)

is called a tripled point of coincidence;

(ii) a common tripled fixed point of mappings F : X3 → X and g : X → X if

x = gx = F (x, y, z), y = gy = F (y, z, x) and z = gz = F (z, x, y).

Example 2.5.9. Let X = R. We define F : X3 → X and g : X → X as follows

F (x, y, z) =

(
2x+ 2y

π

)
sin(2z) and gx = 1 + π − 4x

for all x, y, z ∈ X. Then (π
4
, π
4
, π
4
) is a tripled coincidence point of F and g, and

(1, 1, 1) is a tripled point of coincidence.
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Definition 2.5.10 ([67]). Let X be a non-empty set. Mappings F : X3 → X and

g : X → X are called W -compatible if

F (gx, gy, gz) = g(F (x, y, z))

whenever F (x, y, z) = gx, F (y, z, x) = gy and F (z, y, x) = gz.

Example 2.5.11. Let X = [0, 1). Define F : X3 → X and g : X → X as follows

F (x, y, z) =
x2 + y2 + z2

12
and gx =

x

4

for all x, y, z ∈ X. One can show that (x, y, z) is a tripled coincidence point of F

and g if and only if x = y = z = 0. Since F (g0, g0, g0) = g(F (0, 0, 0)), we get F

and g are W -compatible.

2.6 Interesting Problems

Convex Feasibility Problem

The convex feasibility problem (CFP) is the problem of finding a point in the in-

tersection of finitely many closed convex sets in a real Hilbert spaces H. That is,

finding an x ∈ ∩r
m=1Cm, where r ≥ 1 is an integer and each Cm is a nonempty closed

and convex subset of H. Many problems in mathematics, for example in physical

sciences, in engineering and in real-world applications of various technological in-

novations can be modeled as CFP. There is a considerable investigation on CFP

in the setting of Hilbert spaces which captures applications in various disciplines

such as image restoration [57, 27] computer tomography [28] and radiation therapy

treatment planning [29].

Variational Inequality Problem

The variational inequality problem is the problem of finding a point u ∈ C such that

⟨Ax, x− y⟩ ≥ 0, ∀y ∈ C. (2.6.1)

where A : H → H is nonlinear mappings. We use V I(C,A) to denote the set of

solutions of the variational inequality (2.6.1). It is easy to see that an element x ∈ C

is a solution to the variational inequality problem if and only if x is a fixed point
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of the mapping PC(I − λA), that is x = PC(I − λA))x ⇔ x ∈ V I(C,A). There-

fore, fixed point algorithms can be applied to solve V I(C,A). It is well known that

the variational inequality theory has emerged as an important tool in studying a

wide class of obstacle, unilateral, and equilibrium problems; which arise in several

branches of pure and applied sciences in a unified and general framework. Several

numerical methods have been developed for solving variational inequalities and re-

lated optimization problems, see [12, 13, 49, 21, 6, 18, 19, 20, 14, 16, 17] and the

references therein.

Generalized Variational Inequality Problem

the generalized variational inequality problem is the problem of finding x ∈ C such

that

⟨x− λ̂Bx+ λAx, x− y⟩ ≥ 0,∀y ∈ C,

where A,B : C → H, λ̂ and λ are two positive constants. We use GV I(C,B,A)

to denote the set of solutions of the generalized variational inequality. It is easy

to see that an element x ∈ C is a solution to the generalized variational inequal-

ity problem if and only if x is a fixed point of the mapping PC(λ̂B − λA), that

is x ∈ F (PC(λ̂B − λA)) ⇔ x ∈ GV I(C,B,A). Therefore, fixed point algorithms

can be applied to solve GV I(C,B,A). If B = I and λ̂ = 1, then the generalized

variational inequality problem is reduced to the variational inequality problem.

Hierarchical Fixed Point Problem

The hierarchical fixed point problem is the problem of finding a point x∗ ∈ F (T )

such that

⟨Fx∗, x− x∗⟩ ≥ 0, ∀x ∈ F (T ),

where F : H → H is nonlinear mappings and T : C → C is nonlinear mappings.

It is well known that the iterative methods for finding hierarchical fixed points of

nonexpansive mappings can also be used to solve a convex minimization problem;

see, for example, [50, 26] and the references therein.

Hierarchical Variational Inequality problem

The hierarchical variational inequality problem (HVIP) is the problem of finding a



28

point x∗ ∈ V I(C,A) such that

⟨Fx∗, x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A), (2.6.2)

where F,A : H → H are nonlinear mappings. Many problems in mathematics, for

example the signal recovery [30], the power control problem [31] and the beamform-

ing problem [32] can be considered in the framework of this kind of the hierarchical

variational inequality problems.

Hierarchical Generalized Variational Inequality Problem

The hierarchical generalized variational inequality problem (HGVIP) is the problem

of finding a point x̃ ∈ GV I(C,B,A) such that

⟨Fx̃, x− x̃⟩ ≤ 0, ∀x ∈ GV I(C,B,A), (2.6.3)

where GV I(C,B,A) is the solution set of the generalized variational inequality. If If

the set GV I(C,B,A) is replaced by the set V I(C,A), the solution set of the varia-

tional inequality, then the HGVIP is called a hierarchical variational inequality prob-

lems (HVIP). Many problems in mathematics, for example the signal recovery[57],

the power control problem[7] and the beamforming problem[32] can be modeled as

HGVIP.

Equilibrium Problem

The equilibrium problem for finding x ∈ H such that F (x, y) ≥ 0, ∀y ∈ H. where

F : H ×H −→ R is a bifunction. The set of solutions of the equilibrium problem is

denoted by EP (F ), that is, EP (F ) =
{
x ∈ H : F (x, y) ≥ 0, ∀H ∈ C

}
. Numer-

ous problems in physics, optimization, and economics reduce to find a solution of

the equilibrium problem see, for example, [120, 60, 121, 118, 122] and the references

therein. If F (x, y) = ⟨Ax, y − x⟩ for all x, y ∈ C. Then, z ∈ EP (F ) if and only if

⟨Az, y − z⟩ ≥ 0 for all y ∈ C, that is, z is a solution of the variational inequality.

Variational Inclusion Problem

The variational inclusion problem is as follows: Find x ∈ H such that

θ ∈ A(x) +M(x), (2.6.4)
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where A : H → H is a single-valued nonlinear mapping,M : H → 2H is a set-valued

mapping and θ is the zero vector in H. We denote the set of solution of this problem

by I(A,M).

Remark 2.6.1. (1) If M = ∂ϕ : H → 2H in (2.6.4), where ϕ : H → R is proper

convex lower semi-continuous and ∂ϕ is the sub-differential of ϕ, then the variational

inclusion (2.6.4) is equivalent to the following problem: Find x ∈ H such that

⟨Ax, v − x⟩+ ϕ(y)− ϕ(x) ≥ 0, ∀v, y ∈ H,

which is called the mixed quasi-variational inequality in Noor [43].

(2) Let M = ∂δC in (2.6.4), where C is a nonempty closed convex subset of H

and δC : H → [0,∞) is the indicator function of C, i.e.,

δC(x) =

 0, x ∈ C;

+∞, otherwise.

Then the variational inclusion (2.6.4) is equivalent to the following problem: Find

x ∈ H such that

⟨Ax, v − x⟩ ≥ 0, ∀v ∈ H,

which is called Hartman-Stampacchia’s variational inequality.

Remark 2.6.2. (1) If H = Rm, then the problem (2.6.4) becomes the generalized

equation introduced by Robinson [44];

(2) If A = 0, then the problem (2.6.4) becomes the inclusion problem introduced

by Rockafellar [45].

The problem (2.6.4) is the most widely use for the study of optimal solutions in

many related areas including mathematical programming, complementarity, varia-

tional inequalities, optimal control and many other fields. Many kinds of variational

inclusions problems have been improved, extended and generalized in recent years

by many authors.

The System of Hierarchical Variational Inequality Problem

The system of hierarchical variational inequality problem: find (x∗, y∗, z∗) ∈ V I(C,A1)×
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V I(C,A2)× V I(C,A3) such that for given positive real numbers ρ, η and ξ, the fol-

lowing inequalities hold:
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1),

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ V I(C,A2),

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0, ∀z ∈ V I(C,A3).

(2.6.5)

where F,A1, A2, A3 : H → H are mappings.

Some special cases of the system of hierarchical variational inequality

problem (2.6.5):

(I) If Ai = I − Ti, where Ti : H → H is a nonlinear mapping for each i = 1, 2, 3,

in (2.6.5), then V I(C,Ai) = F (Ti) and the system of hierarchical variational

inequality problem (2.6.5) reduces to the following a system of hierarchical

optimization problem: finding (x∗, y∗, z∗) ∈ F (T1)× F (T2)× F (T3) such that
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ F (T1),

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ F (T2),

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0, ∀z ∈ F (T3).

(2.6.6)

(II) If Ti = PKi
for each i = 1, 2, 3, where PKi

is the metric projection from

H onto a nonempty closed convex subset Ki in (2.6.6), then it is clear that

the V I(C,Ai) = F (Ti) = Ki and the system of hierarchical optimization

problem(2.6.6) reduces to the following problem: finding (x∗, y∗, z∗) ∈ K1 ×

K2 ×K3 such that
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ K1,

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ K2,

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0, ∀z ∈ K3.

(2.6.7)

(III) If K1 = K2 = K3, then the system of optimization problem(2.6.7) reduces to

the following a system of variational inequality problem: finding (x∗, y∗, z∗) ∈

K1 ×K1 ×K1 such that
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ K1,

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ K1,

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0, ∀z ∈ K1.

(2.6.8)
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(IV ) If ξ = 0, ρ, η > 0, V I(C,A1) = V I(C,A3) and x∗ = z∗ in (2.6.5) then the

system of hierarchical variational inequality problem (2.6.5) reduces to the

following bi-level hierarchical variational inequality problem: finding (x∗, y∗) ∈

V I(C,A1)× V I(C,A2) such that ⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1),

⟨ηF (x∗) + y∗ − x∗, y − y∗⟩ ≥ 0, ∀y ∈ V I(C,A2)
(2.6.9)

(V ) In (2.6.9), if Ai = I − Ti, for each i = 1, 2, then bi-level hierarchical varia-

tional inequality problem (2.6.9) reduces to the following bi-level hierarchical

optimization problem: finding (x∗, y∗) ∈ F (T1)× F (T2) such that ⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ F (T1),

⟨ηF (x∗) + y∗ − x∗, y − y∗⟩ ≥ 0, ∀y ∈ F (T2)
(2.6.10)

which was Kraikaew and Saejung[58].

(V I) In (2.6.10), if Ti = PKi
for each i = 1, 2, then bi-level hierarchical optimization

problem (2.6.10) reduces to the following problem : finding (x∗, y∗) ∈ K1×K2

such that  ⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ K1,

⟨ηF (x∗) + y∗ − x∗, y − y∗⟩ ≥ 0, ∀y ∈ K2

(2.6.11)

(V II) In (2.6.11), If K1 = K2 then the bi-level optimization problem (2.6.11) reduces

to the following bi-level variational inequality problem: finding (x∗, y∗) ∈ K1×

K1 such that  ⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ K1,

⟨ηF (x∗) + y∗ − x∗, y − y∗⟩ ≥ 0, ∀y ∈ K1

(2.6.12)

(V III) In (2.6.5), If ξ = η = 0, ρ > 0, V I(C,A1) = V I(C,A2) = V I(C,A3) and

x∗ = y∗ = z∗ then the system of hierarchical variational inequality problem

(2.6.5) reduces to the following a hierarchical variational inequality problem:

finding x∗ ∈ V I(C,A1) such that

⟨F (y∗), x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1), (2.6.13)
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(IX) In (2.6.13), if Ai = I − T1 then the hierarchical variational inequality problem

(2.6.13) reduces to the following a hierarchical fixed point problem: finding

x∗ ∈ F (T1) such that

⟨F (y∗), x− x∗⟩ ≥ 0, ∀x ∈ F (T1), (2.6.14)

(X) In (2.6.14), if T1 = PK1 then the hierarchical fixed point problem (2.6.14)

reduces to the following a classic variational inequality problem: finding x∗ ∈

K1 such that

⟨F (y∗), x− x∗⟩ ≥ 0, ∀x ∈ K1, (2.6.15)

The System of Hierarchical Variational Inclusion Problem

The system of hierarchical variational inclusion problem: find (x∗, y∗, z∗) ∈ Ω1×Ω2×

Ω3 such that for given positive real numbers ρ, η and ξ, the following inequalities

hold: 
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ Ω2,

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0, ∀z ∈ Ω3,

(2.6.16)

where Ωi is a solution set of the variational inclusion problem I(Ai,Mi), for each

i = 1, 2, 3.

Some special cases of the system of hierarchical variational inclusion prob-

lem (2.6.16) as follows:

(I) If ξ = 0, ρ, η > 0,Ω1 = Ω3 and x∗ = z∗ in (2.6.16) then the system of hierar-

chical variational inclusion problem (2.6.16) reduces to the following bi-level

hierarchical variational inclusion problem: finding (x∗, y∗) ∈ Ω1×Ω2 such that ⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨ηF (x∗) + y∗ − x∗, y − y∗⟩ ≥ 0, ∀y ∈ Ω2,
(2.6.17)

which was studied by Chang et al. [59].

(II) In (2.6.16), If ξ = η = 0, ρ > 0,Ω1 = Ω2 = Ω3 and x∗ = y∗ = z∗ then the

system of hierarchical variational inclusion problem (2.6.16) reduces to the

following a hierarchical variational inclusion problem: finding x∗ ∈ Ω1 such

that

⟨F (y∗), x− x∗⟩ ≥ 0, ∀x ∈ Ω1. (2.6.18)
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2.7 Useful Lemmas

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and the norm ∥ · ∥

and C is a nonempty closed convex subset of H. We use F (T ) to denote the set of

fixed points of T : H → H, that is, F (T ) = {x ∈ H : Tx = x}.

Let A, T : H → H be a nonlinear mappings. Recall the following definitions:

(a) A is said to be monotone if

⟨Ax− Ay, x− y⟩ ≥ 0, ∀x, y ∈ H.

(b) A is said to be ρ-strongly monotone if there exists a positive real number ρ > 0

such that

⟨Ax− Ay, x− y⟩ ≥ ρ∥x− y∥2, ∀x, y ∈ H.

(c) A is said to be η-cocoercive or η-inverse strongly monotone if there exists a

positive real number η > 0 such that

⟨Ax− Ay, x− y⟩ ≥ η∥Ax− Ay∥2, ∀x, y ∈ H.

(d) A is said to be relaxed η-cocoercive if there exists a positive real number η > 0

such that

⟨Ax− Ay, x− y⟩ ≥ (−η)∥Ax− Ay∥2, ∀x, y ∈ H.

(e) A is said to be relaxed (η, ρ)-cocoercive if there exists a positive real number

η, ρ > 0 such that

⟨Ax− Ay, x− y⟩ ≥ (−η)∥Ax− Ay∥2 + ρ∥x− y∥2, ∀x, y ∈ H.

(f) G is said to be L-Lipschitzian on C if there exists a positive real number L > 0

such that

∥A(x)− A(y)∥ ≤ L∥x− y∥, ∀x, y ∈ H.

(g) A is said to be k-contraction if there exists a positive real number k ∈ (0, 1)

such that

∥A(x)− A(y)∥ ≤ k∥x− y∥, ∀x, y ∈ H.
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(h) A mapping T is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ H.

It is well known that F (T ) is a closed convex set, if T is nonexpansive.

(i) A mapping T is called quasi-nonexpansive if F (T ) ̸= ∅ and

∥Tx− p∥ ≤ ∥x− p∥, ∀x ∈ H, p ∈ F (T ).

It should be noted that T is quasi-nonexpansive if and only if ∀x ∈ H, p ∈ F (T )

⟨x− Tx, x− p⟩ ≥ 1

2
∥x− Tx∥2.

(j) A mapping T is called strongly quasi-nonexpansive if T is quasi-nonexpansive

and xn − Txn → 0,

whenever {xn} is a bounded sequence in H and ∥xn − p∥−∥Txn − p∥ → 0 for

some p ∈ F (T ).

(j) A mapping T is called k-strict pseudo-contraction if there exists a constant

k ∈ [0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C.

(l) A mapping A is said to be strongly positive if there exists a constant µ > 0

such that

⟨Ax, x⟩ ≥ µ∥x∥2, ∀x ∈ H. (2.7.1)

Lemma 2.7.1. [47] Let H be a Hilbert space, C a closed convex subset of H and

T : C → C be a nonexpansive mapping with F (T ) ̸= ∅. If {xn} is a sequence in C

weakly converging to x and if {(I−T )xn} converges strongly to y, then (I−T )x = y;

in particular, if y = 0 then x ∈ F (T ).

Lemma 2.7.2. [22] Assume A is a strongly positive linear bounded operator on a

Hilbert space H with coefficient γ̄ > 0 and 0 < α ≤ ∥A∥−1. Then ∥I−αA∥ ≤ 1−αγ̄.

Lemma 2.7.3. [23] Let F : C → C be a η-strongly monotone and L-Lipschitzian

operator with L > 0, η > 0. Assume that 0 < µ < 2η/L2, τ = µ(η − µL2/2) and

0 < t < 1. Then ∥(I − µtF )x− (I − µtF )y∥ ≤ (1− tτ)∥x− y∥.
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Lemma 2.7.4. [23] Let H be a real Hilbert space, f : H → H a contraction with

coefficient 0 < k < 1, and G : H → H a L-Lipschitzian continuous operator and

ξ-strongly monotone operator with L > 0, ξ > 0. Then for 0 < γ < µξ/k,

⟨x− y, (µG− γf)x− (µG− γf)y⟩ ≥ (µξ − γk)∥x− y∥2,∀x, y ∈ H.

That is, µG− γf is strongly monotone with coefficient µξ − γk.

Lemma 2.7.5. [54] Let H be a Hilbert space and C be a nonempty closed and convex

subset of H. Let T be a nonexpansive mapping of C into itself such that F (T ) ̸= ∅.

Then

∥Tx− x∥2 ≤ 2⟨x− Tx, x− x′⟩, ∀x′ ∈ F (T ),∀x ∈ C.

Lemma 2.7.6. [48] Assume that {an} is a sequence of nonnegative numbers such

that

an+1 ≤ (1− γn)an + δn, ∀n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

1.
∑∞

n=1 γn = ∞,

2. lim supn→∞
δn
γn

≤ 0 or
∑∞

n=1 |δn| <∞.

Then limn→∞ an = 0.

Lemma 2.7.7. [26] Let B : H → H be β-strongly monotone and L-Lipschitz contin-

uous and let µ ∈ (0, 2β
L2 ). For λ ∈ [0, 1], define Tλ : H → H by Tλ(x) := x− λµB(x)

for all x ∈ H. Then, for all x, y ∈ H,

∥Tλ(x)− Tλ(y)∥ ≤ (1− λτ)∥x− y∥

hold, where τ := 1−
√
1− µ(2β − µL2) ∈ (0, 1].

Definition 2.7.8. LetM : H → 2H be a multi-valued maximal monotone mapping.

Then the mapping JM,λ : H → H defined by

JM,λ(u) = (I + λM)−1(u), u ∈ H

is called the resolvent operator associated with M , where λ is any positive number

and I is the identity mapping.
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Proposition 2.7.9. [119] Let M : H → 2H be a multi-valued maximal monotone

mapping, and let A : H → H be an α-inverse-strongly monotone mapping. Then

the following conclusions hold.

1. The resolvent operator JM,λ associated with M is single-valued and nonexpan-

sive for all λ > 0.

2. The resolvent operator JM,λ is 1-inverse-strongly monotone, i.e.,

∥JM,λ(x)− JM,λ(y)∥2 ≤ ⟨x− y, JM,λ(x)− JM,λ(y)⟩, ∀x, y ∈ H.

3. u ∈ H is a solution of the variational inclusion (2.6.4) if and only if u =

JM,λ(u − λAu), ∀λ > 0, i.e., u is a fixed point of the mapping JM,λ(I − λA).

Therefore we have

Ω = F (JM,λ(I − λA)),∀λ > 0,

where Ω is the set of solutions of variational inclusion problem (2.6.4).

4. If λ ∈ (0, 2α], then Ω is a closed convex subset in H.

Lemma 2.7.10. [59] Let M : H → 2H be a multi-valued maximal monotone map-

ping, A : H → H be an α-inverse-strongly monotone mapping and let Ω be the set of

solutions of variational inclusion problem and Ω ̸= ∅. Then the following statements

hold.

1. If λ ∈ (0, 2α], then the mapping K : H → H defined by

K := JM,λ(I − λA)

is quasi-nonexpansive, where I is the identity mapping and JM,λ is the resolvent

operator associated with M .

2. The mapping I − K : H → H is demiclosed at zero, i.e., for any sequence

{xn} ⊂ H, if xn ⇀ x and (I −K)xn → 0, then x = Kx.

3. For any β ∈ (0, 1), the mapping Kβ defined by

Kβ = (1− β)I + βK

is a strongly quasi-nonexpansive mapping and F (Kβ) = F (K).
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4. I −Kβ, β ∈ (0, 1) is demiclosed at zero.

Lemma 2.7.11. [22]) Let H be a Hilbert space, C a closed convex subset of H,

f : C → H be a contraction with coefficient 0 < ρ < 1, T : C → C be nonexpansive

mapping. Let A be a strongly positive linear bounded operator on a Hilbert space H

with coefficient γ̄ > 0. Then, for 0 < γ < γ̄/ρ, for x, y ∈ C,

1. the mapping (I − f) is strongly monotone with coefficient (1− ρ) that is

⟨x− y, (I − f)x− (I − f)y⟩ ≥ (1− ρ)∥x− y∥2.

2. the mapping (I − T ) is monotone, that is

⟨x− y, (I − T )x− (I − T )y⟩ ≥ 0.

3. the mapping (A− γf) is strongly monotone with coefficient γ̄ − γρ that is

⟨x− y, (A− γf)x− (A− γf)y⟩ ≥ (γ̄ − γρ)∥x− y∥2.

Lemma 2.7.12. [119] Let A : H → H be an α-inverse-strongly monotone mapping.

Then

1. A is an 1
α
-Lipschitz continuous and monotone mapping;

2. For any constant λ > 0, we have

∥(I − λA)x− (I − λA)y∥2 ≤ ∥x− y∥2 + λ(λ− 2α)∥Ax− Ay∥2;

3. If λ ∈ (0, 2α], then I − λA is a nonexpansive mapping, where I is the identity

mapping on H.

Lemma 2.7.13. Let x ∈ H and z ∈ C be any points. Then we have the following:

1. That z = PC [x] if and only if there holds the relation:

⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C.

2. That z = PC [x] if and only if there holds the relation:

∥x− z∥2 ≤ ∥x− y∥2 − ∥y − z∥2, ∀y ∈ C.



38

3. There holds the relation:

⟨PC [x]− PC [y], x− y⟩ ≥ ∥PC [x]− PC [y]∥2, ∀x, y ∈ H.

Consequently, PC is nonexpansive and monotone.

4. u ∈ V I(C,A) ⇔ u ∈ F (PC(I − λA)) , ∀λ > 0.

Proposition 2.7.14. [123] Let C be a bounded closed convex subset of a real Hilbert

space H and let A be an α inverse strongly-monotone mapping of H into H. Then,

V I(C,A) is nonempty.

Lemma 2.7.15. [33] For x, y ∈ H and ω ∈ (0, 1), the following statements hold:

1. ∥λx+(1−λ)y∥2 = λ∥x∥2+(1−λ)∥y∥2−λ(1−λ)∥x−y∥2,∀x, y ∈ H, λ ∈ [0, 1];

2. ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

3. ∥x+ y∥2 ≥ ∥x∥2 + 2⟨y, x⟩, ∀x, y ∈ H.

4. ∥(1− ω)x+ ωy∥2 = (1− ω)∥x∥2 + ω∥y∥2 − ω(1− ω)∥x− y∥2.

Lemma 2.7.16. [25] Let {an} be a sequence of real numbers, and there exists a

subsequence {amj
} of {an} such that amj

< amj+1 for all j ∈ N , where N is the set

of all positive integers. Then there exists a nondecreasing sequence {nk} of N such

that limk→∞ nk = ∞ and the following properties are satisfied by all (sufficiently

large) number k ∈ N :

ank
≤ ank+1 and ak ≤ ank+1.

In fact, nk is the largest number n in the set {1, 2, . . . , k} such that an < an+1 holds.

Lemma 2.7.17. [58] Let {an} ⊂ [0,∞), {αn} ⊂ [0, 1), {bn} ⊂ (−∞,+∞), α̂ ∈ [0, 1)

be such that

1. {an} is a bounded sequence;

2. an+1 ≤ (1− αn)
2anα̂

√
an
√
an+1 + αnbn, ∀n ≥ 1;

3. whenever {ank
} is a subsequence of {an} satisfying

lim inf
k→∞

(ank+1 − ank
) ≥ 0,

it follows that lim supk→∞ bnk
≤ 0;
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4. limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.

Then limn→∞ an = 0.

Lemma 2.7.18. Let A : H → H be an α-inverse-strongly monotone mapping and

let V I(C,A) be the set of solutions of variational inequality problem (2.6.1). Then

the following statements hold.

1. If λ ∈ (0, 2α], then the mapping K : H → C defined by

K := PC(I − λA)

is quasi-nonexpansive, where I is the identity mapping.

2. The mapping I − K : H → H is demiclosed at zero, i.e., for any sequence

{xn} ⊂ H, if xn ⇀ x and (I −K)xn → 0, then x = Kx.

3. For any β ∈ (0, 1), the mapping Kβ defined by

Kβ = (1− β)I + βK (2.7.2)

is a strongly quasi-nonexpansive mapping and F (Kβ) = F (K).

4. I −Kβ, β ∈ (0, 1) is demiclosed at zero.

Proof. 1. By Lemma 2.7.13 and Proposition 2.7.14, the mapping K is nonexpan-

sive and V I(C,A) = F (K) ̸= ∅. This implies that K is quasi-nonexpansive.

2. Since K is a nonexpansive mapping on C, I −K is demiclosed at zero.

3. It obvious that F (Kβ) = F (K).

Next we prove that Kβ, β ∈ (0, 1) is a strongly quasi-nonexpansive mapping.

Let {xn} be any bounded sequence in H and let p ∈ Kβ be a given point such

that

∥xn − p∥ − ∥Kβxn − p∥ → 0. (2.7.3)

First, we prove that Kβ, β ∈ (0, 1) is a quasi-nonexpansive mapping.

By (2.7.2) and K is quasi-nonexpansive, we have

∥Kβx− p∥ = ∥(1− β)[x− p] + β(Kx− p)∥

≤ (1− β)∥x− p∥+ β∥Kx− p∥

≤ ∥x− p∥, ∀x ∈ C.
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Therefore, Kβ is a quasi-nonexpansive mapping.

Next we prove that ∥Kβxn − xn∥ → 0.

In fact, it follows from (2.7.2) that

∥Kβxn − p∥2 = ∥xn − p− β(xn −Kxn)∥2

= ∥xn − p∥2 − 2β⟨xn − p, xn −Kxn⟩+ β2∥xn −Kxn∥2

≤ ∥xn − p∥2 − β(1− β)∥xn −Kxn∥2.

By (2.7.3), we have

β(1− β)∥xn −Kxn∥2 ≤ ∥xn − p∥2 − ∥Kβxn − p∥2 → 0.

Since β(1− β) > 0 then ∥xn −Kxn∥ → 0. Hence

∥xn −Kβxn∥ = β∥xn −Kxn∥ → 0.

4. Since I − Kβ = β(I − K) and IK is demiclosed at zero, hence I − Kβ is

demiclosed at zero. This completes the proof.

Lemma 2.7.19. [46] Let C be a closed convex subset of a strictly convex Banach

space E. Let Tm : C → C be a nonexpansive mappings for each 1 ≤ m ≤ r, where r

is some integer. Suppose that ∩r
m=1F (Tm) is nonempty. Let {λn} be a sequence of

positive numbers with
∑r

m=1 λn = 1. Then the mapping S : C → C defined by

Sx =
r∑

m=1

λmTmx, ∀x ∈ C,

is well defined, nonexpansive and F (S) = ∩r
m=1F (Tm) holds.

Lemma 2.7.20. [15] Let C be a nonempty closed convex subset of H and let r > 0

and x ∈ H. Let F : C × C −→ R satisfying

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.
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Then, there exists z ∈ C such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

Lemma 2.7.21. [42] Assume that F : C × C → R satisfies (A1)-(A4). For r > 0

and x ∈ H, define a mapping T F
r : H → C as follows:

T F
r (x) =

{
z ∈ C : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
for all x ∈ H. Then, the following hold:

1. T F
r is single- valued;

2. T F
r is firmly nonexpansive, i.e., ∀x, y ∈ H,

∥∥T F
r x− T F

r y
∥∥2 ≤

⟨
T F
r x− T F

r y, x− y
⟩
;

3. F (T F
r ) = EP (F ); and

4. EP (F ) is closed and convex.

Lemma 2.7.22. [52] Let H be a real Hilbert space. Then for any x1, x2, ..., xk ∈ H

and a1, a2, ..., ak ∈ [0, 1] with
∑k

i=1 ai = 1, k ∈ ℵ, we have∥∥∥∥ k∑
i=1

aixi

∥∥∥∥2

=
k∑

i=1

ai∥xi∥2 −
k−1∑
i=1

k∑
j=i+1

aiaj∥xi − xj∥2.



CHAPTER 3 COMMON FIXED POINT AND COMMON

TRIPLED FIXED POINT THEOREMS

3.1 Common Fixed Point Theorems in Fuzzy Metric Spaces

In this section, we establish the existence of common fixed point theorems for

R-weakly commuting in fuzzy metric spaces by using the common limit in the range

property. We also give the example to validate our main results.

Let Θ denote the class of those functions θ : (0, 1]5 → [0, 1] such that θ is

continuous and

θ(x, 1, 1, x, x) = x.

There are examples of θ ∈ Θ:

1. θ1(x1, x2, x3, x4, x5) = min{x1, x2, x3, x4, x5};

2. θ2(x1, x2, x3, x4, x5) =
x1(x1 + x2 + x3 + x4 + x5)

x1 + x4 + x5 + 2
;

3. θ3(x1, x2, x3, x4, x5) = 3
√
x1x2x3x4x5;

4. θ4(x1, x2, x3, x4, x5) =
x1x2x3 + x2x3x4 + x2x3x5

3
;

5. θ5(x1, x2, x3, x4, x5) =
x1x2x3 + x4x5

x1 + 1
.

Now we prove our main results.

3.1.1 Existence Results

Theorem 3.1.1. Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings

of X such that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),
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(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds: (i) f and g satisfy the (CLRg) property;

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ η(x)

0
ψ(s)ds for fx ̸= ffx and

η(x) = θ(M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t),M(fx, gfx, t),M(gx, ffx, t))

for some θ ∈ Θ,

whenever ψ : R+ → R is a Lebesgue integrable mapping which is summable,

nonnegative and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.

Proof. Since f and g satisfy the (CLRg) property, there exists a sequence {xn} in

X such that

lim
n→∞

fxn = lim
n→∞

gxn = gx (3.1.1)

for some x ∈ X. Let t be a continuity point of (X,M, ∗). By (ii), we have∫ M(fxn,fx,t)

0

ψ(s)ds ≥
∫ M(gxn,gx,t)

0

ψ(s)ds

for all n ∈ N. Letting n→ ∞, we have∫ M(gx,fx,t)

0

ψ(s)ds ≥
∫ M(gx,gx,t)

0

ψ(s)ds,

which implies that fx = gx.

In case (f, g) is R-weakly commuting, we have

M(fgx, gfx, t) ≥M(fx, gx,
t

R
) = 1

that is fgx = gfx. Therefore, we obtain that

ffx = fgx = gfx = ggx.



44

In case (f, g) is R-weakly commuting of type (Ag), we can see in [117], we have

M(gfx, ffx, t) ≥M(fx, gx,
t

R
) = 1

that is gfx = ffx. Therefore, we obtain that

ggx = gfx = ffx = fgx.

In case (f, g) is R-weakly commuting of type (Af ), we have

M(fgx, ggx, t) ≥M(fx, gx,
t

R
) = 1

that is fgx = ggx. Therefore, we obtain that

ffx = fgx = ggx = gfx.

In case (f, g) is R-weakly commuting of type (P ), we have

M(ffx, ggx, t) ≥M(fx, gx,
t

R
) = 1

that is ffx = ggx. Therefore, we obtain that

fgx = ffx = ggx = gfx.

Next, we prove that ffx = fx. In deed, we assume that ffx ̸= fx. By the

inequality (iii), we get∫ M(fx,ffx,t)

0

ψ(s)ds >

∫ η(x)

0

ψ(s)ds

=

∫ θ(M(gx,gfx,t),M(fx,gx,t),M(ffx,gfx,t),M(fx,gfx,t),M(gx,ffx,t))

0

ψ(s)ds

=

∫ θ(M(fx,ffx,t),M(fx,fx,t),M(ffx,ffx,t),M(fx,ffx,t),M(fx,ffx,t))

0

ψ(s)ds

=

∫ θ(M(fx,ffx,t),1,1,M(fx,ffx,t),M(fx,ffx,t))

0

ψ(s)ds

=

∫ M(fx,ffx,t)

0

ψ(s)ds,

which is a contradiction. Thus ffx = fx and then fx = ffx = gfx. So fx is a

common fixed point of f and g.
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Corollary 3.1.2. Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings

of X such that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),

(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds:

(i) f and g satisfy the (CLRg) property;

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ N

0
ψ(s)ds for fx ̸= ffx,

whenever

N ∈ {M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t),M(fx, gfx, t),M(gx, ffx, t)}

and ψ : R+ → R is a Lebesgue integrable mapping which is summable, nonnegative

and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.

Proof. We obtain that

N ≥ min{M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t)

,M(fx, gfx, t),M(gx, ffx, t), } (3.1.2)

for

N ∈ {M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t),M(fx, gfx, t),M(gx, ffx, t)}.

By (iii) and (3.1.2), we have

∫ M(fx,ffx,t)

0

ψ(s)ds
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>

∫ N

0

ψ(s)ds

≥
∫ min{M(gx,gfx,t),M(fx,gx,t),M(ffx,gfx,t),M(fx,gfx,t),M(gx,ffx,t)}

0

ψ(s)ds

for x, y ∈ X. By taking θ = θ1 in Theorem 3.1.1, we get f and g have a common

fixed point.

Theorem 3.1.3. Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings

of X such that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),

(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds:

(i) f and g satisfy E.A. property and gX is a closed subspace of X;

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ η(x)

0
ψ(s)ds for fx ̸= ffx and

η(x) = θ(M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t),M(fx, gfx, t),M(gx, ffx, t))

for some θ ∈ Θ,

whenever ψ : R+ → R is a Lebesgue integrable mapping which is summable,

nonnegative and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.

Proof. Since f and g satisfy E.A. property, there exists a sequence {xn} in X such

that

lim
n→∞

fxn = lim
n→∞

gxn = u (3.1.3)

for some u ∈ X. It follows from gX is a closed subspace of X that u = gx for some

x ∈ X and then f and g satisfy the (CLRg) property. By Theorem 3.1.1, we get f

and g have a common fixed point.
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Since the pair of noncompatible mappings implies to the pair satisfying E.A.

property, we get the following corollary.

Corollary 3.1.4. Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings

of X such that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),

(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds:

(i) f and g are noncompatible mappings and gX is a closed subspace of X;

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ η(x)

0
ψ(s)ds for fx ̸= ffx and

η(x) = θ(M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t),M(fx, gfx, t),M(gx, ffx, t))

for some θ ∈ Θ,

whenever ψ : R+ → R is a Lebesgue integrable mapping which is summable,

nonnegative and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.

Let ∆ denote the class of those functions δ : (0, 1]4 → [0, 1] such that δ is

continuous and

δ(x, 1, x, 1) = x.

There are examples of δ ∈ ∆:

1. δ1(x1, x2, x3, x4) = min{x1, x2, x3, x4};

2. δ2(x1, x2, x3, x4) =
√
x1x2x3x4;

3. δ3(x1, x2, x3, x4) = min{√x1x3,
√
x2, x4};
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4. δ4(x1, x2, x3, x4) =
x1x2 + x3x4

2
;

5. δ5(x1, x2, x3, x4) =
x1x2 + x1x3 + x1x4

2 + x1
.

Theorem 3.1.5. Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings

of X such that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),

(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds:

(i) f and g satisfy the (CLRg) property;

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ η(x)

0
ψ(s)ds for fx ̸= ffx and

η(x) = δ(M(gx, gfx, t),M(fx, gx, t),M(fx, gfx, t),M(ffx, gfx, t))

for some δ ∈ ∆,

whenever ψ : R+ → R is a Lebesgue integrable mapping which is summable,

nonnegative and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.

Proof. Since f and g satisfy the (CLRg) property, there exists a sequence {xn} in

X such that

lim
n→∞

fxn = lim
n→∞

gxn = gx (3.1.4)

for some x ∈ X. Let t be a continuity point of (X,M, ∗). By (ii), we have∫ M(fxn,fx,t)

0

ψ(s)ds ≥
∫ M(gxn,gx,t)

0

ψ(s)ds
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for all n ∈ N. Letting n→ ∞, we have∫ M(gx,fx,t)

0

ψ(s)ds ≥
∫ M(gx,gx,t)

0

ψ(s)ds,

which implies that fx = gx.

In case (f, g) is R-weakly commuting, we have

M(fgx, gfx, t) ≥M(fx, gx,
t

R
) = 1

that is fgx = gfx. Therefore, we obtain that

ffx = fgx = gfx = ggx.

In case (f, g) is R-weakly commuting of type (Ag), we can see [117], we have

M(gfx, ffx, t) ≥M(fx, gx,
t

R
) = 1

that is gfx = ffx. Therefore, we obtain that

ggx = gfx = ffx = fgx.

In case (f, g) is R-weakly commuting of type (Af ), we have

M(fgx, ggx, t) ≥M(fx, gx,
t

R
) = 1

that is fgx = ggx. Therefore, we obtain that

ffx = fgx = ggx = gfx.

In case (f, g) is R-weakly commuting of type (P ), we have

M(ffx, ggx, t) ≥M(fx, gx,
t

R
) = 1

that is ffx = ggx. Therefore, we obtain that

fgx = ffx = ggx = gfx.
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Next, we prove that ffx = fx. We may suppose that ffx ̸= fx. By inequality

(iii), we get∫ M(fx,ffx,t)

0

ψ(s)ds >

∫ η(x)

0

ψ(s)ds

=

∫ δ(M(gx,gfx,t),M(fx,gx,t),M(fx,gfx,t),M(ffx,gfx,t))

0

ψ(s)ds

=

∫ δ(M(fx,ffx,t),M(fx,fx,t),M(fx,ffx,t),M(ffx,ffx,t))

0

ψ(s)ds

=

∫ δ(M(fx,ffx,t),1,M(fx,ffx,t),1)

0

ψ(s)ds

=

∫ M(fx,ffx,t)

0

ψ(s)ds,

which is a contradiction. Thus ffx = fx and then fx = ffx = gfx. So fx is a

common fixed point of f and g.

Theorem 3.1.6. Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings

of X such that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),

(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds:

(i) f and g satisfy the (E.A.) property and gX is a closed subspace of X;

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ η(x)

0
ψ(s)ds for fx ̸= ffx and

η(x) = δ(M(gx, gfx, t),M(fx, gx, t),M(fx, gfx, t),M(ffx, gfx, t))

for some δ ∈ ∆,

whenever ψ : R+ → R is a Lebesgue integrable mapping which is summable,

nonnegative and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.
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Proof. Since f and g satisfy E.A. property and gX is a closed subspace of X, we

get there exists a sequence {xn} in X and some u ∈ X such that

lim
n→∞

fxn = lim
n→∞

gxn = gx (3.1.5)

This show that f and g satisfy the (CLRg) property. By Theorem 3.1.5, we conclude

that f and g have a common fixed point.

Corollary 3.1.7. Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings

of X such that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),

(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds:

(i) f and g are noncompatible mappings and gX is a closed subspace of X;

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ δ(M(gx,gfx,t),M(fx,gx,t),M(fx,gfx,t),M(ffx,gfx,t))

0
ψ(s)ds for

fx ̸= ffx and

some δ ∈ ∆,

whenever ψ : R+ → R is a Lebesgue integrable mapping which is summable,

nonnegative and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.

Proof. Since f and g are noncompatible mappings, we get f and g satisfy E.A.

property. Therefore, we apply Theorem 3.1.6 for conclude that f and g have a

common fixed point.
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3.1.2 Examples

Example 3.1.8. Let X = [1,∞) with the usual metric d and a ∗ b = ab. Let M be

a usual fuzzy metric space on (X,M, ∗) which is define by M(x, y, t) =
t

t+ d(x, y)
for all x, y ∈ X and t > 0. Define fx = 3

√
x and gx = x3. Let Lebesgue integrable

ψ : R+ → R define by ψ(s) = es. Now, we show that all hypothesis of Theorem

3.1.1 holds.

• Let us prove that f and g satisfy the (CLRg) property.

Consider the sequence {xn} in X which is define by

xn = 1 +
1

n
;n = 1, 2, 3, . . .

Since

lim
n→∞

fxn = lim
n→∞

gxn = 1 = g1.

Thus f and g satisfy the (CLRg) property with this sequence.

• From Example 2.4.15, we conclude that (f, g) is R-weakly commuting for all

R > 0.

• We prove that ∫ M(fx,fy,t)

0

ψ(s)ds ≥
∫ M(gx,gy,t)

0

ψ(s)ds

for x, y ∈ X, we have∫ M(fx,fy,t)

0

ψ(s)ds =

∫ M( 3
√
x, 3

√
y,t)

0

esds

=

∫ t

t+| 3
√

x− 3√y|

0

esds

= e
t

t+| 3
√

x− 3√y| − 1

≥ e
t

t+|x3−y3| − 1

=

∫ t
t+|x3−y3|

0

esds

=

∫ M(x3,y3,t)

0

esds

=

∫ M(gx,gy,t)

0

ψ(s)ds.

Therefore, the condition (ii) in Theorem 3.1.1 holds.
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• We show that ∫ M(fx,ffx,t)

0

ψ(s)ds >

∫ η(x)

0

ψ(s)ds

for fx ̸= ffx and

η(x) = θ(M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t),M(fx, gfx, t),M(gx, ffx, t))

for some θ ∈ Θ.

Now, let θ : (0, 1]5 → [0, 1] define by

θ(x1, x2, x3, x4, x5) = min{x1, x2, x3, x4, x5}.

If fx ̸= ffx, then we get x ∈ (1,∞). Thus we only show for this case.

We obtain that∫ M(fx,ffx,t)

0
ψ(s)ds

=

∫ M( 3√x, 9
√
x,t)

0
esds

=

∫ t

t+ 3√x− 9√x

0
esds

= e
t

t+ 3√x− 9√x − 1

> e
t

t+x3− 9√x − 1

=

∫ t

t+x3− 9√x

0
esds

=

∫ M(x3, 9
√
x,t)

0
esds

=

∫ M(gx,ffx,t)

0
ψ(s)ds

≥
∫ min{M(gx,gfx,t),M(fx,gx,t),M(ffx,gfx,t),M(fx,gfx,t),M(gx,ffx,t)}

0
ψ(s)ds

=

∫ θ(M(gx,gfx,t),M(fx,gx,t),M(ffx,gfx,t),M(fx,gfx,t),M(gx,ffx,t))

0
ψ(s)ds.

Therefore, we get condition (iii) of Theorem 3.1.1 holds.

Now, all the required hypotheses of Theorem 3.1.1 are satisfied. Thus we deduce

the existence of a common fixed point of f and g. Here, a point 1 is a common fixed

point of f and g.

Example 3.1.9. Let X = [0, 1] with the usual metric d and a ∗ b = ab. Let M be

a usual fuzzy metric space on (X,M, ∗) which is define by M(x, y, t) =
t

t+ d(x, y)
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for all x, y ∈ X and t > 0. Let f, g : X → X define by

f(x) =

 0 ; x ∈ [0, 1
100

] ∪ [ 1
10
, 1];

x
2

; x ∈ ( 1
100
, 1
10
)

and

g(x) =

 0 ; x ∈ [0, 1
100

] ∪ [ 1
10
, 1];

10x ; x ∈ (1
4
, 1
2
).

Let Lebesgue integrable ψ : R+ → R define by ψ(s) = es. Now, we show that all

hypothesis of Theorem 3.1.1 holds.

• Let us prove that f and g satisfy the (CLRg) property.

Consider the sequence {xn} in X which is define by

xn =
n

n+ 1
;n = 1, 2, 3 . . .

Since

lim
n→∞

fxn = lim
n→∞

gxn = 0 = g1.

Thus f and g satisfy the (CLRg) property with this sequence.

• From Example 2.4.17, we conclude that (f, g) is R-weakly commuting of type

(Af ) for all R > 0.

• We prove that ∫ M(fx,fy,t)

0

ψ(s)ds ≥
∫ M(gx,gy,t)

0

ψ(s)ds

for x, y ∈ X. We distinguish the following cases.

Case 1 : x, y ∈ [0, 1
100

] ∪ [ 1
10
, 1].

In this case, we have∫ M(fx,fy,t)

0

ψ(s)ds =

∫ M(gx,gy,t)

0

ψ(s)ds.

Case 2 : x ∈ [0, 1
100

] ∪ [ 1
10
, 1] and y ∈ ( 1

100
, 1
10
).

In this case, we have∫ M(fx,fy,t)

0

ψ(s)ds =

∫ M(0, y
2
,t)

0

esds

=

∫ t
t+

y
2

0

esds
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= e
t

t+
y
2 − 1

> e
t

t+10y − 1

=

∫ t
t+10y

0

esds

=

∫ M(0,10y,t)

0

esds

=

∫ M(gx,gy,t)

0

ψ(s)ds.

Case 3 : x ∈ ( 1
100
, 1
10
) and y ∈ [0, 1

100
] ∪ [ 1

10
, 1].

In this case, we have∫ M(fx,fy,t)

0

ψ(s)ds =

∫ M(x
2
,0,t)

0

esds

=

∫ t
t+x

2

0

esds

= e
t

t+x
2 − 1

> e
t

t+10x − 1

=

∫ t
t+10x

0

esds

=

∫ M(10x,0,t)

0

esds

=

∫ M(gx,gy,t)

0

ψ(s)ds.

Case 4 : x, y ∈ ( 1
100
, 1
10
).

In this case, we have∫ M(fx,fy,t)

0

ψ(s)ds =

∫ M(x
2
, y
2
,t)

0

esds

=

∫ t
t+|x2− y

2 |

0

esds

= e
t

t+|x2− y
2 | − 1

= e
t

t+
|x−y|

2 − 1

≥ e
t

t+10|x−y| − 1

= e
t

t+|10x−10y| − 1

=

∫ M(10x,10y,t)

0

esds

=

∫ M(gx,gy,t)

0

ψ(s)ds.
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Therefore, we can conclude that∫ M(fx,fy,t)

0

ψ(s)ds ≥
∫ M(gx,gy,t)

0

ψ(s)ds

for x, y ∈ X. So the condition (ii) in Theorem 3.1.1 holds.

• We show that ∫ M(fx,ffx,t)

0

ψ(s)ds >

∫ η(x)

0

ψ(s)ds

for fx ̸= ffx and

η(x) = θ(M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t),M(fx, gfx, t),M(gx, ffx, t))

for some θ ∈ Θ.

Now, let θ : (0, 1]5 → [0, 1] define by

θ(x1, x2, x3, x4, x5) = min{x1, x2, x3, x4, x5}.

If fx ̸= ffx, then we get x ∈ ( 1
100
, 1
10
). We distinguish the following cases.

Case 1 : x ∈ ( 1
100
, 2
100

].

In this case, we have ffx = 0 ̸= x
2
= fx and∫ M(fx,ffx,t)

0
ψ(s)ds

=

∫ M(x
2
,0,t)

0
esds

=

∫ t
t+x

2

0
esds

= e
t

t+x
2 − 1

> e
t

t+10x − 1

=

∫ M(10x,0,t)

0
esds

=

∫ M(gx,ffx,t)

0
ψ(s)ds

≥
∫ min{M(gx,gfx,t),M(fx,gx,t),M(ffx,gfx,t),M(fx,gfx,t),M(gx,ffx,t)}

0
ψ(s)ds

=

∫ θ(M(gx,gfx,t),M(fx,gx,t),M(ffx,gfx,t),M(fx,gfx,t),M(gx,ffx,t))

0
ψ(s)ds.

Case 2 : x ∈ ( 2
100
, 1
10
).

In this case, we have ffx = x
4
̸= x

2
= fx and∫ M(fx,ffx,t)

0
ψ(s)ds =

∫ M(x
2
,x
4
,t)

0
esds
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=

∫ t
t+x

2−x
4

0
esds

= e
t

t+x
2−x

4 − 1

> e
t

t+10x−x
4 − 1

=

∫ M(10x,x
4
,t)

0
esds

=

∫ M(gx,ffx,t)

0
ψ(s)ds

≥
∫ min{M(gx,gfx,t),M(fx,gx,t),M(ffx,gfx,t),M(fx,gfx,t),M(gx,ffx,t)}

0
ψ(s)ds

=

∫ θ(M(gx,gfx,t),M(fx,gx,t),M(ffx,gfx,t),M(fx,gfx,t),M(gx,ffx,t))

0
ψ(s)ds.

Therefore, we get condition (iii) of Theorem 3.1.1 holds.

Now, all the required hypotheses of Theorem 3.1.1 are satisfied. Thus we deduce

the existence of a common fixed point of f and g. Here, a point 0 is a common fixed

point of f and g.

Example 3.1.10. Let X = [0, 1] with the usual metric d and a ∗ b = ab. Let M be

a usual fuzzy metric space on (X,M, ∗) which is define by M(x, y, t) =
t

t+ d(x, y)
for all x, y ∈ X and t > 0. Let f, g : X → X define by

f(x) =

 0 ; x ∈ [0, 1
4
] ∪ [1

2
, 1];

x
4

; x ∈ (1
4
, 1
2
)

and

g(x) =

 0 ; x ∈ [0, 1
4
] ∪ [1

2
, 1];

x
2

; x ∈ (1
4
, 1
2
).

Let Lebesgue integrable ψ : R+ → R define by ψ(s) = es. Now, we show that all

hypothesis of Theorem 3.1.1 holds.

• Let us prove that f and g satisfy the (CLRg) property.

Consider the sequence {xn} in X which is define by

xn =
n

n+ 1
;n = 1, 2, 3 . . .

Since

lim
n→∞

fxn = lim
n→∞

gxn = 0 = g1.

Thus f and g satisfy the (CLRg) property with this sequence.
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• From Example 2.4.18, we conclude that (f, g) is R-weakly commuting of type

(P ) for all R > 0.

• We prove that ∫ M(fx,fy,t)

0

ψ(s)ds ≥
∫ M(gx,gy,t)

0

ψ(s)ds

for x, y ∈ X. We distinguish the following cases.

Case 1 : x, y ∈ [0, 1
4
] ∪ [1

2
, 1].

In this case, we have∫ M(fx,fy,t)

0

ψ(s)ds =

∫ M(gx,gy,t)

0

ψ(s)ds.

Case 2 : x ∈ [0, 1
4
] ∪ [1

2
, 1] and y ∈ (1

4
, 1
2
).

In this case, we have∫ M(fx,fy,t)

0

ψ(s)ds =

∫ M(0, y
4
,t)

0

esds

=

∫ t
t+

y
4

0

esds

= e
t

t+
y
4 − 1

> e
t

t+
y
2 − 1

=

∫ t
t+

y
2

0

esds

=

∫ M(0, y
2
,t)

0

esds

=

∫ M(gx,gy,t)

0

ψ(s)ds.

Case 3 : x ∈ (1
4
, 1
2
) and y ∈ [0, 1

4
] ∪ [1

2
, 1].

In this case, we have∫ M(fx,fy,t)

0

ψ(s)ds =

∫ M(x
4
,0,t)

0

esds

=

∫ t
t+x

4

0

esds

= e
t

t+x
4 − 1

> e
t

t+x
2 − 1
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=

∫ t
t+x

2

0

esds

=

∫ M(x
2
,0,t)

0

esds

=

∫ M(gx,gy,t)

0

ψ(s)ds.

Case 4 : x, y ∈ (1
4
, 1
2
).

In this case, we have∫ M(fx,fy,t)

0

ψ(s)ds =

∫ M(x
4
, y
4
,t)

0

esds

=

∫ t
t+|x4− y

4 |

0

esds

= e
t

t+|x4− y
4 | − 1

= e
t

t+
|x−y|

4 − 1

≥ e
t

t+
|x−y|

2 − 1

= e
t

t+|x2− y
2 | − 1

=

∫ M(x
2
, y
2
,t)

0

esds

=

∫ M(gx,gy,t)

0

ψ(s)ds.

Therefore, we can conclude that∫ M(fx,fy,t)

0

ψ(s)ds ≥
∫ M(gx,gy,t)

0

ψ(s)ds

for x, y ∈ X. So the condition (ii) in Theorem 3.1.1 holds.

• We show that ∫ M(fx,ffx,t)

0

ψ(s)ds >

∫ η(x)

0

ψ(s)ds

for fx ̸= ffx and

η(x) = θ(M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t),M(fx, gfx, t),M(gx, ffx, t))

for some θ ∈ Θ.

Now, let θ : (0, 1]5 → [0, 1] define by

θ(x1, x2, x3, x4, x5) = min{x1, x2, x3, x4, x5}.
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If fx ̸= ffx, then we get x ∈ (1
4
, 1
2
). Thus we only show for this case.

We obtain that∫ M(fx,ffx,t)

0
ψ(s)ds

=

∫ M(x
4
,0,t)

0
esds

=

∫ t
t+x

4

0
esds

= e
t

t+x
4 − 1

> e
t

t+x
2 − 1

=

∫ M(x
2
,0,t)

0
esds

=

∫ M(gx,ffx,t)

0
ψ(s)ds

≥
∫ min{M(gx,gfx,t),M(fx,gx,t),M(ffx,gfx,t),M(fx,gfx,t),M(gx,ffx,t)}

0
ψ(s)ds

=

∫ θ(M(gx,gfx,t),M(fx,gx,t),M(ffx,gfx,t),M(fx,gfx,t),M(gx,ffx,t))

0
ψ(s)ds.

Therefore, we get condition (iii) of Theorem 3.1.1 holds.

Now, all the required hypotheses of Theorem 3.1.1 are satisfied. Thus we deduce

the existence of a common fixed point of f and g. Here, a point 0 is a common fixed

point of f and g.

For example of (f, g) being R-weakly commuting of type (Ag), see [117]

3.2 Common Tripled Fixed Point Theorems in Abstract

Metric Spaces

In this section, we extend and unify common tripled fixed point results in [67]

and study condition which guarantee the uniqueness of common tripled fixed point.

We also provide illustrative example in support of our results. Now, we introduce

the following concepts.

Definition 3.2.1. Let (X, d) be a K-metric space with a cone P having non-empty

interior (normal or non-normal). Mappings F : X3 → X and g : X → X are said
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to satisfy E.A property if there exist sequences {xn}, {yn}, {zn} ∈ X such that

lim
n→∞

F (xn, yn, zn) = lim
n→∞

g(xn) = x,

lim
n→∞

F (yn, zn, xn) = lim
n→∞

g(yn) = y,

lim
n→∞

F (zn, xn, yn) = lim
n→∞

g(zn) = z

for some x, y, z ∈ X.

Definition 3.2.2. Let (X, d) be a K-metric space with a cone P having non-empty

interior (normal or non-normal). Mappings F : X3 → X and g : X → X are said

to satisfy CLRg property if there exist sequences {xn}, {yn}, {zn} ∈ X such that

lim
n→∞

F (xn, yn, zn) = lim
n→∞

g(xn) = gx,

lim
n→∞

F (yn, zn, xn) = lim
n→∞

g(yn) = gy,

lim
n→∞

F (zn, xn, yn) = lim
n→∞

g(zn) = gz

for some x, y, z ∈ X.

3.2.1 Existence Results

Theorem 3.2.3. Let (X, d) be a K-metric space with a cone P having non-empty

interior (normal or non-normal) and F : X3 −→ X and g : X → X be mappings

satisfy CLRg property. Suppose that for any x, y, z, u, v, w ∈ X, following condition

d(F (x, y, z), F (u, v, w)) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz) + a4d(F (u, v, w), gu)

+a5d(F (v, w, u), gv) + a6d(F (w, u, v), gw)

+a7d(F (u, v, w), gx) + a8d(F (v, w, u), gy)

+a9d(F (w, u, v), gz) + a10d(F (x, y, z), gu)

+a11d(F (y, z, x), gv) + a12d(F (z, x, y), gw)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw),

holds, where ai, i = 1, · · · , 15 are nonnegative real numbers such that
15∑
i=1

ai < 1.

Then F and g have a tripled coincidence point.
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Proof. Since F and g satisfy CLRg property, there exist sequences {xn}, {yn}, {zn} ∈

X such that

lim
n→∞

F (xn, yn, zn) = lim
n→∞

g(xn) = gx, (3.2.1)

lim
n→∞

F (yn, zn, xn) = lim
n→∞

g(yn) = gy, (3.2.2)

lim
n→∞

F (zn, xn, yn) = lim
n→∞

g(zn) = gz (3.2.3)

for some x, y, z ∈ X.

Now, we prove that F (x, y, z) = gx, F (y, z, x) = gy and F (z, x, y) = gz. Note

that for each n ∈ N, we have

d(F (x, y, z), gx) ≼ d(F (x, y, z), F (xn, yn, zn)) + d(F (xn, yn, zn), gx). (3.2.4)

On the other hand, applying given contractive condition and using triangular

inequality, we obtain that

d(F (x, y, z), F (xn, yn, zn)) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz) + a4d(F (xn, yn, zn), gxn)

+a5d(F (yn, zn, xn), gyn) + a6d(F (zn, xn, yn), gzn)

+a7d(F (xn, yn, zn), gx) + a8d(F (yn, zn, xn), gy)

+a9d(F (zn, xn, yn), gz) + a10d(F (x, y, z), gxn)

+a11d(F (y, z, x), gyn) + a12d(F (z, x, y), gzn)

+a13d(gx, gxn) + a14d(gy, gyn) + a15d(gz, gzn)

≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz)

+a4[d(F (xn, yn, zn), gx) + d(gx, gxn)]

+a5[d(F (yn, zn, xn), gy) + d(gy, gyn)]

+a6[d(F (zn, xn, yn), gz) + d(gz, gzn)]

+a7d(F (xn, yn, zn), gx) + a8d(F (yn, zn, xn), gy)

+a9d(F (zn, xn, yn), gz)

+a10[d(F (x, y, z), gx) + d(gx, gxn)]
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+a11[d(F (y, z, x), gy) + d(gy, gyn)]

+a12[d(F (z, x, y), gz) + d(gz, gzn)]

+a13d(gx, gxn) + a14d(gy, gyn) + a15d(gz, gzn),

for all n ∈ N. Combining above inequality with (3.2.4), we have

d(F (x, y, z), gx) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz)

+a4[d(F (xn, yn, zn), gx) + d(gx, gxn)]

+a5[d(F (yn, zn, xn), gy) + d(gy, gyn)]

+a6[d(F (zn, xn, yn), gz) + d(gz, gzn)]

+a7d(F (xn, yn, zn), gx) + a8d(F (yn, zn, xn), gy)

+a9d(F (zn, xn, yn), gz)

+a10[d(F (x, y, z), gx) + d(gx, gxn)]

+a11[d(F (y, z, x), gy) + d(gy, gyn)]

+a12[d(F (z, x, y), gz) + d(gz, gzn)]

+a13d(gx, gxn) + a14d(gy, gyn)

+a15d(gz, gzn) + d(F (xn, yn, zn), gx)

for all n ∈ N. Therefore,

(1− a1 − a10)d(F (x, y, z), gx)

−(a2 + a11)d(F (y, z, x), gy)

−(a3 + a12)d(F (z, x, y), gz) ≼ (1 + a4 + a7)d(F (xn, yn, zn), gx)

+(a5 + a8)d(F (yn, zn, xn), gy)

+(a6 + a9)d(F (zn, xn, yn), gz)

+(a4 + a10 + a13)d(gx, gxn)

+(a5 + a11 + a14)d(gy, gyn)

+(a6 + a12 + a15)d(gz, gzn) (3.2.5)
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for all n ∈ N. Similarly, we obtain

(1− a1 − a10)d(F (y, z, x), gy)

−(a2 + a11)d(F (z, x, y), gz)

−(a3 + a12)d(F (x, y, z), gx) ≼ (1 + a4 + a7)d(F (yn, zn, xn), gy)

+(a5 + a8)d(F (zn, xn, yn), gz)

+(a6 + a9)d(F (xn, yn, zn), gx)

+(a4 + a10 + a13)d(gy, gyn)

+(a5 + a11 + a14)d(gz, gzn)

+(a6 + a12 + a15)d(gx, gxn), (3.2.6)

and

(1− a1 − a10)d(F (z, x, y), gz)

−(a2 + a11)d(F (x, y, z), gx)

−(a3 + a12)d(F (y, z, x), gy) ≼ (1 + a4 + a7)d(F (zn, xn, yn), gz)

+(a5 + a8)d(F (xn, yn, zn), gx)

+(a6 + a9)d(F (yn, zn, xn), gy)

+(a4 + a10 + a13)d(gz, gzn)

+(a5 + a11 + a14)d(gx, gxn)

+(a6 + a12 + a15)d(gy, gyn) (3.2.7)

for all n ∈ N. Adding (3.2.5), (3.2.6) and (3.2.7), we get

(1− a1 − a2 − a3 − a10 − a11 − a12)

× [d(F (x, y, z), gx) + d(F (y, z, x), gy) + d(F (z, x, y), gz)]

≼ (1 + a4 + a5 + a6 + a7 + a8 + a9)d(F (xn, yn, zn), gx)

+(1 + a4 + a5 + a6 + a7 + a8 + a9)d(F (yn, zn, xn), gy)

+(1 + a4 + a5 + a6 + a7 + a8 + a9)d(F (zn, xn, yn), gzn)

+(a4 + a5 + a6 + a10 + a11 + a12a13 + a14 + a15)d(gx, gxn)

+(a4 + a5 + a6 + a10 + a11 + a12a13 + a14 + a15)d(gy, gyn)

+(a4 + a5 + a6 + a10 + a11 + a12a13 + a14 + a15)d(gz, gzn)
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for all n ∈ N. Therefore, for each n ∈ N, we have

d(F (x, y, z), gx) + d(F (y, z, x), gy) + d(F (z, x, y), gz)

≼ αd(F (xn, yn, zn), gx) + αd(F (yn, zn, xn), gy) + αd(F (zn, xn, yn), gzn)

+βd(gx, gxn) + βd(gy, gyn) + βd(gz, gzn),

where

α =
2

1− a1 − a2 − a3 − a10 − a11 − a12

β =
1

1− a1 − a2 − a3 − a10 − a11 − a12
.

From (3.2.1), (3.2.2) and (3.2.3), for any c ∈ E with 0E ≪ c, there exists N ∈ N

such that

d(F (xn, yn, zn), gx) ≼ c

6max{α, β}
,

d(F (yn, zn, xn), gy) ≼ c

6max{α, β}
,

d(F (zn, xn, yn), gz) ≼ c

6max{α, β}
,

d(gxn, gx) ≼ c

6max{α, β}
,

d(gyn, gy) ≼ c

6max{α, β}
,

d(gzn, gz) ≼ c

6max{α, β}
,

for all n ≥ N . Thus, for all n ≥ N , we have

d(F (x, y, z), gx) + d(F (y, z, x), gy) + d(F (z, x, y), gz) ≼ c

6
+
c

6
+
c

6
+
c

6
+
c

6
+
c

6
= c.

It follows that d(F (x, y, z), gx) = d(F (y, z, x), gy) = d(F (z, x, y), gz) = 0E, that is

F (x, y, z) = gx, F (y, z, x) = gy and F (z, x, y) = gz.

Corollary 3.2.4. Let (X, d) be a K-metric space with a cone P having non-empty

interior (normal or non-normal) and F : X3 −→ X and g : X → X be map-

pings satisfy E.A. property and g(X) be closed subspace of X. Suppose that for any

x, y, z, u, v, w ∈ X, following condition
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d(F (x, y, z), F (u, v, w)) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz) + a4d(F (u, v, w), gu)

+a5d(F (v, w, u), gv) + a6d(F (w, u, v), gw)

+a7d(F (u, v, w), gx) + a8d(F (v, w, u), gy)

+a9d(F (w, u, v), gz) + a10d(F (x, y, z), gu)

+a11d(F (y, z, x), gv) + a12d(F (z, x, y), gw)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw),

holds, where ai, i = 1, · · · , 15 are nonnegative real numbers such that
15∑
i=1

ai < 1.

Then F and g have a tripled coincidence point.

Proof. Since F and g satisfy E.A property, there exist sequences {xn}, {yn}, {zn} ∈

X such that

lim
n→∞

F (xn, yn, zn) = lim
n→∞

g(xn) = p,

lim
n→∞

F (yn, zn, xn) = lim
n→∞

g(yn) = q,

lim
n→∞

F (zn, xn, yn) = lim
n→∞

g(zn) = r,

for some p, q, r ∈ X. It follows from g(X) is a closed subspace of X that p = gx,

q = gy and r = gz for some x, y, z ∈ X and then F and g satisfy the CLRg property.

By Theorem 3.2.3, we get F and g have a tripled coincidence point.

Corollary 3.2.5. [67]] Let (X, d) be a K-metric space with a cone P having non-

empty interior (normal or non-normal) and F : X3 −→ X and g : X → X be

mappings such that F (X3) ⊆ g(X). Suppose that for any x, y, z, u, v, w ∈ X,

following condition

d(F (x, y, z), F (u, v, w)) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz) + a4d(F (u, v, w), gu)

+a5d(F (v, w, u), gv) + a6d(F (w, u, v), gw)

+a7d(F (u, v, w), gx) + a8d(F (v, w, u), gy)
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+a9d(F (w, u, v), gz) + a10d(F (x, y, z), gu)

+a11d(F (y, z, x), gv) + a12d(F (z, x, y), gw)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw),

holds, where ai, i = 1, · · · , 15 are nonnegative real numbers such that
15∑
i=1

ai < 1.

Then F and g have a tripled coincidence point provided that g(X) is a complete

subspace of X.

Corollary 3.2.6. Let (X, d) be a K-metric space with a cone P having non-empty

interior (normal or non-normal) and F : X3 −→ X and g : X → X be mappings

satisfy CLRg property. Suppose that for any x, y, z, u, v, w ∈ X, following

d(F (x, y, z), F (u, v, w)) ≼ α1d(F (x, y, z), gx) + α1d(F (y, z, x), gy)

+α1d(F (z, x, y), gz) + α2d(F (u, v, w), gu)

+α2d(F (v, w, u), gv) + α2d(F (w, u, v), gw)

+α3d(F (u, v, w), gx) + α3d(F (v, w, u), gy)

+α3d(F (w, u, v), gz) + α4d(F (x, y, z), gu)

+α4d(F (y, z, x), gv) + α4d(F (z, x, y), gw)

+α5d(gx, gu) + α5d(gy, gv) + α5d(gz, gw),

holds where αi, i = 1, · · · , 5 are nonnegative real numbers such that
5∑

i=1

αi < 1/3.

Then F and g have a tripled coincidence point.

Proof. It suffices to take a1 = a2 = a3 = α1, a4 = a5 = a6 = α2, a7 = a8 = a9 = α3,

a10 = a11 = a12 = α4 and a13 = a14 = a15 = α5 in Theorem 3.2.3 with
5∑

i=1

αi <

1/3.

Corollary 3.2.7. Let (X, d) be a K-metric space with a cone P having non-empty

interior (normal or non-normal) and F : X3 −→ X and g : X → X be map-

pings satisfy E.A. property and g(X) be closed subspace of X. Suppose that for any
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x, y, z, u, v, w ∈ X, following

d(F (x, y, z), F (u, v, w)) ≼ α1d(F (x, y, z), gx) + α1d(F (y, z, x), gy)

+α1d(F (z, x, y), gz) + α2d(F (u, v, w), gu)

+α2d(F (v, w, u), gv) + α2d(F (w, u, v), gw)

+α3d(F (u, v, w), gx) + α3d(F (v, w, u), gy)

+α3d(F (w, u, v), gz) + α4d(F (x, y, z), gu)

+α4d(F (y, z, x), gv) + α4d(F (z, x, y), gw)

+α5d(gx, gu) + α5d(gy, gv) + α5d(gz, gw),

holds where αi, i = 1, · · · , 5 are nonnegative real numbers such that
5∑

i=1

αi < 1/3.

Then F and g have a tripled coincidence point.

Proof. It follows immediately from Corollary 3.2.6.

Corollary 3.2.8. [67] Let (X, d) be a K-metric space with a cone P having non-

empty interior (normal or non-normal) and F : X3 −→ X and g : X → X be

mappings such that F (X3) ⊆ g(X) and for any x, y, z, u, v, w ∈ X, following

d(F (x, y, z), F (u, v, w)) ≼ α1d(F (x, y, z), gx) + α1d(F (y, z, x), gy)

+α1d(F (z, x, y), gz) + α2d(F (u, v, w), gu)

+α2d(F (v, w, u), gv) + α2d(F (w, u, v), gw)

+α3d(F (u, v, w), gx) + α3d(F (v, w, u), gy)

+α3d(F (w, u, v), gz) + α4d(F (x, y, z), gu)

+α4d(F (y, z, x), gv) + α4d(F (z, x, y), gw)

+α5d(gx, gu) + α5d(gy, gv) + α5d(gz, gw),

holds where αi, i = 1, · · · , 5 are nonnegative real numbers such that
5∑

i=1

αi < 1/3.

Then F and g have a tripled coincidence point provided that g(X) is a complete

subspace of X.

Next, we prove the existence of common tripled fixed point theorem for W -

compatible mapping.
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Theorem 3.2.9. Let F : X3 −→ X and g : X → X be two mappings which satisfy

all the conditions of Theorem 3.2.3. If F and g are W -compatible, then F and g

have a unique common tripled fixed point. Moreover, common tripled fixed point of

F and g is of the form (u, u, u) for some u ∈ X.

Proof. First, we will show that the tripled point of coincidence is unique. Suppose

that (x, y, z) and (x∗, y∗, z∗) ∈ X3 with
gx = F (x, y, z)

gy = F (y, z, x)

gz = F (z, x, y),

and


gx∗ = F (x∗, y∗, z∗)

gy∗ = F (y∗, z∗, x∗)

gz∗ = F (z∗, x∗, y∗).

Using contractive condition in Theorem 3.2.3, we obtain

d(gx, gx∗) = d(F (x, y, z), F (x∗, y∗, z∗))

≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy) + a3d(F (z, x, y), gz)

+a4d(F (x
∗, y∗, z∗), gx∗) + a5d(F (y

∗, z∗, x∗), gy∗)

+a6d(F (z
∗, x∗, y∗), gz∗) + a7d(F (x

∗, y∗, z∗), gx)

+a8d(F (y
∗, z∗, x∗), gy) + a9d(F (z

∗, x∗, y∗), gz)

+a10d(F (x, y, z), gx
∗) + a11d(F (y, z, x), gy

∗) + a12d(F (z, x, y), gz
∗)

+a13d(gx, gx
∗) + a14d(gy, gy

∗) + a15d(gz, gz
∗)

= (a7 + a10 + a13)d(gx
∗, gx) + (a8 + a11 + a14)d(gy

∗, gy)

+(a9 + a12 + a15)d(gz
∗, gz).

Similarly, we have

d(gy, gy∗) = d(F (y, z, x), F (y∗, z∗, x∗))

≼ (a7 + a10 + a13)d(gy
∗, gy) + (a8 + a11 + a14)d(gz

∗, gz)

+(a9 + a12 + a15)d(gx
∗, gx)

and

d(gz, gz∗) = d(F (z, x, y), F (z∗, x∗, y∗))

≼ (a7 + a10 + a13)d(gz
∗, gz) + (a8 + a11 + a14)d(gx

∗, gx)

+(a9 + a12 + a15)d(gy
∗, gy).



70

Adding above three inequalities, we get

d(gx, gx∗) + d(gy, gy∗) + d(gz, gz∗) ≼ (
15∑
i=7

ai)[d(gx, gx
∗) + d(gy, gy∗) + d(gz, gz∗)].

Since
15∑
i=7

ai < 1, we obtain that

d(gx, gx∗) + d(gy, gy∗) + d(gz, gz∗) = 0E,

which implies that

gx = gx∗, gy = gy∗ and gz = gz∗. (3.2.8)

This show the uniqueness of the tripled point of coincidence of F and g, that is,

(gx, gy, gz).

From the contractive condition in Theorem 3.2.3, we have

d(gx, gy∗) = d(F (x, y, z), F (y∗, z∗, x∗))

≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy) + a3d(F (z, x, y), gz)

+a4d(F (y
∗, z∗, x∗), gy∗) + a5d(F (z

∗, x∗, y∗), gz∗)

+a6d(F (x
∗, y∗, z∗), gx∗) + a7d(F (y

∗, z∗, x∗), gx)

+a8d(F (z
∗, x∗, y∗), gy) + a9d(F (x

∗, y∗, z∗), gz)

+a10d(F (x, y, z), gy
∗) + a11d(F (y, z, x), gz

∗) + a12d(F (z, x, y), gx
∗)

+a13d(gx, gy
∗) + a14d(gy, gz

∗) + a15d(gz, gx
∗)

= (a7 + a10 + a13)d(gy
∗, gx) + (a8 + a11 + a14)d(gz

∗, gy)

+(a9 + a12 + a15)d(gx
∗, gz).

Similarly, we get

d(gy, gz∗) ≼ (a7 + a10 + a13)d(gz
∗, gy) + (a8 + a11 + a14)d(gx

∗, gz)

+(a9 + a12 + a15)d(gy
∗, gx),

and

d(gz, gx∗) ≼ (a7 + a10 + a13)d(gx
∗, gz) + (a8 + a11 + a14)d(gy

∗, gx)

+(a9 + a12 + a15)d(gz
∗, gy).



71

Adding above inequalities, we obtain

d(gx, gy∗) + d(gy, gz∗) + d(gz, gx∗) ≼ (
15∑
i=7

ai)(d(gx, gy
∗) + d(gy, gz∗) + d(gz, gx∗)).

It follows from
15∑
i=7

ai < 1 that

gx = gy∗, gy = gz∗ and gz = gx∗. (3.2.9)

From (3.2.8) and (3.2.9), we can conclude that

gx = gy = gz. (3.2.10)

This implies that (gx, gx, gx) is the unique tripled point of coincidence of F and g.

Now, let u = gx, then we have u = gx = F (x, y, z) = gy = F (y, z, x) = gz =

F (z, x, y). Since F and g are W -compatible, we have

F (gx, gy, gz) = g(F (x, y, z)),

which due to (3.2.10) gives that

F (u, u, u) = gu.

Consequently, (u, u, u) is a tripled coincidence point of F and g, and so (gu, gu, gu)

is a tripled point of coincidence of F and g, and by its uniqueness, we get gu = gx.

Thus, we obtain

u = gx = gu = F (u, u, u).

Hence, (u, u, u) is the unique common tripled fixed point of F and g. This completes

the proof.

Corollary 3.2.10. Let F : X3 −→ X and g : X → X be two mappings which

satisfy all the conditions of Corollary 3.2.4. If F and g are W -compatible, then F

and g have a unique common tripled fixed point. Moreover, common tripled fixed

point of F and g is of the form (u, u, u) for some u ∈ X.

Proof. It is similar to the proof of Theorem 3.2.9.

Corollary 3.2.11. [67] Let F : X3 −→ X and g : X → X be two mappings which

satisfy all the conditions of Corollary 3.2.5. If F and g are W -compatible, then F

and g have a unique common tripled fixed point. Moreover, common tripled fixed

point of F and g is of the form (u, u, u) for some u ∈ X.
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Here, we give some illustrative examples which demonstrate the validity of the

hypotheses and degree of utility of our results. These examples can not conclude

the existence of tripled coincidence point and common tripled fixed point by using

main results of Aydi et al. [67].

3.2.2 Examples

Example 3.2.12. Let X = [0, 1
2
] and E = R2 with the usual norm. Define the

cone P = {(x, y) ∈ E : x, y ≥ 0} (this cone is normal) and d : X2 → E by

d(x, y) = (|x− y|, α|x− y|), where α ≥ 0 is a constant. It is easy to see that (X, d)

is a K-metric space over a normal solid cone P .

Consider the mappings F : X3 → X and g : X → X are defined as

F (x, y, z) =


1
20

; (x, y, z) = (1
2
, 1
2
, 1
2
)

x2+y2+z2

60
; (x, y, z) ̸= (1

2
, 1
2
, 1
2
)

and gx =


1
2

; x = 1
2

x
10

; x ̸= 1
2
.

Since F (X3) = [0, 1
80
) ∪ { 1

20
} ̸⊆ g(X) = [0, 1

20
) ∪ {1

2
}, the main results of Aydi et al.

[67] can not applied in this case.

Next, we show that our results can be used for this case.

• Let us prove that f and g satisfy the (CLRg) property.

Consider the sequences {xn}, {yn} and {zn} in X which is define by

xn =
1

3n
, yn =

1

4n
, and zn =

1

5n
;n = 1, 2, 3 . . .

Since

lim
n→∞

F (xn, yn, zn) = lim
n→∞

g(xn) = g0,

lim
n→∞

F (yn, zn, xn) = lim
n→∞

g(yn) = g0,

lim
n→∞

F (zn, xn, yn) = lim
n→∞

g(zn) = g0.

Thus F and g satisfy the CLRg property with these sequences.

• Next, we will show that F and g are W -compatible.

It easy to see that F (x, y, z) = gx, F (y, z, x) = gy and F (z, x, y) = gz if and

only if x = y = z = 0. Since

F (g0, g0, g0) = g(F (0, 0, 0)),
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mappings F and g are W -compatible.

• Finally, we prove that, for x, y, z, u, v, w ∈ X,

d(F (x, y, z), F (u, v, w)) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz) + a4d(F (u, v, w), gu)

+a5d(F (v, w, u), gv) + a6d(F (w, u, v), gw)

+a7d(F (u, v, w), gx) + a8d(F (v, w, u), gy)

+a9d(F (w, u, v), gz) + a10d(F (x, y, z), gu)

+a11d(F (y, z, x), gv) + a12d(F (z, x, y), gw)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw),

where a1 = a4 =
2
9
, a2 = a3 = a5 = a6 = a7 = a8 = a9 = a10 = a11 = a12 = 0

and a13 = a14 = a15 =
1
6
such that

15∑
i=1

ai < 1.

For x, y, z, u, v, w ∈ X, we distinguish the following cases.

Case 1 :(x, y, z) ̸= (1
2
, 1
2
, 1
2
) and (u, v, w) ̸= (1

2
, 1
2
, 1
2
). In this case, we have

d(F (x, y, z), F (u, v, w)) =

(∣∣∣∣x2 + y2 + z2

60
− u2 + v2 + w2

60

∣∣∣∣,
α

∣∣∣∣x2 + y2 + z2

60
− u2 + v2 + w2

60

∣∣∣∣)
≼

(
|x2 − u2|

60
+

|y2 − v2|
60

+
|z2 − w2|

60
,

α
|x2 − u2|

60
+ α

|y2 − v2|
60

+ α
|z2 − w2|

60

)
≼

(
|x− u|
60

+
|y − v|
60

+
|z − w|

60
,

α
|x− u|
60

+ α
|y − v|
60

+ α
|z − w|

60

)
=

1

6

(
|x− u|
10

, α
|x− u|
10

)
+

1

6

(
|y − v|
10

, α
|y − v|
10

)
+
1

6

(
|z − w|

10
, α

|z − w|
10

)
= a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw)

≼ a1d(F (x, y, z), gx) + a4d(F (u, v, w), gu)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw).
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Case 2 :(x, y, z) ̸= (1
2
, 1
2
, 1
2
) and (u, v, w) = (1

2
, 1
2
, 1
2
). In this case, we have

d(F (x, y, z), F (u, v, w)) =

(∣∣∣∣x2 + y2 + z2

60
− 1

20

∣∣∣∣, α∣∣∣∣x2 + y2 + z2

60
− 1

20

∣∣∣∣)
≼ (

1

20
,
α

20
)

≼ 2

9
(
9

20
,
9α

20
)

= a4d(F (u, v, w), gu)

≼ a1d(F (x, y, z), gx) + a4d(F (u, v, w), gu)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw).

Case 3 :(x, y, z) = (1
2
, 1
2
, 1
2
) and (u, v, w) ̸= (1

2
, 1
2
, 1
2
). In this case, we have

d(F (x, y, z), F (u, v, w)) =

(∣∣∣∣ 120 − u2 + v2 + w2

60

∣∣∣∣, α∣∣∣∣ 120 − u2 + v2 + w2

60

∣∣∣∣)
≼ (

1

20
,
α

20
)

≼ 2

9
(
9

20
,
9α

20
)

= a1d(F (x, y, z), gx)

≼ a1d(F (x, y, z), gx) + a4d(F (u, v, w), gu)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw).

Case 4 :(x, y, z) = (1
2
, 1
2
, 1
2
) and (u, v, w) = (1

2
, 1
2
, 1
2
). Clearly,

d(F (x, y, z), F (u, v, w)) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz) + a4d(F (u, v, w), gu)

+a5d(F (v, w, u), gv) + a6d(F (w, u, v), gw)

+a7d(F (u, v, w), gx) + a8d(F (v, w, u), gy)

+a9d(F (w, u, v), gz) + a10d(F (x, y, z), gu)

+a11d(F (y, z, x), gv) + a12d(F (z, x, y), gw)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw).

Hence, all hypotheses of Theorem 3.2.3 and Theorem 3.2.9 are hold. Clearly (0, 0, 0)

is the unique common tripled fixed point of F and g.

Example 3.2.13. Let X = [0, 1] and E = C1
R[0, 1] with the norm ∥f∥ = ∥f∥∞ +

∥f ′∥∞ for all f ∈ E. Define the cone P = {f ∈ E : f(t) ≥ 0 for t ∈ [0, 1]} (this
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cone is not normal) and d : X2 → E by d(x, y) = |x − y|φ for a fixed φ ∈ P (e.g.,

φ(t) = et for t ∈ [0, 1]). It is easy to see that (X, d) is a K-metric space over a

non-normal solid cone.

Consider the mappings F : X3 → X and g : X → X are defined as

F (x, y, z) =


1
9

; (x, y, z) = (1, 1, 1)

x+y+z
90

; (x, y, z) ̸= (1, 1, 1)

and gx =


1 ; x = 1

x
9

; x ̸= 1.

Since F (X3) = [0, 1
30
) ∪ {1

9
} ̸⊆ g(X) = [0, 1

9
) ∪ {1}, the main results of Aydi et al.

[67] can not applied in this case.

Next, we show that our results can be used for this case.

• Let us prove that f and g satisfy the (CLRg) property.

Consider the sequences {xn}, {yn} and {zn} in X which is defined by

xn =
1

2n
, yn =

1

3n
, and zn =

1

4n
;n = 1, 2, 3 . . .

Since

lim
n→∞

F (xn, yn, zn) = lim
n→∞

g(xn) = g0,

lim
n→∞

F (yn, zn, xn) = lim
n→∞

g(yn) = g0,

lim
n→∞

F (zn, xn, yn) = lim
n→∞

g(zn) = g0.

Thus F and g satisfy the CLRg property with these sequences.

• Next, we will show that F and g are W -compatible.

It obtain that F (x, y, z) = gx, F (y, z, x) = gy and F (z, x, y) = gz if and only

if x = y = z = 0. Since

F (g0, g0, g0) = g(F (0, 0, 0)),

mappings F and g are W -compatible.
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• Finally, we prove that, for x, y, z, u, v, w ∈ X,

d(F (x, y, z), F (u, v, w)) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz) + a4d(F (u, v, w), gu)

+a5d(F (v, w, u), gv) + a6d(F (w, u, v), gw)

+a7d(F (u, v, w), gx) + a8d(F (v, w, u), gy)

+a9d(F (w, u, v), gz) + a10d(F (x, y, z), gu)

+a11d(F (y, z, x), gv) + a12d(F (z, x, y), gw)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw),

where a1 = a4 =
1
4
, a2 = a3 = a5 = a6 = a7 = a8 = a9 = a10 = a11 = a12 = 0

and a13 = a14 = a15 =
1
10

such that
15∑
i=1

ai < 1.

For x, y, z, u, v, w ∈ X, we distinguish the following cases.

Case 1 :(x, y, z) ̸= (1, 1, 1) and (u, v, w) ̸= (1, 1, 1). In this case, we have

d(F (x, y, z), F (u, v, w)) =

∣∣∣∣x+ y + z

90
− u+ v + w

90

∣∣∣∣φ
≼ 1

10

|x− u|
9

φ+
1

10

|y − v|
9

φ+
1

10

|z − w|
9

φ

= a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw)

≼ a1d(F (x, y, z), gx) + a4d(F (u, v, w), gu)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw).

Case 2 :(x, y, z) ̸= (1, 1, 1) and (u, v, w) = (1, 1, 1). In this case, we have

d(F (x, y, z), F (u, v, w)) =

∣∣∣∣x+ y + z

90
− 1

9

∣∣∣∣φ
≼ 1

9
φ

≼ (
1

4
)(
8

9
)φ

= a4d(F (u, v, w), gu)

≼ a1d(F (x, y, z), gx) + a4d(F (u, v, w), gu)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw).
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Case 3 :(x, y, z) = (1, 1, 1) and (u, v, w) ̸= (1, 1, 1). In this case, we have

d(F (x, y, z), F (u, v, w)) =

∣∣∣∣19 − u+ v + w

90

∣∣∣∣φ
≼ 1

9
φ

≼ (
1

4
)(
8

9
)φ

= a1d(F (x, y, z), gx)

≼ a1d(F (x, y, z), gx) + a4d(F (u, v, w), gu)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw).

Case 4 :(x, y, z) = (1, 1, 1) and (u, v, w) = (1, 1, 1). Clearly,

d(F (x, y, z), F (u, v, w)) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz) + a4d(F (u, v, w), gu)

+a5d(F (v, w, u), gv) + a6d(F (w, u, v), gw)

+a7d(F (u, v, w), gx) + a8d(F (v, w, u), gy)

+a9d(F (w, u, v), gz) + a10d(F (x, y, z), gu)

+a11d(F (y, z, x), gv) + a12d(F (z, x, y), gw)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw).

Therefore, all hypotheses of Theorem 3.2.3 and Theorem 3.2.9 are hold. It is easy

to see that a point (0, 0, 0) is the unique common tripled fixed point of F and g.



CHAPTER 4 SYSTEM OF VARIATIONAL

INEQUALITY PROBLEMS

4.1 Systems of Hierarchical Variational Inequality Problems

In this section,

Throughout this section we always assume that the following conditions are satisfied:

(C1) Ai : H → H is an αi-inverse-strongly monotone mapping and V I(C,Ai) is

the set of solutions to variational inequality problem with A = Ai, for all

i = 1, 2, 3;

(C2) Ki and Ki,β, β ∈ (0, 1), i = 1, 2, 3, are the mappings defined by Ki := PCi
(I − λAi), λ ∈ (0, 2αi],

Ki,β = (1− β)I + βKi, β ∈ (0, 1),
(4.1.1)

respectively.

We have the following result.

4.1.1 Existence Result

Theorem 4.1.1. Let C be a bounded closed convex subset of a real Hilbert space H.

Let Ai and V I(C,Ai) satisfy the condition (C1) and let fi : H → H be contractions

with a contractive constant hi ∈ (0, 1), for all i = 1, 2, 3. Then there exists a unique

element (x∗, y∗, z∗) ∈ V I(C,A1) × V I(C,A2) × V I(C,A3) such that the following

three inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1),

⟨y∗ − f2(z
∗), y − y∗⟩ ≥ 0, ∀y ∈ V I(C,A2),

⟨z∗ − f3(x
∗), z − z∗⟩ ≥ 0, ∀z ∈ V I(C,A3).

(4.1.2)

Proof. The proof is a consequence of the Banach’s contraction principle but it is

given here for the sake of completeness. By Proposition 2.7.14, Lemma 2.7.18 (3) and

Lemma 2.7.13 (4), V I(C,A1), V I(C,A2) and V I(C,A3) are nonempty closed and
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convex. Therefore the metric projection PV I(C,Ai) is well defined for each i = 1, 2, 3.

Since fi is a contractions mapping for each i = 1, 2, 3 then we have

PV I(C,A1)f1 ◦ PV I(C,A2)f2 ◦ PV I(C,A3)f3

is a contractions. Hence there exists a unique element x∗ ∈ H such that

x∗ = (PV I(C,A1)f1 ◦ PV I(C,A2)f2 ◦ PV I(C,A3)f3)x
∗.

Putting z∗ = PV I(C,A3)f3(x
∗) and y∗ = PV I(C,A2)f2(z

∗), then z∗ ∈ V I(C,A3), y
∗ ∈

V I(C,A2) and x
∗ = PV I(C,A1)f1(y

∗).

Suppose that there is an element (x̂, ŷ, ẑ) ∈ V I(C,A1)× V I(C,A2)× V I(C,A3)

such that the following three inequalities are satisfied

⟨x̂− f1(ŷ), x− x̂⟩ ≥ 0, ∀x ∈ V I(C,A1),

⟨ŷ − f2(ẑ), y − ŷ⟩ ≥ 0, ∀y ∈ V I(C,A2),

⟨ẑ − f3(x̂), z − ẑ⟩ ≥ 0, ∀z ∈ V I(C,A3).

Then

x̂ = PV I(C,A1)f1(ŷ),

ŷ = PV I(C,A2)f2(ẑ),

ẑ = PV I(C,A3)f3(x̂).

Therefore

x̂ = (PV I(C,A1)f1 ◦ PV I(C,A2)f2 ◦ PV I(C,A3)f3)x̂

This implies that x̂ = x∗, ŷ = y∗ and ẑ = z∗. This completes the proof.

4.1.2 Approximation Result

Theorem 4.1.2. Let C be a closed convex subset of a real Hilbert space H and

V I(C,Ai) ̸= ∅. Let Ai, V I(C,Ai), Ki and Ki,β satisfy the conditions (C1) and (C2),

and let fi : H → H be contractions with a contractive constant hi ∈ (0, 1), for all

i = 1, 2, 3. Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

(4.1.3)
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where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then

the sequences {xn}, {yn} and {zn} generated be (4.1.3) converge to x∗, y∗ and z∗

respectively, where (x∗, y∗, z∗) is the unique element in V I(C,A1) × V I(C,A2) ×

V I(C,A3) verifying (4.1.2).

Proof. (i) First we prove that {xn}, {yn} and {zn} are bounded.

From Lemma 2.7.18, it follow that Ki,β is strongly quasi-nonexpansive and

F (Ki,β) = F (Ki) = V I(C,Ai) for each i = 1, 2, 3. Since fi is contraction with

the coefficient hi for each i = 1, 2, 3 and x∗ ∈ F (K1,β), y
∗ ∈ F (K2,β), z

∗ ∈ F (K3,β),

we have

∥xn+1 − x∗∥ ≤ (1− αn)∥K1,βxn − x∗∥+ αn∥f1(K2,βyn)− x∗∥

≤ (1− αn)∥xn − x∗∥+ αn∥f1(K2,βyn)− f1(y
∗)∥+ αn∥f1(y∗)− x∗∥

≤ (1− αn)∥xn − x∗∥+ αnh1∥K2,βyn − y∗∥+ αn∥f1(y∗)− x∗∥

≤ (1− αn)∥xn − x∗∥+ αnh1∥yn − y∗∥+ αn∥f1(y∗)− x∗∥

≤ (1− αn)∥xn − x∗∥+ αnh∥yn − y∗∥+ αn∥f1(y∗)− x∗∥,

where h = max{h1, h2, h3}. Similarly, we can also prove that

∥yn+1 − y∗∥ ≤ (1− αn)∥yn − y∗∥+ αnh∥zn − z∗∥+ αn∥f2(z∗)− y∗∥

and

∥zn+1 − z∗∥ ≤ (1− αn)∥zn − z∗∥+ αnh∥xn − x∗∥+ αn∥f3(x∗)− z∗∥.

This implies that

∥xn+1 − x∗∥+ ∥yn+1 − y∗∥+ ∥zn+1 − z∗∥

≤ (1− αn(1− h))

[
∥xn − x∗∥+ ∥yn − y∗∥+ ∥zn − z∗∥

]
+αn(1− h)

∥f1(y∗)− x∗∥+ ∥f2(z∗)− y∗∥+ ∥f3(x∗)− z∗∥
1− h

≤ max

{
∥xn − x∗∥+ ∥yn − y∗∥+ ∥zn − z∗∥,

∥f1(y∗)− x∗∥+ ∥f2(z∗)− y∗∥+ ∥f3(x∗)− z∗∥
1− h

}
.

By induction, we have
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∥xn+1 − x∗∥+ ∥yn+1 − y∗∥+ ∥zn+1 − z∗∥

≤ max

{
∥x0 − x∗∥+ ∥y0 − y∗∥+ ∥z0 − z∗∥,

∥f1(y∗)− x∗∥+ ∥f2(z∗)− y∗∥+ ∥f3(x∗)− z∗∥
1− h

}
,

for all n ≥ 1.

Hence {xn}, {yn} and {zn} are bounded. Consequently, {K1,βxn}, {K2,βyn} and

{K3,βzn} are bounded.

(ii) Next we prove that for each n ≥ 1 the following inequality holds.

∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 + ∥zn+1 − z∗∥2

≤ (1− αn)
2(∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2)

+2αnh
(
∥xn+1 − x∗∥∥yn − y∗∥ (4.1.4)

+∥yn+1 − y∗∥∥zn − z∗∥+ ∥zn+1 − z∗∥∥xn − x∗∥
)

+2αn(⟨f1(y∗)− x∗, xn+1 − x∗⟩+ ⟨f2(z∗)− y∗, yn+1 − y∗⟩ (4.1.5)

+⟨f3(x∗)− z∗, zn+1 − z∗⟩). (4.1.6)

From (4.1.3) and Lemma 2.7.15, we have

∥xn+1 − x∗∥2 = ∥(1− αn)(K1,βxn − x∗) + αn(f1(K2,βyn)− x∗)∥2

≤ ∥(1− αn)(K1,βxn − x∗)∥2 + 2αn⟨f1(K2,βyn)− x∗, xn+1 − x∗⟩

= (1− αn)
2∥K1,βxn − x∗∥2 + 2αn⟨f1(K2,βyn)− f1(y

∗), xn+1 − x∗⟩

+2αn⟨f1(y∗)− x∗, xn+1 − x∗⟩

≤ (1− αn)
2∥xn − x∗∥2 + 2αn∥f1(K2,βyn)− f1(y

∗)∥∥xn+1 − x∗∥

+2αn⟨f1(y∗)− x∗, xn+1 − x∗⟩

≤ (1− αn)
2∥xn − x∗∥2 + 2αnh1∥K2,βyn − y∗∥∥xn+1 − x∗∥

+2αn⟨f1(y∗)− x∗, xn+1 − x∗⟩

≤ (1− αn)
2∥xn − x∗∥2 + 2αnh∥yn − y∗∥∥xn+1 − x∗∥

+2αn⟨f1(y∗)− x∗, xn+1 − x∗⟩. (4.1.7)

Similarly, we can also prove that

∥yn+1 − y∗∥2 ≤ (1− αn)
2∥yn − y∗∥2 + 2αnh∥zn − z∗∥∥yn+1 − y∗∥

+2αn⟨f2(z∗)− y∗, yn+1 − y∗⟩ (4.1.8)
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and

∥zn+1 − z∗∥2 ≤ (1− αn)
2∥zn − z∗∥2 + 2αnh∥xn − x∗∥∥zn+1 − z∗∥

+2αn⟨f3(x∗)− z∗, zn+1 − z∗⟩. (4.1.9)

Adding up the inequality (4.1.7), (4.1.8) and (4.1.9), the inequality (4.1.6) is proved.

(iii) Next we prove that if there exists a subsequence {nk} ⊂ {n} such that

0 ≤ lim inf
k→∞

{
(∥xnk+1 − x∗∥2 + ∥ynk+1 − y∗∥2 + ∥znk+1 − z∗∥2)

−(∥xnk
− x∗∥2 + ∥ynk

− y∗∥2 + ∥znk
− z∗∥2)

}
,

then

0 ≥ lim sup
k→∞

{
⟨f1(y∗)− x∗, xnk+1 − x∗⟩+ ⟨f2(z∗)− y∗, ynk+1 − y∗⟩

+⟨f3(x∗)− z∗, znk+1 − z∗⟩
}
.

Since the norm ∥ · ∥2 is convex and limn→∞ αn = 0, By (4.1.3), we have

0 ≤ lim inf
k→∞

{
(∥xnk+1 − x∗∥2 + ∥ynk+1 − y∗∥2 + ∥znk+1 − z∗∥2)

−(∥xnk
− x∗∥2 + ∥ynk

− y∗∥2 + ∥znk
− z∗∥2)

}
≤ lim inf

k→∞

{
(1− αnk

)∥K1,βxnk
− x∗∥2 + αnk

∥f1(K2,βynk
)− x∗∥2

+(1− αnk
)∥K2,βynk

− y∗∥2 + αnk
∥f2(K3,βznk

)− y∗∥2

+(1− αnk
)∥K3,βznk

− z∗∥2 + αnk
∥f3(K1,βxnk

)− z∗∥2

−(∥xnk
− x∗∥2 + ∥ynk

− y∗∥2 + ∥znk
− z∗∥2)

}
= lim inf

k→∞

{
(∥K1,βxnk

− x∗∥2 − ∥xnk
− x∗∥2) + (∥K2,βynk

− y∗∥2 − ∥ynk
− y∗∥2)

+(∥K3,βznk
− z∗∥2 − ∥znk

− z∗∥2)
}

≤ lim sup
k→∞

{
(∥K1,βxnk

− x∗∥2 − ∥xnk
− x∗∥2) + (∥K2,βynk

− y∗∥2 − ∥ynk
− y∗∥2)

+(∥K3,βznk
− z∗∥2 − ∥znk

− z∗∥2)
}

≤ 0.

This implies that

lim
k→∞

(∥K1,βxnk
− x∗∥2 − ∥xnk

− x∗∥2) = lim
k→∞

(∥K2,βynk
− y∗∥2 − ∥ynk

− y∗∥2)

= lim
k→∞

(∥K3,βznk
− z∗∥2 − ∥znk

− z∗∥2) = 0.
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Since the sequence {∥K1,βxnk
− x∗∥+ ∥xnk

− x∗∥} , {∥K2,βynk
− y∗∥ + ∥ynk

− y∗∥}

and {∥K3,βznk
− z∗∥+ ∥znk

− z∗∥} are bounded, we have

lim
k→∞

(∥K1,βxnk
− x∗∥ − ∥xnk

− x∗∥) = lim
k→∞

(∥K2,βynk
− y∗∥ − ∥ynk

− y∗∥)

= lim
k→∞

(∥K3,βznk
− z∗∥ − ∥znk

− z∗∥) = 0

By Lemma 2.7.18, K1,β, K2,β and K3,β are strongly quasi-nonexpansive. We have

K1,βxnk
− xnk

→ 0, K2,βynk
− ynk

→ 0 and K3,βznk
− znk

→ 0

Consequence, we obtain that

xnk
− xnk+1 → 0 ynk

− ynk+1 → 0 and znk
− znk+1 → 0

It follows from the boundedness of {xnk
} that there exists a subsequence {xnkl

} of

{xnk
} such that xnkl

⇀ p and

lim
l→∞

⟨f1(y∗)− x∗, xnkl
− x∗⟩ = lim sup

k→∞
⟨f1(y∗)− x∗, xnk

− x∗⟩

= lim sup
k→∞

⟨f1(y∗)− x∗, xnk+1 − x∗⟩

By Lemma 2.7.18, I −K1,β is demiclosed at zero, and so p ∈ F (K1,β) = V I(C,A1).

Hence from (4.1.2) we have

lim
l→∞

⟨f1(y∗)− x∗, xnkl
− x∗⟩ = ⟨f1(y∗)− x∗, p− x∗⟩ ≤ 0.

Therefore

lim sup
k→∞

⟨f1(y∗)− x∗, xnk+1 − x∗⟩ = lim
l→∞

⟨f1(y∗)− x∗, xnkl
− x∗⟩ ≤ 0.

Similarly, we can also prove that

lim sup
k→∞

⟨f2(z∗)− y∗, ynk+1 − y∗⟩ ≤ 0

and

lim sup
k→∞

⟨f3(x∗)− z∗, znk+1 − z∗⟩ ≤ 0.

Hence, we have the desired inequality.

(iv) Finally we prove that the sequence {xn}, {yn} and {zn} generated be (4.1.3)

converge to x∗, y∗ and z∗ respectively.
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It is clearly that

∥xn+1 − x∗∥∥yn − y∗∥+ ∥yn+1 − y∗∥∥zn − z∗∥+ ∥zn+1 − z∗∥∥xn − x∗∥

≤
(
∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2

) 1
2

×
(
∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 + ∥zn+1 − z∗∥2

) 1
2 (4.1.10)

Substituting (4.1.10) into (4.1.6), we have

∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 + ∥zn+1 − z∗∥2

≤ (1− αn)
2(∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2)

+2αnh
{(

∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2
) 1

2

×
(
∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 + ∥zn+1 − z∗∥2

) 1
2
}

+2αn(⟨f1(y∗)− x∗, xn+1 − x∗⟩+ ⟨f2(z∗)− y∗, yn+1 − y∗⟩

+⟨f3(x∗)− z∗, zn+1 − z∗⟩). (4.1.11)

Set

an := ∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2,

bn := 2(⟨f1(y∗)− x∗, xn+1 − x∗⟩+ ⟨f2(z∗)− y∗, yn+1 − y∗⟩

+⟨f3(x∗)− z∗, zn+1 − z∗⟩).

Then we have the following statement:

• From (i), {an} is bounded sequence;

• From (4.1.11), an+1 ≤ (1− αn)
2anα̂

√
an
√
an+1 + αnbn, ∀n ≥ 1;

• From (iii), whenever {ank
} is a subsequence of {an} satisfying

lim inf
k→∞

(ank+1 − ank
) ≥ 0,

it follows that lim supk→∞ bnk
≤ 0;

By Lemma 2.7.17, we have

lim
n→∞

(∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2) = 0.

Hence we obtain that

lim
n→∞

∥xn − x∗∥ = lim
n→∞

∥yn − y∗∥ = lim
n→∞

∥zn − z∗∥ = 0.

This completes the proof.
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4.1.3 Consequence Results

Using Theorem 4.1.2, we can prove the following results.

Theorem 4.1.3. Let C be a closed convex subset of a real Hilbert space H and

V I(C,Ai) ̸= ∅. Let Ai, V I(C,Ai), Ki and Ki,β satisfy the conditions (C1) and (C2)

for each i = 1, 2, 3, and let F : H → H be a µ-Lipschitzian and r-strongly monotone

mapping. Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where f1 := I − ρF, f2 := I − ηF, f3 := I − ξF with ρ, η, ξ ∈ (0, 2r
µ2 ) and {αn}

is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the sequences

{xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗) is the

unique element in V I(C,A1)× V I(C,A2)× V I(C,A3) such that the following three

inequalities are satisfied
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1),

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ V I(C,A2),

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0, ∀z ∈ V I(C,A3).

(4.1.12)

Proof. It is easy to see that f1, f2, f3 are contraction mappings and all the condition

in Theorem 4.1.2 are satisfied. By Theorem 4.1.2, we have the sequences {xn}, {yn}

and {zn} converge to (x∗, y∗, z∗) ∈ V I(C,A1) × V I(C,A2) × V I(C,A3) such that

the following three inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1),

⟨y∗ − f2(z
∗), y − y∗⟩ ≥ 0, ∀y ∈ V I(C,A2),

⟨z∗ − f3(x
∗), z − z∗⟩ ≥ 0, ∀z ∈ V I(C,A3).

(4.1.13)

Substituting f1 := I−ρF, f2 := I−ηF, f3 := I−ξF into (4.1.13), we obtain that the

sequences {xn}, {yn} and {zn} converge to (x∗, y∗, z∗) ∈ V I(C,A1) × V I(C,A2) ×

V I(C,A3) such that the following three inequalities are satisfied
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0 ∀x ∈ V I(C,A1),

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0 ∀y ∈ V I(C,A2),

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0 ∀z ∈ V I(C,A3).
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This completes the proof

In Theorem 4.1.2 and Theorem 4.1.3, if Ai = I − Ti where Ti : H → H is

nonexpansive mapping. Then Ai is
1
2
inverse strongly-monotone and V I(C,Ai) =

F (Ti), for each i = 1, 2, 3. We obtain the following corollary.

Corollary 4.1.4. Let C be a closed convex subset of a real Hilbert space H and

V I(C,Ai) ̸= ∅. Let Ti : H → H be nonexpansive mapping and Ai = I−Ti, V I(C,Ai), Ki

and Ki,β satisfy the conditions (C1) and (C2). Let fi : H → H be contractions with

a contractive constant hi ∈ (0, 1), for all i = 1, 2, 3. Let {xn}, {yn} and {zn} be three

sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then

the sequences {xn}, {yn} and {zn}* converge to x∗, y∗ and z∗ respectively, where

(x∗, y∗, z∗) is the unique element in F (T1) × F (T2) × F (T3) such that the following

three inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ F (T1),

⟨y∗ − f2(z
∗), y − y∗⟩ ≥ 0, ∀y ∈ F (T2),

⟨z∗ − f3(x
∗), z − z∗⟩ ≥ 0, ∀z ∈ F (T3).

Corollary 4.1.5. Let C be a closed convex subset of a real Hilbert space H and

V I(C,Ai) ̸= ∅. Let Ti : H → H be nonexpansive mapping and Ai = I−Ti, V I(C,Ai), Ki

and Ki,β satisfy the conditions (C1) and (C2) for each i = 1, 2, 3. Let F : H → H

be a µ-Lipschitzian and r-strongly monotone mapping. Let {xn}, {yn} and {zn} be

three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where f1 := I − ρF, f2 := I − ηF, f3 := I − ξF with ρ, η, ξ ∈ (0, 2r
µ2 ) and {αn}

is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the sequences
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{xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗) is the

unique element in F (T1)× F (T2)× F (T3) such that the following three inequalities

are satisfied 
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ F (T1),

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ F (T2),

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0 ∀z ∈ F (T3).

Corollary 4.1.6. Let C be a closed convex subset of a real Hilbert space H and

V I(C,Ai) ̸= ∅. Let Ai = I −PCi
, V I(C,Ai), Ki and Ki,β satisfy the conditions (C1)

and (C2). Let fi : H → H be contractions with a contractive constant hi ∈ (0, 1),

for all i = 1, 2, 3. Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then

the sequences {xn}, {yn} and {zn}* converge to x∗, y∗ and z∗ respectively, where

(x∗, y∗, z∗) is the unique element in C1 × C2 × C3 such that the following three

inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ C1,

⟨y∗ − f2(z
∗), y − y∗⟩ ≥ 0, ∀y ∈ C2,

⟨z∗ − f3(x
∗), z − z∗⟩ ≥ 0, ∀z ∈ C3.

Corollary 4.1.7. Let C be a closed convex subset of a real Hilbert space H and

V I(C,Ai) ̸= ∅. Let Ai = I −PCi
, V I(C,Ai), Ki and Ki,β satisfy the conditions (C1)

and (C2) for each i = 1, 2, 3. Let F : H → H be a µ-Lipschitzian and r-strongly

monotone mapping. Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where f1 := I − ρF, f2 := I − ηF, f3 := I − ξF with ρ, η, ξ ∈ (0, 2r
µ2 ) and {αn}

is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the sequences
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{xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗) is the

unique element in C1×C2×C3 such that the following three inequalities are satisfied
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ C1,

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ C2,

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0 ∀z ∈ C3.

Setting A1 = A2 = A3 in Theorem 4.1.2, we obtain the following corollary.

Corollary 4.1.8. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let A1, V I(C,A1), K1 and K1,β satisfy the conditions (C1) and

(C2), and let fi : H → H be contractions with a contractive constant hi ∈ (0, 1), for

all i = 1, 2, 3. Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K1,βyn),

yn+1 = (1− αn)K1,βyn + αnf2(K1,βzn),

zn+1 = (1− αn)K1,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the se-

quences {xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗)

is the unique element in V I(C,A1)×V I(C,A1)×V I(C,A1) such that the following

three inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0 ∀x ∈ V I(C,A1),

⟨y∗ − f2(z
∗), x− y∗⟩ ≥ 0, ∀x ∈ V I(C,A1),

⟨z∗ − f3(x
∗), x− z∗⟩ ≥ 0, ∀x ∈ V I(C,A1).

Corollary 4.1.9. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let A1, V I(C,A1) and K1,β satisfy the conditions (C1) and (C2),

and let F : H → H be a µ-Lipschitzian and r-strongly monotone mapping. Let

{xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K1,βyn),

yn+1 = (1− αn)K1,βyn + αnf2(K1,βzn),

zn+1 = (1− αn)K1,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,
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where f1 := I − ρF, f2 := I − ηF, f3 := I − ξF with ρ, η, ξ ∈ (0, 2r
µ2 ) and {αn}

is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the sequences

{xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗) is the

unique element in V I(C,A1)× V I(C,A1)× V I(C,A1) such that the following three

inequalities are satisfied
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0 ∀x ∈ V I(C,A1),

⟨ηF (z∗) + y∗ − z∗, x− y∗⟩ ≥ 0 ∀x ∈ V I(C,A1),

⟨ξF (x∗) + z∗ − x∗, x− z∗⟩ ≥ 0 ∀x ∈ V I(C,A1).

Corollary 4.1.10. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let T : H → H be nonexpansive mapping and A1 = I−T, V I(C,A1), K1

and K1,β satisfy the conditions (C1) and (C2). Let fi : H → H be contractions with

a contractive constant hi ∈ (0, 1), for all i = 1, 2, 3. Let {xn}, {yn} and {zn} be three

sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K1,βyn),

yn+1 = (1− αn)K1,βyn + αnf2(K1,βzn),

zn+1 = (1− αn)K1,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the se-

quences {xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗)

is the unique element in F (T )×F (T )×F (T ) such that the following three inequalities

are satisfied 
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0 ∀x ∈ F (T ),

⟨y∗ − f2(z
∗), x− y∗⟩ ≥ 0, ∀x ∈ F (T ),

⟨z∗ − f3(x
∗), x− z∗⟩ ≥ 0, ∀x ∈ F (T ).

Corollary 4.1.11. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let T : H → H be nonexpansive mapping and A1 = I−T, V I(C,A1), K1

and K1,β satisfy the conditions (C1) and (C2). Let F : H → H be a µ-Lipschitzian

and r-strongly monotone mapping. Let {xn}, {yn} and {zn} be three sequences de-
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fined by 

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K1,βyn),

yn+1 = (1− αn)K1,βyn + αnf2(K1,βzn),

zn+1 = (1− αn)K1,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where f1 := I − ρF, f2 := I − ηF, f3 := I − ξF with ρ, η, ξ ∈ (0, 2r
µ2 ) and {αn}

is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the sequences

{xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗) is the

unique element in F (T )×F (T )×F (T ) such that the following three inequalities are

satisfied 
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0 ∀x ∈ F (T ),

⟨ηF (z∗) + y∗ − z∗, x− y∗⟩ ≥ 0 ∀x ∈ F (T ),

⟨ξF (x∗) + z∗ − x∗, x− z∗⟩ ≥ 0 ∀x ∈ F (T ).

Corollary 4.1.12. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let A1 = I−PC , V I(C,A1), K1 and K1,β satisfy the conditions (C1)

and (C2). Let fi : H → H be contractions with a contractive constant hi ∈ (0, 1),

for all i = 1, 2, 3. Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K1,βyn),

yn+1 = (1− αn)K1,βyn + αnf2(K1,βzn),

zn+1 = (1− αn)K1,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the se-

quences {xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗)

is the unique element in C × C × C such that the following three inequalities are

satisfied 
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ C,

⟨y∗ − f2(z
∗), x− y∗⟩ ≥ 0, ∀x ∈ C,

⟨z∗ − f3(x
∗), x− z∗⟩ ≥ 0, ∀x ∈ C.

Corollary 4.1.13. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let A1 = I−PC , V I(C,A1), K1 and K1,β satisfy the conditions (C1)

and (C2). Let F : H → H be a µ-Lipschitzian and r-strongly monotone mapping.
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Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K1,βyn),

yn+1 = (1− αn)K1,βyn + αnf2(K1,βzn),

zn+1 = (1− αn)K1,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where f1 := I − ρF, f2 := I − ηF, f3 := I − ξF with ρ, η, ξ ∈ (0, 2r
µ2 ) and {αn}

is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the sequences

{xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗) is the

unique element in C × C × C such that the following three inequalities are satisfied
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0 ∀x ∈ C,

⟨ηF (z∗) + y∗ − z∗, x− y∗⟩ ≥ 0 ∀x ∈ C),

⟨ξF (x∗) + z∗ − x∗, x− z∗⟩ ≥ 0 ∀x ∈ C.

Setting A1 = A2 = A3, f1 = f2 = f3 and x0 = y0 = z0 in Theorem 4.1.2, we

obtain the following corollary.

Corollary 4.1.14. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let A1, V I(C,A1), K1 and K1,β satisfy the conditions (C1) and

(C2), and let f : H → H be contractions with a contractive constant h ∈ (0, 1). Let

{xn} be the sequences defined by x0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf(K1,βxn), n = 0, 1, 2, . . . ,

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the

sequences {xn} converge to x∗ ∈ V I(C,A1) such that the following three inequalities

are satisfied

⟨x∗ − f1(x
∗), x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1).

Corollary 4.1.15. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let A1, V I(C,A1), K1 and K1,β satisfy the conditions (C1) and

(C2), and let F : H → H be a µ-Lipschitzian and r-strongly monotone mapping.

Let {xn} be the sequences defined by x0 ∈ H,

xn+1 = (1− αn)K1,βxn + αn(I − ρF )(K1,βxn), n = 0, 1, 2, . . . ,
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where ρ ∈ (0, 2r
µ2 ) and {αn} is a sequence in (0, 1) satisfying αn → 0 and

∑∞
n=0 αn =

∞. Then the sequences {xn} converge to x∗ ∈ V I(C,A1) such that the following

three inequalities are satisfied

⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1).

Corollary 4.1.16. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let T : H → H be nonexpansive mapping and A1 = I−T, V I(C,A1), K1

and K1,β satisfy the conditions (C1) and (C2). Let f : H → H be contractions with

a contractive constant h ∈ (0, 1). Let {xn} be the sequences defined by x0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf(K1,βxn), n = 0, 1, 2, . . . ,

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the

sequences {xn} converge to x∗ ∈ F (T ) such that the following three inequalities are

satisfied

⟨x∗ − f1(x
∗), x− x∗⟩ ≥ 0, ∀x ∈ F (T ).

Corollary 4.1.17. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let T : H → H be nonexpansive mapping and A1 = I−T, V I(C,A1), K1

and K1,β satisfy the conditions (C1) and (C2). Let F : H → H be a µ-Lipschitzian

and r-strongly monotone mapping. Let {xn} be the sequences defined by x0 ∈ H,

xn+1 = (1− αn)K1,βxn + αn(I − ρF )(K1,βxn), n = 0, 1, 2, . . . ,

where ρ ∈ (0, 2r
µ2 ) and {αn} is a sequence in (0, 1) satisfying αn → 0 and

∑∞
n=0 αn =

∞. Then the sequences {xn} converge to x∗ ∈ F (T ) such that the following three

inequalities are satisfied

⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ F (T ).

Corollary 4.1.18. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let A1 = I−PC , V I(C,A1), K1 and K1,β satisfy the conditions (C1)

and (C2). Let f : H → H be contractions with a contractive constant h ∈ (0, 1).

Let {xn} be the sequences defined by x0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf(K1,βxn), n = 0, 1, 2, . . . ,
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where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then

the sequences {xn} converge to x∗ ∈ C such that the following three inequalities are

satisfied

⟨x∗ − f1(x
∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

Corollary 4.1.19. Let C be a closed convex subset of a real Hilbert space H and

V I(C,A1) ̸= ∅. Let A1 = I−PC , V I(C,A1), K1 and K1,β satisfy the conditions (C1)

and (C2). Let F : H → H be a µ-Lipschitzian and r-strongly monotone mapping.

Let {xn} be the sequences defined by x0 ∈ H,

xn+1 = (1− αn)K1,βxn + αn(I − ρF )(K1,βxn), n = 0, 1, 2, . . . ,

where ρ ∈ (0, 2r
µ2 ) and {αn} is a sequence in (0, 1) satisfying αn → 0 and

∑∞
n=0 αn =

∞. Then the sequences {xn} converge to x∗ ∈ C such that the following three

inequalities are satisfied

⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

4.2 Systems of Hierarchical Variational Inclusion Problems

Throughout this section, we always assume that the following conditions are

satisfied:

(C1) Mi : H → 2H is a multi-valued maximal monotone mapping, Ai : H → H

is an αi-inverse-strongly monotone mapping and Ωi is the set of solutions

to variational inclusion problem with A = Ai,M = Mi and Ωi ̸= ∅, for all

i = 1, 2, 3;

(C2) Ki and Ki,β, β ∈ (0, 1), i = 1, 2, 3, are the mappings defined by Ki := JMi,λ(I − λAi), λ ∈ (0, 2αi],

Ki,β = (1− β)I + βKi, β ∈ (0, 1),
(4.2.1)

respectively.

Next, there are our main results.
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4.2.1 Existence Result

Theorem 4.2.1. Let Ai,Mi,Ωi, Ki and Ki,β satisfy the conditions (C1) and (C2),

and let fi : H → H be contractions with a contractive constant hi ∈ (0, 1), for all

i = 1, 2, 3. Then there exists a unique element (x∗, y∗, z∗) ∈ Ω1 × Ω2 × Ω3 such that

the following three inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨y∗ − f2(z
∗), y − y∗⟩ ≥ 0, ∀y ∈ Ω2,

⟨z∗ − f3(x
∗), z − z∗⟩ ≥ 0, ∀z ∈ Ω3.

(4.2.2)

Proof. The proof is a consequence of the Banach’s contraction principle but it is

given here for the sake of completeness. By Proposition 2.7.9 (4) and Lemma 2.7.10

(1), Ω1,Ω2 and Ω3 are nonempty closed and convex. Therefore the metric projection

PΩi
is well defined for each i = 1, 2, 3.

Since fi is a contraction mapping for each i = 1, 2, 3, then, we have PΩi
fi is a

contraction and also have

PΩ1f1 ◦ PΩ2f2 ◦ PΩ3f3

is a contraction. Hence there exists a unique element x∗ ∈ H such that

x∗ = (PΩ1f1 ◦ PΩ2f2 ◦ PΩ3f3)x
∗.

Putting z∗ = PΩ3f3(x
∗) and y∗ = PΩ2f2(z

∗), then z∗ ∈ Ω3, y
∗ ∈ Ω2 and x∗ =

PΩ1f1(y
∗).

Suppose that there is an element (x̂, ŷ, ẑ) ∈ Ω1×Ω2×Ω3 such that the following

three inequalities are satisfied

⟨x̂− f1(ŷ), x− x̂⟩ ≥ 0, ∀x ∈ Ω1,

⟨ŷ − f2(ẑ), y − ŷ⟩ ≥ 0, ∀y ∈ Ω2,

⟨ẑ − f3(x̂), z − ẑ⟩ ≥ 0, ∀z ∈ Ω3.

Then

x̂ = PΩ1f1(ŷ),

ŷ = PΩ2f2(ẑ),

ẑ = PΩ3f3(x̂).

Therefore

x̂ = (PΩ1f1 ◦ PΩ2f2 ◦ PΩ3f3)x̂

This implies that x̂ = x∗, ŷ = y∗ and ẑ = z∗. This completes the proof.
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4.2.2 Approximation Result

Theorem 4.2.2. Let Ai,Mi,Ωi, Ki and Ki,β satisfy the conditions (C1) and (C2),

and let fi : H → H be contractions with a contractive constant hi ∈ (0, 1), for all

i = 1, 2, 3. Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

(4.2.3)

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then

the sequences {xn}, {yn} and {zn} generated be (4.2.3) converge to x∗, y∗ and z∗

respectively, where (x∗, y∗, z∗) is the unique element in Ω1×Ω2×Ω3 verifying (4.2.2).

Proof. (i) First we prove that sequences {xn}, {yn} and {zn} are bounded.

From Lemma 2.7.10, it follow that Ki,β is strongly quasi-nonexpansive and

F (Ki,β) = F (Ki) = Ωi for each i = 1, 2, 3. Since fi is contraction with the co-

efficient hi for each i = 1, 2, 3 and x∗ ∈ F (K1,β), y
∗ ∈ F (K2,β) and z

∗ ∈ F (K3,β), it

follows that

∥xn+1 − x∗∥ ≤ (1− αn)∥K1,βxn − x∗∥+ αn∥f1(K2,βyn)− x∗∥

≤ (1− αn)∥xn − x∗∥+ αn∥f1(K2,βyn)− f1(y
∗)∥+ αn∥f1(y∗)− x∗∥

≤ (1− αn)∥xn − x∗∥+ αnh1∥K2,βyn − y∗∥+ αn∥f1(y∗)− x∗∥

≤ (1− αn)∥xn − x∗∥+ αnh1∥yn − y∗∥+ αn∥f1(y∗)− x∗∥

≤ (1− αn)∥xn − x∗∥+ αnh∥yn − y∗∥+ αn∥f1(y∗)− x∗∥,

where h = max{h1, h2, h3}. Similarly, we can also compute that

∥yn+1 − y∗∥ ≤ (1− αn)∥yn − y∗∥+ αnh∥zn − z∗∥+ αn∥f2(z∗)− y∗∥

and

∥zn+1 − z∗∥ ≤ (1− αn)∥zn − z∗∥+ αnh∥xn − x∗∥+ αn∥f3(x∗)− z∗∥.

This implies that
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∥xn+1 − x∗∥+ ∥yn+1 − y∗∥+ ∥zn+1 − z∗∥

≤ (1− αn(1− h))

[
∥xn − x∗∥+ ∥yn − y∗∥+ ∥zn − z∗∥

]
+αn(1− h)

∥f1(y∗)− x∗∥+ ∥f2(z∗)− y∗∥+ ∥f3(x∗)− z∗∥
1− h

≤ max

{
∥xn − x∗∥+ ∥yn − y∗∥+ ∥zn − z∗∥,

∥f1(y∗)− x∗∥+ ∥f2(z∗)− y∗∥+ ∥f3(x∗)− z∗∥
1− h

}
.

By induction, we have

∥xn+1 − x∗∥+ ∥yn+1 − y∗∥+ ∥zn+1 − z∗∥

≤ max

{
∥x0 − x∗∥+ ∥y0 − y∗∥+ ∥z0 − z∗∥,

∥f1(y∗)− x∗∥+ ∥f2(z∗)− y∗∥+ ∥f3(x∗)− z∗∥
1− h

}
,

for all n ≥ 1.

Hence {xn}, {yn} and {zn} are bounded. Consequently, {K1,βxn}, {K2,βyn} and

{K3,βzn} are bounded.

(ii) Next we prove that for each n ≥ 1 the following inequality holds.

∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 + ∥zn+1 − z∗∥2

≤ (1− αn)
2(∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2)

+2αnh(∥xn+1 − x∗∥∥yn − y∗∥+ ∥yn+1 − y∗∥∥zn − z∗∥+ ∥zn+1 − z∗∥∥xn − x∗∥)

+2αn(⟨f1(y∗)− x∗, xn+1 − x∗⟩+ ⟨f2(z∗)− y∗, yn+1 − y∗⟩

+⟨f3(x∗)− z∗, zn+1 − z∗⟩). (4.2.4)
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From (4.2.3) and Lemma 2.7.15, we have

∥xn+1 − x∗∥2 = ∥(1− αn)(K1,βxn − x∗) + αn(f1(K2,βyn)− x∗)∥2

≤ ∥(1− αn)(K1,βxn − x∗)∥2 + 2αn⟨f1(K2,βyn)− x∗, xn+1 − x∗⟩

= (1− αn)
2∥K1,βxn − x∗∥2 + 2αn⟨f1(K2,βyn)− f1(y

∗), xn+1 − x∗⟩

+2αn⟨f1(y∗)− x∗, xn+1 − x∗⟩

≤ (1− αn)
2∥xn − x∗∥2 + 2αn∥f1(K2,βyn)− f1(y

∗)∥∥xn+1 − x∗∥

+2αn⟨f1(y∗)− x∗, xn+1 − x∗⟩

≤ (1− αn)
2∥xn − x∗∥2 + 2αnh1∥K2,βyn − y∗∥∥xn+1 − x∗∥

+2αn⟨f1(y∗)− x∗, xn+1 − x∗⟩

≤ (1− αn)
2∥xn − x∗∥2 + 2αnh∥yn − y∗∥∥xn+1 − x∗∥

+2αn⟨f1(y∗)− x∗, xn+1 − x∗⟩. (4.2.5)

Similarly, we can also prove that

∥yn+1 − y∗∥2 ≤ (1− αn)
2∥yn − y∗∥2 + 2αnh∥zn − z∗∥∥yn+1 − y∗∥

+2αn⟨f2(z∗)− y∗, yn+1 − y∗⟩ (4.2.6)

and

∥zn+1 − z∗∥2 ≤ (1− αn)
2∥zn − z∗∥2 + 2αnh∥xn − x∗∥∥zn+1 − z∗∥

+2αn⟨f3(x∗)− z∗, zn+1 − z∗⟩. (4.2.7)

Adding up the inequality (4.2.5), (4.2.6) and (4.2.7), the inequality (4.2.4) is proved.

(iii) Next, we prove that if there exists a subsequence {nk} ⊂ {n} such that

0 ≤ lim inf
k→∞

{
(∥xnk+1 − x∗∥2 + ∥ynk+1 − y∗∥2 + ∥znk+1 − z∗∥2)

−(∥xnk
− x∗∥2 + ∥ynk

− y∗∥2 + ∥znk
− z∗∥2)

}
,

then

0 ≥ lim sup
k→∞

{
⟨f1(y∗)− x∗, xnk+1 − x∗⟩+ ⟨f2(z∗)− y∗, ynk+1 − y∗⟩

+⟨f3(x∗)− z∗, znk+1 − z∗⟩
}
.
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Since the norm ∥ · ∥2 is convex and limn→∞ αn = 0, By (4.2.3), we have

0 ≤ lim inf
k→∞

{
(∥xnk+1 − x∗∥2 + ∥ynk+1 − y∗∥2 + ∥znk+1 − z∗∥2)

−(∥xnk
− x∗∥2 + ∥ynk

− y∗∥2 + ∥znk
− z∗∥2)

}
≤ lim inf

k→∞

{
(1− αnk

)∥K1,βxnk
− x∗∥2 + αnk

∥f1(K2,βynk
)− x∗∥2

+(1− αnk
)∥K2,βynk

− y∗∥2 + αnk
∥f2(K3,βznk

)− y∗∥2

+(1− αnk
)∥K3,βznk

− z∗∥2 + αnk
∥f3(K1,βxnk

)− z∗∥2

−(∥xnk
− x∗∥2 + ∥ynk

− y∗∥2 + ∥znk
− z∗∥2)

}
= lim inf

k→∞

{
(∥K1,βxnk

− x∗∥2 − ∥xnk
− x∗∥2) + (∥K2,βynk

− y∗∥2 − ∥ynk
− y∗∥2)

+(∥K3,βznk
− z∗∥2 − ∥znk

− z∗∥2)
}

≤ lim sup
k→∞

{
(∥K1,βxnk

− x∗∥2 − ∥xnk
− x∗∥2) + (∥K2,βynk

− y∗∥2 − ∥ynk
− y∗∥2)

+(∥K3,βznk
− z∗∥2 − ∥znk

− z∗∥2)
}

≤ 0.

This implies that

lim
k→∞

(∥K1,βxnk
− x∗∥2 − ∥xnk

− x∗∥2) = lim
k→∞

(∥K2,βynk
− y∗∥2 − ∥ynk

− y∗∥2)

= lim
k→∞

(∥K3,βznk
− z∗∥2 − ∥znk

− z∗∥2) = 0.

Since the sequence {∥K1,βxnk
− x∗∥+ ∥xnk

− x∗∥} , {∥K2,βynk
− y∗∥ + ∥ynk

− y∗∥}

and {∥K3,βznk
− z∗∥+ ∥znk

− z∗∥} are bounded, we have

lim
k→∞

(∥K1,βxnk
− x∗∥ − ∥xnk

− x∗∥) = lim
k→∞

(∥K2,βynk
− y∗∥ − ∥ynk

− y∗∥)

= lim
k→∞

(∥K3,βznk
− z∗∥ − ∥znk

− z∗∥) = 0

By Lemma 2.7.10, K1,β, K2,β and K3,β are strongly quasi-nonexpansive. We have

K1,βxnk
− xnk

→ 0, K2,βynk
− ynk

→ 0 and K3,βznk
− znk

→ 0.

Consequence, we obtain that

xnk
− xnk+1 → 0 ynk

− ynk+1 → 0 and znk
− znk+1 → 0.

It follows from the boundedness of {xnk
} and H is reflexive that there exists a

subsequence {xnkl
} of {xnk

} such that xnkl
⇀ p and

lim
l→∞

⟨f1(y∗)− x∗, xnkl
− x∗⟩ = lim sup

k→∞
⟨f1(y∗)− x∗, xnk

− x∗⟩

= lim sup
k→∞

⟨f1(y∗)− x∗, xnk+1 − x∗⟩.
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By Lemma 2.7.10, I − K1,β is demiclosed at zero, and so p ∈ F (K1,β) = Ω1.

Hence from (4.2.2) we have

lim
l→∞

⟨f1(y∗)− x∗, xnkl
− x∗⟩ = ⟨f1(y∗)− x∗, p− x∗⟩ ≤ 0.

Therefore

lim sup
k→∞

⟨f1(y∗)− x∗, xnk+1 − x∗⟩ = lim
l→∞

⟨f1(y∗)− x∗, xnkl
− x∗⟩ ≤ 0.

Similarly, we can also prove that

lim sup
k→∞

⟨f2(z∗)− y∗, ynk+1 − y∗⟩ ≤ 0

and

lim sup
k→∞

⟨f3(x∗)− z∗, znk+1 − z∗⟩ ≤ 0.

Hence, we have the desired inequality.

(iv) Finally, we prove that the sequence {xn}, {yn} and {zn} generated be (4.2.3)

converge to x∗, y∗ and z∗ respectively.

It is clearly that

∥xn+1 − x∗∥∥yn − y∗∥+ ∥yn+1 − y∗∥∥zn − z∗∥+ ∥zn+1 − z∗∥∥xn − x∗∥

≤
(
∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2

) 1
2

×
(
∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 + ∥zn+1 − z∗∥2

) 1
2 . (4.2.8)

Substituting (4.2.8) into (4.2.4), we have

∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 + ∥zn+1 − z∗∥2

≤ (1− αn)
2(∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2)

+2αnh{
(
∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2

) 1
2

×
(
∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 + ∥zn+1 − z∗∥2

) 1
2}

+2αn(⟨f1(y∗)− x∗, xn+1 − x∗⟩+ ⟨f2(z∗)− y∗, yn+1 − y∗⟩

+⟨f3(x∗)− z∗, zn+1 − z∗⟩). (4.2.9)

Set

an := ∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2,

bn := 2(⟨f1(y∗)− x∗, xn+1 − x∗⟩+ ⟨f2(z∗)− y∗, yn+1 − y∗⟩

+⟨f3(x∗)− z∗, zn+1 − z∗⟩).

Then, we have the following statement:
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• From (i), {an} is bounded sequence;

• From (4.2.9), an+1 ≤ (1− αn)
2anα̂

√
an
√
an+1 + αnbn, ∀n ≥ 1;

• From (iii), whenever {ank
} is a subsequence of {an} satisfying

lim inf
k→∞

(ank+1 − ank
) ≥ 0,

it follows that lim supk→∞ bnk
≤ 0;

By Lemma 2.7.17, we have

lim
n→∞

(∥xn − x∗∥2 + ∥yn − y∗∥2 + ∥zn − z∗∥2) = 0.

Hence, we obtain that

lim
n→∞

∥xn − x∗∥ = lim
n→∞

∥yn − y∗∥ = lim
n→∞

∥zn − z∗∥ = 0.

This completes the proof.

4.2.3 Consequence Results

Using Theorem 4.2.2, we can prove the following results.

Theorem 4.2.3. Let Ai,Mi,Ωi, Ki and Ki,β satisfy the conditions (C1) and (C2),

and let F : H → H be a µ-Lipschitzian and r-strongly monotone mapping. Let

{xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where f1 := I − ρF, f2 := I − ηF, f3 := I − ξF with ρ, η, ξ ∈ (0, 2r
µ2 ) and {αn}

is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the sequences

{xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗) is the

unique element in Ω1×Ω2×Ω3 such that the following three inequalities are satisfied
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ Ω2,

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0, ∀z ∈ Ω3.

(4.2.10)
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Proof. It is easy to see that f1, f2, f3 are contraction mappings and all the condition

in Theorem 4.2.2 are satisfied. By Theorem 4.2.2, we have the sequences {xn}, {yn}

and {zn} converge to (x∗, y∗, z∗) ∈ Ω1 × Ω2 × Ω3 such that the following three

inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨y∗ − f2(z
∗), y − y∗⟩ ≥ 0, ∀y ∈ Ω2,

⟨z∗ − f3(x
∗), z − z∗⟩ ≥ 0, ∀z ∈ Ω3.

(4.2.11)

Substituting f1 := I − ρF, f2 := I − ηF, f3 := I − ξF into (4.2.11), we obtain that

the sequences {xn}, {yn} and {zn} converge to (x∗, y∗, z∗) ∈ Ω1 ×Ω2 ×Ω3 such that

the following three inequalities are satisfied
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ Ω2,

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0, ∀z ∈ Ω3.

This completes the proof

Setting A1 = A2 = A3 in Theorem 4.2.2, we obtain the following corollary.

Corollary 4.2.4. Let A1,M1,Ω1, K1 and K1,β satisfy the conditions (C1) and (C2),

and let fi : H → H be contractions with a contractive constant hi ∈ (0, 1), for all

i = 1, 2, 3. Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K1,βyn),

yn+1 = (1− αn)K1,βyn + αnf2(K1,βzn),

zn+1 = (1− αn)K1,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

(4.2.12)

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then

the sequences {xn}, {yn} and {zn} generated be (4.2.3) converge to x∗, y∗ and z∗

respectively, where (x∗, y∗, z∗) is the unique element in Ω1 × Ω1 × Ω1 such that the

following three inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨y∗ − f2(z
∗), x− y∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨z∗ − f3(x
∗), x− z∗⟩ ≥ 0, ∀x ∈ Ω1.

(4.2.13)
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Corollary 4.2.5. Let A1,M1,Ω, K1 and K1,β satisfy the conditions (C1) and (C2),

and let F : H → H be a µ-Lipschitzian and r-strongly monotone mapping. Let

{xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K1,βyn),

yn+1 = (1− αn)K1,βyn + αnf2(K1,βzn),

zn+1 = (1− αn)K1,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where f1 := I − ρF, f2 := I − ηF, f3 := I − ξF with ρ, η, ξ ∈ (0, 2r
µ2 ) and {αn}

is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the sequences

{xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗) is the

unique element in Ω1×Ω1×Ω1 such that the following three inequalities are satisfied
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨ηF (z∗) + y∗ − z∗, x− y∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨ξF (x∗) + z∗ − x∗, x− z∗⟩ ≥ 0, ∀x ∈ Ω1.

(4.2.14)

Setting A1 = A2 = A3, f1 = f2 = f3 and x0 = y0 = z0 in Theorem 4.2.2, we

obtain the following corollary.

Corollary 4.2.6. Let A1,M1,Ω1, K1 and K1,β satisfy the conditions (C1) and (C2),

and let f : H → H be contractions with a contractive constant h ∈ (0, 1). Let {xn}

be the sequences defined by x0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf(K1,βxn), n = 0, 1, 2, . . . ,
(4.2.15)

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the

sequences {xn} converge to x∗ ∈ Ω1 such that the following three inequalities are

satisfied

⟨x∗ − f1(x
∗), x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

Corollary 4.2.7. Let A1,M1,Ω1, K1 and K1,β satisfy the conditions (C1) and (C2),

and let F : H → H be a µ-Lipschitzian and r-strongly monotone mapping. Let {xn}

be the sequences defined by x0 ∈ H,

xn+1 = (1− αn)K1,βxn + αn(I − ρF )(K1,βxn), n = 0, 1, 2, . . . ,
(4.2.16)
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where ρ ∈ (0, 2r
µ2 ) and {αn} is a sequence in (0, 1) satisfying αn → 0 and

∑∞
n=0 αn =

∞. Then the sequences {xn} converge to x∗ ∈ Ω1 such that the following three

inequalities are satisfied

⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ Ω1, (4.2.17)



CHAPTER 5 ITERATION ALGORITHMS FOR FIXED

POINT AND OPTIMIZATION PROBLEMS

5.1 Iterative Algorithms for Solving Hierarchical Fixed Point

Problem of Nonexpansive Mapping

In This section deals with a method for approximating a solution of the fixed

point problem: find x̃ ∈ F (T ), where H is a Hilbert space, C is a closed convex

subset of H, f is a ρ-contraction from C into H, 0 < ρ < 1, A is a strongly positive

linear bounded operator with coeffient γ̄ > 0, 0 < γ < γ̄/ρ, T is a nonexpansive

mapping on C and PF (T ) denotes the metric projection on the set of fixed point of

T . We prove a strong convergence theorem by using the projection method which

solves the variational inequality ⟨(A − γf)x̃ + τ(I − S)x̃, x − x̃⟩ ≥ 0 for x ∈ F (T ),

where τ ∈ [0,∞).

Theorem 5.1.1. Let C be a nonempty closed convex subset of a real Hilbert space

H. Let f : C → H be a ρ-contraction with ρ ∈ (0, 1). Let S, T : C → C be two

nonexpansive mappings with F (T ) ̸= ∅. Let A be a strongly positive linear bounded

operator on H with coefficient γ̄ > 0. {αn} and {βn} are two sequences in (0, 1) and

0 < γ < γ̄/ρ. Starting with an arbitrary initial guess x0 ∈ C and {xn} is a sequence

generated by

yn = βnSxn + (1− βn)xn,

xn+1 = PC [αnγf(xn) + (I − αnA)Tyn], ∀n ≥ 1. (5.1.1)

Suppose that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) limn→∞
βn

αn
= τ = 0;

(C3) limn→∞
|αn−αn−1|

αn
= 0 and limn→∞

|βn−βn−1|
βn

= 0 or

(C4)
∑∞

n=1 |αn − αn−1| <∞ and
∑∞

n=1 |βn − βn−1| <∞.
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Then the sequence {xn} converges strongly to a point x̃ ∈ H, which is the unique

solution of the variational inequality:

x̃ ∈ F (T ), ⟨(A− γf)x̃, x− x̃⟩ ≥ 0, ∀x ∈ F (T ). (5.1.2)

Equivalently, we have PF (T )(I − A+ γf)x̃ = x̃.

Proof. We first show the uniqueness of a solution of the variational inequality

(5.1.2), which is indeed a consequence of the strong monotonicity of A−γf . Suppose

x̄ ∈ F (T ) and x̃ ∈ F (T ) both are solutions to 5.1.2, then ⟨(A − γf)x̄, x̄ − x̃⟩ ≤ 0

and ⟨(A− γf)x̃, x̃− x̄⟩ ≤ 0. It follows that

⟨(A− γf)x̄, x̄− x̃⟩+ ⟨(A− γf)x̃, x̃− x̄⟩ = ⟨(A− γf)x̄, x̄− x̃⟩

−⟨(A− γf)x̃, x̄− x̃⟩

= ⟨(A− γf)x̄− (A− γf)x̃, x̄− x̃⟩

≤ 0.

The strongly monotonicity of A − γf (Lemma 2.7.11) implies that x̄ = x̃ and the

uniqueness is proved.

Next, we prove the sequence {xn} is bounded. Since αn → 0 and limn→∞
βn

αn
= 0

by condition (C1) and (C2), respectively , we can assume, without loss of generality,

that αn < ∥A∥−1 and βn < αn for all n ≥ 1. Take u ∈ F (T ) and from 5.1.1, we have

∥xn+1 − u∥ = ∥PC [αnγf(xn) + (I − αnA)Tyn]− PC [u]∥

≤ ∥αnγf(xn) + (I − αnA)Tyn − u∥

≤ αnγ∥f(xn)− f(u)∥+ αn∥γf(u)− Au∥+ ∥(I − αnA)(Tyn − u)∥.

Since ∥I − αnA∥ ≤ 1− αnγ̄ and by Lemma 2.7.2, we note that

∥xn+1 − u∥ ≤ αnγ∥f(xn)− f(u)∥+ αn∥γf(u)− Au∥+ (1− αnγ̄)∥Tyn − u∥

≤ αnγρ∥xn − u∥+ αn∥γf(u)− Au∥+ (1− αnγ̄)∥Tyn − Tu∥

≤ αnγρ∥xn − u∥+ αn∥γf(u)− Au∥+ (1− αnγ̄)∥yn − u∥

≤ αnγρ∥xn − u∥+ αn∥γf(u)− Au∥

+(1− αnγ̄)
[
βn∥Sxn − Su∥+ βn∥Su− u∥+ (1− βn)∥xn − u∥

]
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≤ αnγρ∥xn − u∥+ αn∥γf(u)− Au∥

+(1− αnγ̄)
[
βn∥xn − u∥+ βn∥Su− u∥+ (1− βn)∥xn − u∥

]
=

(
1− αn(γ̄ − γρ)

)
∥xn − u∥+ αn∥γf(u)− Au∥

+(1− αnγ̄)βn∥Su− u∥

≤
(
1− αn(γ̄ − γρ)

)
∥xn − u∥+ αn∥γf(u)− Au∥+ βn∥Su− u∥

≤
(
1− αn(γ̄ − γρ)

)
∥xn − u∥+ αn∥γf(u)− Au∥+ αn∥Su− u∥

=
(
1− αn(γ̄ − γρ)

)
∥xn − u∥+ αn

[
∥γf(u)− Au∥+ ∥Su− u∥

]
=

(
1− αn(γ̄ − γρ)

)
∥xn − u∥

+αn(γ̄ − γρ)
∥γf(u)− Au∥+ ∥Su− u∥

(γ̄ − γρ)
.

By induction, we can obtain

∥xn+1 − u∥ ≤Max
{
∥x0 − u∥, ∥γf(u)−Au∥+∥Su−u∥

(γ̄−γρ)

}
,

which implies that the sequence {xn} is bounded and so are the sequence {f(xn)},

{Sxn}, and {ATyn}.

Set wn := αnγf(xn) + (I − αnA)Tyn, n ≥ 1. We get

∥xn+1 − xn∥ = ∥PC [wn+1]− PC [wn]∥

≤ ∥wn+1 − wn∥. (5.1.3)

It follows that

∥xn+1 − xn∥ ≤ ∥(αnγf(xn) + (I − αnA)Tyn)

−(αn−1γf(xn−1) + (I − αn−1A)Tyn−1)∥

≤ αnγ∥f(xn)− f(xn−1)∥+ |αn − αn−1|∥γf(xn−1)− ATyn−1∥

+(1− αnγ̄)∥Tyn − Tyn−1∥

≤ αnγρ∥xn − xn−1∥+ |αn − αn−1|∥γf(xn−1)− ATyn−1∥

+(1− αnγ̄)∥yn − yn−1∥. (5.1.4)

By (5.1.3) and (5.1.4), we get

∥xn+1 − xn∥ ≤ αnγρ∥wn − wn−1∥+ |αn − αn−1|∥γf(xn−1)− ATyn−1∥

+(1− αnγ̄)∥yn − yn−1∥. (5.1.5)
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From (5.1.1), we obtain

∥yn − yn−1∥ = ∥(βnSxn + (1− βn)xn)− (βn−1Sxn−1 + (1− βn−1)xn−1)∥

= ∥βn(Sxn − Sxn−1) + (βn − βn−1)(Sxn−1 − xn−1)

+(1− βn)(xn − xn−1)∥

≤ ∥xn − xn−1∥+ |βn − βn−1|∥Sxn−1 − xn−1∥

≤ ∥xn − xn−1∥+ |βn − βn−1|M, (5.1.6)

where M is a constant such that

sup
n∈N

{
∥γf(xn−1)− ATyn−1∥+ ∥Sxn−1 − xn−1∥

}
≤M.

Substituting (5.1.6) into (5.1.4) to obtain

∥xn+1 − xn∥ ≤ αnγρ∥xn − xn−1∥+ |αn − αn−1|∥γf(xn−1)− ATyn−1∥

+(1− αnγ̄)
[
∥xn − xn−1∥+ |βn − βn−1|M

]
≤ αnγρ∥xn − xn−1∥+ |αn − αn−1|M

+(1− αnγ̄)
[
∥xn − xn−1∥+ |βn − βn−1|M

]
=

(
1− αn(γ̄ − γρ)

)
∥xn − xn−1∥

+M
[
|αn − αn−1|+ |βn − βn−1|

]
(5.1.7)

≤
(
1− αn(γ̄ − γρ)

)
∥wn − wn−1∥

+M
[
|αn − αn−1|+ |βn − βn−1|

]
.

At the same time , we can write (5.1.7) as

∥xn+1 − xn∥ ≤
(
1− αn(γ̄ − γρ)

)
∥wn − wn−1∥

+Mαn

[ |αn − αn−1|
αn

+
|βn − βn−1|

αn

]
≤

(
1− αn(γ̄ − γρ)

)
∥wn − wn−1∥

+Mαn

[ |αn − αn−1|
βn

+
|βn − βn−1|

βn

]
. (5.1.8)

From (5.1.7), (C4) and Lemma 2.7.2 or (from (5.1.8), (C3) and Lemma 2.7.2), we

can deduce that ∥xn+1 − xn∥ → 0, respectively.
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From (5.1.1), we have

∥xn − Txn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − Txn∥

= ∥xn − xn+1∥+ ∥PC [wn]− PC [Txn]∥

≤ ∥xn − xn+1∥+ ∥wn − Txn∥

= ∥xn − xn+1∥+ ∥αnγf(xn) + (I − αnA)Tyn − Txn∥

≤ ∥xn − xn+1∥+ αn∥γf(xn)− ATxn∥+ (1− αnγ̄)∥Tyn − Txn∥

≤ ∥xn − xn+1∥+ αn∥γf(xn)− ATxn∥+ (1− αnγ̄)∥yn − xn∥

= ∥xn − xn+1∥+ αn∥γf(xn)− ATxn∥+ (1− αnγ̄)βn∥Sxn − xn∥.

Notice that αn → 0, βn → 0, and ∥xn+1 − xn∥ → 0, so we obtain

∥xn − Txn∥ → 0. (5.1.9)

Next, we prove

lim sup
n→∞

⟨γf(z)− Az, xn − z⟩ ≤ 0. (5.1.10)

where z = PF (T )(I − A + γf)z. Since the sequence {xn} is bounded we can take a

subsequence {xnk
} of {xn} such that

lim sup
n→∞

⟨γf(z)− Az, xn − z⟩ = lim
k→∞

⟨γf(z)− Az, xnk
− z⟩

and xnk
⇀ x̃. From (5.1.8) and by Lemma 2.7.1, it follows that x̃ ∈ F (T ). Hence,

by Lemma 2.7.13 that

lim sup
n→∞

⟨γf(z)− Az, xn − z⟩ = lim
k→∞

⟨γf(z)− Az, xnk
− z⟩

= ⟨γf(z)− Az, x̃− z⟩

= ⟨(I − A+ γf)z − z, x̃̄− z⟩

≤ 0

Now, by Lemma 2.7.13, we observe that

⟨PC [wn]− wn, PC [wn]− z⟩ ≤ 0,

and so

∥xn+1 − z∥2 = ⟨PC [wn]− z, PC [wn]− z⟩

= ⟨PC [wn]− wn, PC [wn]− z⟩+ ⟨wn − z, PC [wn]− z⟩

≤ ⟨wn − z, PC [wn]− z⟩

= ⟨αnγf(xn) + (I − αnA)Tyn − z, xn+1 − z⟩
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≤ αnγ∥f(xn)− f(z)∥∥xn+1 − z∥+ αn⟨γf(z)− Az, xn+1 − z⟩

+(1− αnγ̄)∥Tyn − z∥∥xn+1 − z∥

≤ αnγρ∥xn − z∥∥xn+1 − z∥+ αn⟨γf(z)− Az, xn+1 − z⟩

+(1− αnγ̄)∥yn − z∥∥xn+1 − z∥

= αnγρ∥xn − z∥∥xn+1 − z∥+ αn⟨γf(z)− Az, xn+1 − z⟩

+(1− αnγ̄)∥βnSxn + (1− βn)xn − z∥∥xn+1 − z∥

≤ αnγρ∥xn − z∥∥xn+1 − z∥+ αn⟨γf(z)− Az, xn+1 − z⟩

+(1− αnγ̄)
[
βn∥Sxn − Sz∥+ βn∥Sz − z∥

+(1− βn)∥xn − z∥
]
∥xn+1 − z∥

≤ αnγρ∥xn − z∥∥xn+1 − z∥+ αn⟨γf(z)− Az, xn+1 − z⟩

+(1− αnγ̄)
[
βn∥xn − z∥+ βn∥Sz − z∥

+(1− βn)∥xn − z∥
]
∥xn+1 − z∥

=
(
1− αn(γ̄ − γρ)

)
∥xn − z∥∥xn+1 − z∥

+αn⟨γf(z)− Az, xn+1 − z⟩

+(1− αnγ̄)βn∥Sz − z∥∥xn+1 − z∥

≤ [1− αn(γ̄ − γρ)]

2

[
∥xn − z∥2 + ∥xn+1 − z∥2

]
+αn⟨γf(z)− Az, xn+1 − z⟩

+(1− αnγ̄)βn∥Sz − z∥∥xn+1 − z∥.

Hence, it follows that

∥xn+1 − z∥2 ≤ 1− αn(γ̄ − γρ)

1 + αn(γ̄ − γρ)
∥xn − z∥2

+
2αn

1 + αn(γ̄ − γρ)
⟨γf(z)− Az, xn+1 − z⟩

+
2(1− αnγ̄)βn
1 + αn(γ̄ − γρ)

∥Sz − z∥∥xn+1 − z∥

=

[
2αn(γ̄ − γρ)

1 + αn(γ̄ − γρ)

][
1

αn(γ̄ − γρ)
⟨γf(z)− Az, xn+1 − z⟩

+
βn(1− αnγ̄)

αn(γ̄ − γρ)
∥Sz − z∥∥xn+1 − z∥

]

+

[
1− 2αn(γ̄ − γρ)

1 + αn(γ̄ − γρ)

]
∥xn − z∥2.



110

We observe that

lim sup
n→∞

[
1

αn(γ̄ − γρ)
⟨γf(z)−Az, xn+1− z⟩+ βn(1− αnγ̄)

αn(γ̄ − γρ)
∥Sz− z∥∥xn+1− z∥

]
≤ 0.

Thus, by Lemma 2.7.6, xn → z as n→ ∞. This is completes. 2

Under different conditions on data we obtain the following result.

Theorem 5.1.2. Let C be a nonempty closed convex subset of a real Hilbert space

H. Let f : C → H be a ρ-contraction (possibly nonself) with ρ ∈ (0, 1). Let

S, T : C → C be two nonexpansive mappings with F (T ) ̸= ∅. Let A be a strongly

positive linear bounded operator on a Hilbert space H with coefficient γ̄ > 0 and

0 < γ < γ̄/ρ. {αn} and {βn} are two sequences in (0, 1). Starting with an arbitrary

initial guess x0 ∈ C nd {xn} is a sequence generated by

yn = βnSxn + (1− βn)xn,

xn+1 = PC [αnγf(xn) + (I − αnA)Tyn], ∀n ≥ 1.

Suppose that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) limn→∞
βn

αn
= τ ∈ (0,∞);

(C5) limn→∞
|αn−αn−1|+|βn−βn−1|

αnβn
= 0;

(C6) there exists a constant K > 0 such that 1
αn
| 1
βn

− 1
βni1

| ≤ K.

Then the sequence {xn} converges strongly to a point x̃ ∈ H, which is the unique

solution of the variational inequality:

x̃ ∈ F (T ), ⟨1
τ
(A− γf)x̃+ (I − S)x̃, x− x̃⟩ ≥ 0, ∀x ∈ F (T ). (5.1.11)

Proof. First of all, we show that (5.1.11) has the unique solution. Indeed, let x̄

and x̃ be two solutions. Then

⟨(A− γf)x̃, x̃− x̄⟩ ≤ τ⟨(I − S)x̃, x̄− x̃⟩. (5.1.12)

Analogously, we have

⟨(A− γf)x̄, x̄− x̃⟩ ≤ τ⟨(I − S)x̄, x̃− x̄⟩. (5.1.13)
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Adding (5.1.12) and (5.1.13), by Lemma 2.7.11, we obtain

(γ̄ − γρ)∥x̃− x̄∥2 ≤ ⟨(A− γf)x̃− (A− γf)x̄, x̃− x̄⟩

≤ −τ⟨(I − S)x̃− (I − S)x̄, x̃− x̄⟩

≤ 0,

and so x̃ = x̄. From (C2), we can assume, without loss of generality, that βn ≤

(τ + 1)αn for all n ≥ 1. By a similar argument in Theorem 5.1.1, we have

∥xn+1 − u∥ ≤ αnγρ∥xn − u∥+ αn∥γf(u)− Au∥

+(1− αnγ̄)
[
∥xn − u∥+ βn∥Su− u∥+ (1− βn)∥xn − u∥

]
=

(
1− αn(γ̄ − γρ)

)
∥xn − u∥+ αn∥γf(u)− Au∥

+(1− αnγ̄)βn∥Su− u∥

≤
(
1− αn(γ̄ − γρ)

)
∥xn − u∥+ αn∥γf(u)− Au∥+ βn∥Su− u∥

≤
(
1− αn(γ̄ − γρ)

)
∥xn − u∥+ αn∥γf(u)− Au∥

+(τ + 1)αn∥Su− u∥

=
(
1− αn(γ̄ − γρ)

)
∥xn − u∥+ αn

[
∥γf(u)− Au∥

+(τ + 1)∥Su− u∥
]

=
(
1− αn(γ̄ − γρ)

)
∥xn − u∥

+αn(γ̄ − γρ)
∥γf(u)− Au∥+ (τ + 1)∥Su− u∥

(γ̄ − γρ)
.

By induction, we obtain

∥xn − u∥ ≤ max

{
∥x0 − u∥, 1

γ̄ − γρ

[
∥γf(u)− Au∥+ (τ + 1)∥Su− u∥

]}

which implies that the sequence {xn} is bounded. Since (C5) implies (C4) then,

from Theorem 5.1.1, we can deduce ∥xn+1 − xn∥ → 0.

From (5.1.1), we note that

xn+1 = PC [wn]− wn + wn + yn − yn

= PC [wn]− wn + αnγf(xn) + (Tyn − yn) + (yn − αnATyn).
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Hence, it follows that

xn − xn+1 = (wn − PC [wn]) + αn(Axn − γf(xn) + (yn − Tyn)

+(xn − yn) + αn(ATyn − Axn)

= (wn − PC [wn]) + αn(A− γf)xn + (I − T )yn

+βn(I − S)xn) + αnA(Tyn − xn)

and so

xn − xn+1

(1− αn)βn
=

1

(1− αn)βn
(wn − PC [wn])

+
αn

(1− αn)βn
(A− γf)xn +

1

(1− αn)βn
(I − T )yn

+
1

(1− αn)
(I − S)xn) +

αn

(1− αn)βn
A(Tyn − xn).

Set vn := xn−xn+1

(1−αn)βn
. Then, we have

vn =
1

(1− αn)βn
(wn − PC [wn])

+
αn

(1− αn)βn
(A− γf)xn +

1

(1− αn)βn
(I − T )yn

+
1

(1− αn)
(I − S)xn) +

αn

(1− αn)βn
A(Tyn − xn). (5.1.14)

From (5.1.7) in Theorem5.1.1 and (C6), we obtain

∥xn+1 − xn∥
βn

≤
(
1− αn(γ̄ − γρ)

)∥xn − xn−1∥
βn

+M
[ |αn − αn−1|

βn
+

|βn − βn−1|
βn

]
=

(
1− αn(γ̄ − γρ)

)∥xn − xn−1∥
βn

+
(
1− αn(γ̄ − γρ)

)∥xn − xn−1∥
βn−1

−
(
1− αn(γ̄ − γρ)

)∥xn − xn−1∥
βn−1

+M
[ |αn − αn−1|

βn
+

|βn − βn−1|
βn

]
=

(
1− αn(γ̄ − γρ)

)∥xn − xn−1∥
βn−1

+
(
1− αn(γ̄ − γρ)

)
∥xn − xn−1∥

[ 1

βn
− 1

βn−1

]
+M

[ |αn − αn−1|
βn

+
|βn − βn−1|

βn

]
≤

(
1− αn(γ̄ − γρ)

)∥xn − xn−1∥
βn−1

+ ∥xn − xn−1∥
∣∣ 1
βn

− 1

βn−1

∣∣
+M

[ |αn − αn−1|
βn

+
|βn − βn−1|

βn

]



113

≤
(
1− αn(γ̄ − γρ)

)∥xn − xn−1∥
βn−1

+ αnK∥xn − xn−1∥

+M
[ |αn − αn−1|

βn
+

|βn − βn−1|
βn

]
≤

(
1− αn(γ̄ − γρ)

)∥wn − wn−1∥
βn−1

+ αnK∥xn − xn−1∥

+M
[ |αn − αn−1|

βn
+

|βn − βn−1|
βn

]
.

This together with Lemma 2.7.6 and (C2) imply that

lim
n→∞

∥xn+1 − xn∥
βn

= lim
n→∞

∥wn+1 − wn∥
βn

= lim
n→∞

∥wn+1 − wn∥
αn

= 0.

From (5.1.14), for z ∈ F (T ), we have

⟨vn, xn − z⟩ =
1

(1− αn)βn
⟨wn − PC [wn], PC [wn−1]− z⟩

+
αn

(1− αn)βn
⟨(A− γf)xn, xn − z⟩

+
1

(1− αn)βn
⟨(I − T )yn, xn − z⟩+ 1

(1− αn)
⟨(I − S)xn, xn − z⟩

+
αn

(1− αn)βn
⟨(A(Tyn − xn), xn − z⟩

=
1

(1− αn)βn
⟨wn − PC [wn], PC [wn]− z⟩

+
1

(1− αn)βn
⟨wn − PC [wn], PC [wn−1]− PC [wn]⟩

+
αn

(1− αn)βn
⟨(A− γf)xn − (A− γf)z, xn − z⟩

+
αn

(1− αn)βn
⟨(A− γf)z, xn − z⟩

+
1

(1− αn)
⟨(I − S)xn − (I − S)z, xn − z⟩

+
1

(1− αn)
⟨(I − S)z, xn − z⟩

+
1

(1− αn)βn
⟨(I − T )yn, xn − z⟩

+
αn

(1− αn)βn
⟨(A(Tyn − xn), xn − z⟩. (5.1.15)

By Lemma 2.7.13 and Lemma 2.7.11, we obtain

⟨vn, xn − z⟩ ≥ 1

(1− αn)βn
⟨wn − PC [wn], PC [wn−1]− PC [wn]⟩

+
(γ̄ − γρ)αn

(1− αn)βn
∥xn − z∥2 + αn

(1− αn)βn
⟨(A− γf)z, xn − z⟩
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+
1

(1− αn)
⟨(I − S)z, xn − z⟩+ 1

(1− αn)βn
⟨(I − T )yn, xn − z⟩

+
αn

(1− αn)βn
⟨(A(Tyn − xn), xn − z⟩.

Now, we observe that

∥xn − z∥2 ≤ (1− αn)βn
(γ̄ − γρ)αn

⟨v, xn − z⟩ − βn
(γ̄ − γρ)αn

⟨(I − S)z, xn − z⟩

− 1

(γ̄ − γρ)
⟨(A− γf)z, xn − z⟩ − 1

(γ̄ − γρ)αn

⟨(I − T )yn, xn − z⟩

− 1

(γ̄ − γρ)
⟨(A(Tyn − xn), xn − z⟩

− 1

(γ̄ − γρ)αn

⟨wn − PC [wn], PC [wn−1]− PC [wn]⟩

≤ (1− αn)βn
(γ̄ − γρ)αn

⟨v, xn − z⟩ − βn
(γ̄ − γρ)αn

⟨(I − S)z, xn − z⟩

− 1

(γ̄ − γρ)
⟨(A− γf)z, xn − z⟩ − 1

(γ̄ − γρ)αn

⟨(I − T )yn, xn − z⟩

− 1

(γ̄ − γρ)
⟨(A(Tyn − xn), xn − z⟩+ ∥wn − wn−1∥

(γ̄ − γρ)
∥wn − PC [wn]∥.

From (C1) and (C2), we have βn → 0. Hence, from 5.1.1, we deduce ∥yn − xn∥ → 0

and ∥xn+1 − Tyn∥ → 0. Therefore

∥yn − Tyn∥ ≤ ∥yn − xn∥+ ∥xn − xn+1∥+ ∥xn+1 − Tyn∥ → 0.

Since vn → 0, (I −T )yn → 0, A(Ty)n−xn) → 0 and ∥wn−wn−1∥
(γ̄−γρ)

→ 0, every weak

cluster point of {xn} is also a strong cluster point. Note that the sequence {xn} is

bounded, thus there exist a subsequence {xnk
} converging to a point x̃ ∈ H. For all

z ∈ F (T ), it follows from (5.1.15) that

⟨(A− γf)xnk
, xnk

− z⟩ =
(1− αnk

)βnk

αnk

⟨vnk
, xnk

− z⟩ − 1

αnk

⟨(I − T )ynk
, xnk

− z⟩

−βnk

αnk

⟨(I − S)xnk
, xnk

− z⟩ − ⟨A(Tynk
− xnk

), xnk
− z)⟩

− 1

αnk

⟨wnk
− PC [wnk

], PC [wnk−1
]− z⟩

≤ (1− αnk
)βnk

αnk

⟨vnk
, xnk

− z⟩ − 1

αnk

⟨(I − T )ynk
, xnk

− z⟩

−βnk

αnk

⟨(I − S)xnk
, xnk

− z⟩ − ⟨A(Tynk
− xnk

), xnk
− z)⟩

− 1

αnk

⟨wnk
− PC [wnk

], PC [wnk−1
]− PC [wnk

]⟩

−⟨A(Tynk
− xnk

), xnk
− z)⟩

− 1

αnk

⟨wnk
− PC [wnk

], PC [wnk−1
]− z⟩
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≤ (1− αnk
)βnk

αnk

⟨vnk
, xnk

− z⟩ − 1

αnk

⟨(I − T )ynk
, xnk

− z⟩

−βnk

αnk

⟨(I − S)xnk
, xnk

− z⟩ − ⟨A(Tynk
− xnk

), xnk
− z)⟩

+
∥wnk

− wnk−1
∥

αnk

∥wnk
− PC [wnk

]∥.

Letting k → ∞, we obtain

⟨(A− γf)x̃, x̃− z⟩ ≤ −τ⟨(I − S)x̃, x̃− z⟩, ∀z ∈ F (T ).

By Lemma 2.2.13, (5.1.11) has the unique solution, it follows that ωw(xn) = {x̃}.

Therefore, xn → x̃ as n→ ∞. This is completes the proof. 2

From Theorem 5.1.2, we can dedude the following interesting corollary.

Corollary 5.1.3. [8] Let C be a nonempty closed convex subset of a real Hilbert

space H. Let f : C → H be a ρ-contraction (possibly nonself) with ρ ∈ (0, 1). Let

S, T : C → C be two nonexpansive mappings with F (T ) ̸= ∅. {αn} and {βn} are

two sequences in (0, 1) Starting with an arbitrary initial guess x0 ∈ C and {xn} is a

sequence generated by

yn = βnSxn + (1− βn)xn,

xn+1 = PC [αnf(xn) + (1− αn)Tyn], ∀n ≥ 1.

Suppose that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) limn→∞
βn

αn
= τ ∈ (0,∞);

(C5) limn→∞
|αn−αn−1|+|βn−βn−1|

αnβn
= 0;

(C6) there exists a constant K > 0 such that 1
αn
| 1
βn

− 1
βni1

| ≤ K.

Then the sequence {xn} converges strongly to a point x̃ ∈ H, which is the unique

solution of the variational inequality:

x̃ ∈ F (T ), ⟨1
τ
(I − f)x̃+ (I − S)x̃, x− x̃⟩ ≥ 0, ∀x ∈ F (T ). (5.1.16)
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Proof. As a matter of fact, if we take A = I and γ = 1 in Theorem 5.1.2. This

complete the proof. 2

Corollary 5.1.4. [8] Let C be a nonempty closed convex subset of a real Hilbert

space H. Let S, T : C → C be two nonexpansive mappings with F (T ) ̸= ∅. {αn}

and {βn} are two sequences in (0, 1). Starting with an arbitrary initial guess x0 ∈ C

and suppose {xn} is a sequence generated by

yn = βnSxn + (1− βn)xn,

xn+1 = PC [(1− αn)Tyn], ∀n ≥ 1. (5.1.17)

Suppose that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) limn→∞
βn

αn
= 1;

(C5) limn→∞
|αn−αn−1|+|βn−βn−1|

αnβn
= 0;

(C6) there exists a constant K > 0 such that 1
αn
| 1
βn

− 1
βni1

| ≤ K.

Then the sequence {xn} converges strongly to a point x̃ ∈ H, which is the unique

solution of the variational inequality:

x̃ ∈ F (T ), ⟨(I − S

2
)x̃, x− x̃⟩ ≥ 0, ∀x ∈ F (T ). (5.1.18)

Proof. As a matter of fact, if we take A = I, f = 0 and γ = 1 in Theorem 5.1.2 .

This is completes the proof. 2

Remark 5.1.5. Prototypes for the iterative parameters are, for example, αn = n−θ

and βn = n−ω (with θ, ω > 0). Since |αn − αn−1| ≈ n−θ and |βn − βn−1| ≈ n−ω, it

is not difficult to prove that (C5) is satisfied for 0 < θ, ω < 1and (C6) is satisfied if

θ + ω ≤ 1.

Remark 5.1.6. Our results improve and extend the results of Yao et al. [8] by we

take A = I and γ = 1 in Theorems 5.1.1 and 5.1.2.



117

Example 5.1.7. Let H = R, C = [−1
4
, 1
4
], T = I, S = −I, A = I, f(x) = x2, PC =

I, βn = 1√
n
, αn = 1√

n
for every n ∈ N, we have τ = 1 and choose γ̄ = 1

2
, ρ = 1

3
and

γ = 1. Then {xn} is the sequence

xn+1 =
x2n√
n
+ (1− 1√

n
)(1− 2√

n
)xn, (5.1.19)

and xn → x̃ = 0 as n → ∞, where x̃ = 0 is the unique solution of the variational

inequality

x̃ ∈ F (T ) = [−1

4
,
1

4
], ⟨(3x̃− x̃2), x− x̃⟩ ≥ 0, ∀x ∈ F (T ) = [−1

4
,
1

4
]. (5.1.20)

5.2 Iteration Algorithm for Solving Hierarchical Fixed Point

Problem of Strictly Pseudo-Contractive Mapping

In this section, we introduce a new iterative scheme that converges strongly to a

common fixed point of a countable family of strictly pseudo-contractive mappings in

a real Hilbert space which is also a solution of variational inequality problem related

to quadratic minimization problems.

Let us consider the net iterative scheme as follows:
yn = PC [βnSxn + (1− βn)xn],

xn+1 = PC [αnf(xn) +
n∑

i=1

(αi−1 − αi)Viyn], ∀n ≥ 1,
(5.2.1)

where Vi = kiI + (1 − ki)Ti, f : C → H is a ρ-contraction mapping, S : C → H

is a nonexpansive mapping, {Ti}∞i=1 : C → C is a countable family of ki-strict

pseudo-contraction mappings and
∞
∩
i=1
F (Ti) ̸= ∅. Set α0 = 1, {αn} ⊂ (0, 1) is a

strictly decreasing sequence and {βn} ⊂ (0, 1). As we will see the convergence of

the scheme depends on the choice of the parameters {αn} and {βn}. We list some

possible hypotheses on them:

(H1) there exists γ > 0 such that βn ≤ γαn;

(H2) lim
n→∞

βn/αn = τ ∈ [0,∞);

(H3) lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞;

(H4)
∞∑
n=1

|αn − αn−1| <∞;
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(H5)
∞∑
n=1

|βn − βn−1| <∞;

(H6) lim
n→∞

|αn − αn−1|/αn = 0;

(H7) lim
n→∞

|βn − βn−1|/βn = 0;

(H8) lim
n→∞

[|αn − αn−1|+ |βn − βn−1|]/αnβn = 0;

(H9) there exists a constant K > 0 such that 1
αn
| 1
βn

− 1
βni1

| ≤ K.

Proposition 5.2.1. Assume that (H1) holds. Then {xn} and {yn} are bounded.

Proof. Let z ∈
∞
∩
i=1
F (Ti) =

∞
∩
i=1
F (Vi)

∥xn+1 − z∥ =

∥∥∥∥PC [αnf(xn) +
n∑

i=1

(αi−1 − αi)Viyn]− PC [z]

∥∥∥∥
≤

∥∥∥∥αnf(xn) +
n∑

i=1

(αi−1 − αi)Viyn − z

∥∥∥∥
=

∥∥∥∥αn(f(xn)− z) +
n∑

i=1

(αi−1 − αi)(Viyn − z)

∥∥∥∥
≤ αn∥f(xn)− f(z)∥+ αn∥f(z)− z∥+

n∑
i=1

(αi−1 − αi)∥Viyn − z∥

≤ αnρ∥xn − z∥+ αn∥f(z)− z∥+
n∑

i=1

(αi−1 − αi)∥yn − z∥

≤ αnρ∥xn − z∥+ αn∥f(z)− z∥

+
n∑

i=1

(αi−1 − αi)∥βnSxn + (1− βn)xn − z∥

≤ αnρ∥xn − z∥+ αn∥f(z)− z∥

+
n∑

i=1

(αi−1 − αi)(βn∥Sxn − Sz∥+ βn∥Sz − z∥

+(1− βn)∥xn − z∥)

≤ αnρ∥xn − z∥+ αn∥f(z)− z∥

+
n∑

i=1

(αi−1 − αi)(βn∥xn − z∥+ βn∥Sz − z∥

+(1− βn)∥xn − z∥)

= αnρ∥xn − z∥+ αn∥f(z)− z∥

+
n∑

i=1

(αi−1 − αi)(∥xn − z∥+ βn∥Sz − z∥)
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= αnρ∥xn − z∥+ αn∥f(z)− z∥+ (1− αn)(∥xn − z∥+ βn∥Sz − z∥)

= (1− αn(1− ρ))∥xn − z∥+ αn∥f(z)− z∥+ (1− αn)βn∥Sz − z∥

≤ (1− αn(1− ρ))∥xn − z∥+ αn∥f(z)− z∥+ βn∥Sz − z∥

≤ (1− αn(1− ρ))∥xn − z∥+ αn[∥f(z)− z∥+ γ∥Sz − z∥]. (5.2.2)

So, by induction, one can obtain that

∥xn − z∥ ≤ max

{
∥x0 − z∥, 1

1− ρ
[∥f(z)− z∥+ γ∥Sz − z∥

}
. (5.2.3)

Hence {xn} is bounded. Of course {yn} is bounded too.

Proposition 5.2.2. Suppose that (H1) and (H3) hold. Also, assume that either

(H4) and (H5) hold, or (H6) and (H7) hold. Then

(1) {xn} is asymptotically regular, that is,

lim
n→∞

∥xn+1 − xn∥ = 0, (5.2.4)

(2) the weak cluster points set ωw(xn) ⊂
∞
∩
i=1
F (Ti).

Proof. Set un = αnf(xn) +
n∑

i=1

(αi−1 − αi)Viyn. From (5.2.1) and since PC is a

nonexpansive mapping, we have

∥xn+1 − xn∥ = ∥PC [un]− PC [un−1]∥

≤ ∥un − un−1∥ (5.2.5)

=

∥∥∥∥αn(f(xn)− f(xn−1)) + (αn − αn−1)f(xn−1)

+
n∑

i=1

(αi−1 − αi)(Viyn − Viyn−1) + (αn−1 − αn)Vnyn−1

∥∥∥∥
≤ αn∥f(xn)− f(xn−1)∥+

n∑
i=1

(αi−1 − αi)∥yn − yn−1∥

|αn − αn−1|(∥f(xn−1)∥+ ∥Vnyn−1∥)

≤ αnρ∥xn − xn−1∥+ (1− αn)∥yn − yn−1∥

+|αn − αn−1|(∥f(xn−1)∥+ ∥Vnyn−1∥). (5.2.6)

By definition of yn one obtain that

∥yn − yn−1∥ = ∥PC [βnSxn + (1− βn)xn]− PC [βn−1Sxn−1 + (1− βn−1)xn−1]∥

≤ ∥(βnSxn + (1− βn)xn)− (βn−1Sxn−1 + (1− βn−1)xn−1)∥
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= ∥βn(Sxn − Sxn−1) + (βn − βn−1)Sxn−1

+(1− βn−1)(xn − xn−1) + (βn−1 − βn)xn−1∥

≤ ∥xn − xn−1∥+ |βn − βn−1|(∥Sxn−1∥+ ∥xn−1∥). (5.2.7)

So, substituting (5.2.7) in (5.2.6), we obtain

∥xn+1 − xn∥ ≤ αnρ∥xn − xn−1∥+ (1− αn)[∥xn − xn−1∥

+|βn − βn−1|(∥Sxn−1∥+ ∥xn−1∥)]

+|αn − αn−1|(∥f(xn−1)∥+ ∥Vnyn−1∥)

≤ (1− (1− ρ)αn)∥xn − xn−1∥

+|βn − βn−1|(∥Sxn−1∥+ ∥xn−1∥)

+|αn − αn−1|(∥f(xn−1)∥+ ∥Vnyn−1∥). (5.2.8)

By Proposition 5.2.1, we say

M := max

{
sup
n≥1

{∥Sxn−1∥+ ∥xn−1∥}, sup
n≥1

{∥f(xn−1)∥+ ∥Vnyn−1∥}
}
.

So, we have

∥xn+1 − xn∥ ≤ (1− (1− ρ)αn)∥xn − xn−1∥

+M [|αn − αn−1|+ |βn − βn−1|]. (5.2.9)

So, if (H4) and (H5) hold, we obtain the asymptotic regularity by Lemma 2.7.6, if

instead, (H6) and (H7) hold, from (H1), we can write

∥xn+1 − xn∥ ≤ (1− (1− ρ)αn)∥xn − xn−1∥+

Mαn

[
|αn − αn−1|

αn

+
|βn − βn−1|

αn

]
≤ (1− (1− ρ)αn)∥xn − xn−1∥+

Mαn

[
|αn − αn−1|

αn

+ γ
|βn − βn−1|

βn

]
. (5.2.10)

By Lemma 2.7.6, we obtain the asymptotic regularity.

In order to prove (2), since Vixn ∈ C for each i ≥ 1 and
∞∑
n=1

(αn−1−αn)+αn = 1,

we have
n∑

i=1

(αi−1 − αi)Vixn + αnp ∈ C, ∀p ∈ C. (5.2.11)
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Now, fixing a p ∈
∞
∩
i=1
F (V i), from (5.2.1), we have

n∑
i=1

(αi−1 − αi)(xn − Vixn) = PC [un] + (1− αn)xn + αnp− xn+1

−
( n∑

i=1

(αi−1 − αi)Vixn + αnp

)
= PC [un]− PC

[ n∑
i=1

(αi−1 − αi)Vixn + αnp

]
+(1− αn)(xn − xn+1) + αn(p− xn+1).

It follows that∑n
i=1(αi−1 − αi)⟨xn − Vixn, xn − z⟩

=

⟨
PC [un]− PC

[ n∑
i=1

(αi−1 − αi)Vixn + αnp

]
, xn − z

⟩
+(1− αn)⟨xn − xn+1, xn − z⟩+ αn⟨p− xn+1, xn − z⟩

≤
∥∥∥∥un − n∑

i=1

(αi−1 − αi)Vixn + αnp

∥∥∥∥∥xn − z∥

+(1− αn)∥xn − xn+1∥∥xn − z∥+ αn∥p− xn+1∥∥xn − z∥

=

∥∥∥∥αn(f(xn)− p) +
n∑

i=1

(αi−1 − αi)(Viyn − Vixn)

∥∥∥∥∥xn − z∥

+(1− αn)∥xn − xn+1∥∥xn − z∥+ αn∥p− xn+1∥∥xn − z∥

≤ αn∥f(xn)− p∥∥xn − z∥+
n∑

i=1

(αi−1 − αi)∥yn − xn∥∥xn − z∥

+(1− αn)∥xn − xn+1∥∥xn − z∥+ αn∥p− xn+1∥∥xn − z∥

≤ αn∥f(xn)− p∥∥xn − z∥+
n∑

i=1

(αi−1 − αi)βn∥Sxn − xn∥∥xn − z∥

+(1− αn)∥xn − xn+1∥∥xn − z∥+ αn∥p− xn+1∥∥xn − z∥

= αn∥f(xn)− p∥∥xn − z∥+ (1− αn)βn∥Sxn − xn∥∥xn − z∥

+(1− αn)∥xn − xn+1∥∥xn − z∥+ αn∥p− xn+1∥∥xn − z∥. (5.2.12)

Now, from Lemma 2.7.5 and (3.12), we get

1

2

n∑
i=1

(αi−1 − αi)∥xn − Vixn∥2 ≤
n∑

i=1

(αi−1 − αi)⟨xn − Vixn, xn − z⟩

≤ αn∥f(xn)− p∥∥xn − z∥

+(1− αn)βn∥Sxn − xn∥∥xn − z∥

+(1− αn)∥xn − xn+1∥∥xn − z∥

+αn∥p− xn+1∥∥xn − z∥.
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By (H1) and (H3), it follows that βn → 0, as n→ ∞ , so that

lim
n→∞

n∑
i=1

(αi−1 − αi)∥xn − Vixn∥2 = 0. (5.2.13)

Since (αi−1 −αi)∥xn − Vixn∥2 ≤
n∑

i=1

(αi−1 −αi)∥xn − Vixn∥2 for each i ≥ 1 and {αn}

is strictly decreasing, one has

lim
n→∞

∥xn − Vixn∥ = 0, ∀i ≥ 1. (5.2.14)

Hence, we obtain

lim
n→∞

∥xn − Tixn∥ = lim
n→∞

∥xn − Vixn∥
(1− ki)

= 0, ∀i ≥ 1.

Since {xn} is asymptotically regular and demiclosedness principle, we obtain the

proposition.

Corollary 5.2.3. Suppose that the hypotheses of Proposition 5.2.2 hold. Then

(i) lim
n→∞

∥xn − yn∥ = 0;

(ii) lim
n→∞

∥xn − Viyn∥ = 0, ∀i ≥ 1;

(iii) lim
n→∞

∥yn − Viyn∥ = 0, ∀i ≥ 1.

Proof. To prove (i), we can observe that

∥xn − yn∥ ≤ βn∥xn − Sxn∥.

Since βn → 0 as n→ ∞, we obtain (i).

To prove (ii), we observe that

∥yn − Vixn∥ ≤ ∥yn − xn∥+ ∥xn − Vixn∥, ∀i ≥ 1

and

∥xn − Viyn∥ ≤ ∥xn − yn∥+ ∥yn − Vixn∥, ∀i ≥ 1.

Since ∥yn−xn∥ → 0 and ∥xn−Vixn∥ → 0 as n→ ∞, ∀i ≥ 1, then ∥yn−Vixn∥ → 0,

that is, we obtain (ii). To prove (iii), we can observe that

∥yn − Viyn∥ ≤ ∥xn − yn∥+ ∥xn − Viyn∥, ∀i ≥ 1.

By (i) and (ii), we obtain (iii).
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Theorem 5.2.4. Let C be a nonempty closed and convex subset of a real Hilbert

space H. Let f : C → H be a ρ-contraction mapping, S : C → H be a nonexpansive

mapping and {Ti}∞i=1 : C → C be a countable family of ki-strict pseudo-contraction

mappings and F =
∞
∩
i=1
F (Ti) ̸= ∅. Let α0 = 1, and x1 ∈ C and define the sequence

{xn} by 
yn = PC [βnSxn + (1− βn)xn],

xn+1 = PC [αnf(xn) +
n∑

i=1

(αi−1 − αi)Viyn], ∀n ≥ 1,
(5.2.15)

where {αn} ⊂ (0, 1) and {αn} is a strictly decreasing sequence, Vi = kiI+(1−ki)Ti,

{βn} ⊂ (0, 1) and {αn} and {βn} are sequences satisfying the conditions (H2) with

τ = 0, (H3), either (H4) and (H5) , or (H6) and (H7). Then the sequence {xn}

converges strongly to a point z ∈ F , which is the unique solution of the variational

inequality:

⟨(I − f)z, x− z⟩ ≥ 0, ∀x ∈ F . (5.2.16)

Proof. First of all, since PFf is a contraction. By Banach contraction principle, so

there exists a unique z ∈ F such that z = PFf(z), Moreover, from Lemma 2.7.13,

we have

⟨f(z)− z, y − z⟩ ≤ 0, ∀y ∈ F .

Since (H2) implies (H1), thus {xn} is bounded. Moreover, since either (H4) and (H5),

or (H6) and (H7), then {xn} is asymptotically regular. Similarly, by Proposition

5.2.2, the weak cluster points set of xn, that is, ωw(xn), is a subset of F .

Let {xnk
} be a subsequence of {xn} such that

lim sup
n→∞

⟨f(z)− z, xn − z⟩ = lim
k→∞

⟨f(z)− z, xnk
− z⟩,

and xnk
→ x′. By Proposition 5.2.2 it follows that x′ ∈ F . Then

lim
k→∞

⟨f(z)− z, xnk
− z⟩ = ⟨f(z)− z, x′ − z⟩ ≤ 0.

Set un = αnf(xn) +
n∑

i=1

(αi−1 − αi)Viyn, we obtain

∥xn+1 − z∥2 = ⟨PC [un]− un, PC [un]− z⟩+ ⟨un − z, xn+1 − z⟩. (5.2.17)

By Lemma 2.7.13, we have

⟨PC [un]− un, PC [un]− z⟩ ≤ 0. (5.2.18)
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From (5.2.17) and (5.2.18), it follows that

∥xn+1 − z∥2 ≤ ⟨un − z, xn+1 − z⟩

= αn⟨f(xn)− f(z), xn+1 − z⟩+ αn⟨f(z)− z, xn+1 − z⟩
n∑

i=1

(αi−1 − αi)⟨Viyn − z, xn+1 − z⟩

≤ αnρ∥xn − z∥∥xn+1 − z∥+ αn⟨f(z)− z, xn+1 − z⟩

(1− αn)∥yn − z∥∥xn+1 − z∥

≤ αnρ∥xn − z∥∥xn+1 − z∥+ αn⟨f(z)− z, xn+1 − z⟩

(1− αn)∥βnSxn + (1− βn)xn − z∥∥xn+1 − z∥

≤ αnρ∥xn − z∥∥xn+1 − z∥+ αn⟨f(z)− z, xn+1 − z⟩

(1− αn)∥xn − z∥∥xn+1 − z∥+ (1− αn)βn∥Sz − z∥∥xn+1 − z∥

= [1− αn(1− ρ)]∥xn − z∥∥xn+1 − z∥+ αn⟨f(z)− z, xn+1 − z⟩

+(1− αn)βn∥Sz − z∥∥xn+1 − z∥

≤
[
1− αn(1− ρ)

2

][
∥xn − z∥2 + ∥xn+1 − z∥2

]
+αn⟨f(z)− z, xn+1 − z⟩+ (1− αn)βn∥Sz − z∥∥xn+1 − z∥

≤
[
1− 2(1− ρ)αn

1 + (1− ρ)αn

]
∥xn − z∥2

+

[
2αn

1 + (1− ρ)αn

]
⟨f(z)− z, xn+1 − z⟩

+

[
2(1− αn)βn
1 + (1− ρ)αn

]
∥Sz − z∥∥xn+1 − z∥

=

[
1− 2(1− ρ)αn

1 + (1− ρ)αn

]
∥xn − z∥2

+

[
2(1− ρ)αn

1 + (1− ρ)αn

]{
1

1− ρ
⟨f(z)− z, xn+1 − z⟩

+
(1− αn)βn
(1− ρ)αn

∥Sz − z∥∥xn+1 − z∥
}
.

Let

γn =
2(1− ρ)αn

1 + (1− ρ)αn

and

δn =
2(1− ρ)αn

1 + (1− ρ)αn

{
1

1− ρ
⟨f(z)− z, xn+1 − z⟩+ (1− αn)βn

(1− ρ)αn

∥Sz − z∥∥xn+1 − z∥
}
,

for all n ≥ 1. Since

lim sup
n→∞

{
1

1− ρ
⟨f(z)− z, xn+1 − z⟩+ (1− αn)βn

(1− ρ)αn

∥Sz − z∥∥xn+1 − z∥
}

≤ 0,
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∞∑
i=1

αn = ∞ and 2(1−ρ)αn

1+(1−ρ)αn
≥ (1− ρ)αn, we have

∞∑
n=1

γn = ∞ and lim sup
n→∞

δn
γn

≤ 0.

Hence, by Lemma 2.7.6, we conclude that xn → z as n → ∞. This completes the

proof.

Remark 5.2.5. In the iterative scheme (5.2.15), if we set f ≡ 0, then we get

xn → z = PF0. In this case, from (5.2.16), it follows that

⟨z, z − x⟩ ≤ 0, ∀x ∈ F .

That is

∥z∥2 ≤ ⟨z, x⟩ ≤ ∥z∥∥x∥, ∀x ∈ F .

Therefore, the point z is the unique solution to the following quadratic minimization

problem:

z = argmin
x∈F

∥x∥2.

By changing the restrictions on parameters in Theorem 5.2.4, we obtain the

following results.

Theorem 5.2.6. Let C be a nonempty closed and convex subset of a real Hilbert

space H. Let f : C → H be a ρ-contraction mapping, S : C → C be a nonexpansive

mapping and {Ti}∞i=1 : C → C be a countable family of ki-strict pseudo-contraction

mappings and F =
∞
∩
i=1
F (Ti) ̸= ∅. Let α0 = 1, and x1 ∈ C and define the sequence

{xn} by 
yn = PC [βnSxn + (1− βn)xn] = βnSxn + (1− βn)xn

xn+1 = PC [αnf(xn) +
n∑

i=1

(αi−1 − αi)Viyn], ∀n ≥ 1
(5.2.19)

where {αn} ⊂ (0, 1) and {αn} is a strictly decreasing sequence, Vi = kiI+(1−ki)Ti,

{βn} ⊂ (0, 1) and {αn} and {βn} are sequences satisfying the conditions (H2) with

τ ∈ (0,∞), (H3), (H8) and (H9). Then the sequence {xn} converges strongly to a

point x∗ ∈ F , which is the unique solution of the variational inequality:

⟨1
τ
(I − f)x∗ + (I − S)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F . (5.2.20)
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Proof. First, we shows that (5.2.20) has the unique solution. Let x′ and x∗ be two

solutions. Then, since x′ is solution, for y = x∗ one has

⟨(I − f)x′, x′ − x∗⟩ ≤ τ⟨(I − S)x′, x∗ − x′⟩ (5.2.21)

and

⟨(I − f)x∗, x∗ − x′⟩ ≤ τ⟨(I − S)x∗, x′ − x∗⟩. (5.2.22)

Adding (5.2.21) and (5.2.22), we obtain

(1− ρ)∥x′ − x∗∥2 ≤ ⟨(I − f)x′ − (I − f)x∗, x′ − x∗⟩

≤ −ρ⟨(I − S)x′ − (I − S)x∗, x′ − x∗⟩ ≤ 0

so x′ = x∗. Also now the condition (H2) with 0 < τ < ∞ implies (H1) so the

sequence {xn} is bounded. Moreover, since (H8) implies (H6) and (H7), then {xn}

is asymptotically regular.

Similarly, by Proposition 5.2.2, the weak cluster points set of xn, i.e., ωw(xn), is a

subset of F .

From (5.2.5)-(5.2.9), we observe that

∥xn+1 − xn∥
βn

≤ ∥un − un−1∥
βn

≤ [1− (1− ρ))αn]
∥xn − xn−1∥

βn
+M

[
|αn − αn−1|

βn
+

|βn − βn−1|
βn

]
= [1− (1− ρ))αn]

∥xn − xn−1∥
βn−1

+[1− (1− ρ))αn]∥xn − xn−1∥
[
1

βn
− 1

βn−1

]
+M

[
|αn − αn−1|

βn
+

|βn − βn−1|
βn

]
≤ [1− (1− ρ))αn]

∥xn − xn−1∥
βn−1

+ ∥xn − xn−1∥
[
1

βn
− 1

βn−1

]
+M

[
|αn − αn−1|

βn
+

|βn − βn−1|
βn

]
≤ [1− (1− ρ))αn]

∥xn − xn−1∥
βn−1

+ αnK∥xn − xn−1∥

+M

[
|αn − αn−1|

βn
+

|βn − βn−1|
βn

]
≤ [1− (1− ρ))αn]

∥un − un−1∥
βn−1

+ αnK∥xn − xn−1∥

+M

[
|αn − αn−1|

βn
+

|βn − βn−1|
βn

]
.
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Let γn = (1 − ρ)αn and δn = αnK∥xn − xn−1∥ +M

[
|αn−αn−1|

βn
+ |βn−βn−1|

βn

]
. From

condition (H3) and (H8), we have

∞∑
i=1

γn = ∞ and lim
n→∞

δn
γn

= 0.

By Lemma 2.7.6, we obtain

lim
n→∞

∥xn+1 − xn∥
βn

= 0, lim
n→∞

∥un+1 − un∥
βn

= lim
n→∞

∥un+1 − un∥
αn

= 0.

From (5.2.19), we have

xn − xn−1 = (1− αn)xn −
[
PC [un]− un + αnf(xn)

+
n∑

i=1

(αi−1 − αi)(Viyn − yn) + (1− αn)yn

]
= (1− αn)βn(xn − Sxn) + (un − PC [un])

+
n∑

i=1

(αi−1 − αi)(yn − Viyn) + αn(xn − f(xn)).

It follows that

xn − xn−1

(1− αn)βn
= (xn − Sxn) +

1

(1− αn)βn
(un − PC [un])

+
1

(1− αn)βn

n∑
i=1

(αi−1 − αi)(yn − Viyn) +
αn

(1− αn)βn
(xn − f(xn)).

Let vn = xn−xn−1

(1−αn)βn
. For all z ∈ F =

∞
∩
i=1
F (Ti) =

∞
∩
i=1
F (Vi), we get

⟨vn, xn − z⟩ =
1

(1− αn)βn
⟨un − PC [un], PC [un−1]− z⟩

+
αn

(1− αn)βn
⟨(I − f)xn, xn − z⟩+ ⟨xn − Sxn, xn − z⟩

+
1

(1− αn)βn

n∑
i=1

(αi−1 − αi)⟨yn − Viyn, xn − z⟩. (5.2.23)

By Lemma 2.7.11, we have

⟨xn − Sxn, xn − z⟩ = ⟨(I − S)xn − (I − S)z, xn − z⟩+ ⟨(I − S)z, xn − z⟩

≥ ⟨(I − S)z, xn − z⟩, (5.2.24)

⟨(I − f)xn, xn − z⟩ = ⟨(I − f)xn − (I − f)z, xn − z⟩+ ⟨(I − f)z, xn − z⟩

≥ (1− ρ)∥xn − z∥2 + ⟨(I − f)z, xn − z⟩ (5.2.25)
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and

⟨yn − Viyn, xn − z⟩ = ⟨(I − Vi)yn − (I − Vi)z, xn − yn⟩

+⟨(I − Vi)yn − (I − Vi)z, yn − z⟩

≥ ⟨(I − Vi)yn − (I − Vi)z, xn − yn⟩

= βn⟨(I − Vi)yn, xn − Sxn⟩, ∀i ≥ 1. (5.2.26)

By Lemma 2.7.13, we obtain

⟨un − PC [un], PC [un−1]− z⟩ = ⟨un − PC [un], PC [un−1]− PC [un]⟩

+⟨un − PC [un], PC [un]− z⟩

≥ ⟨un − PC [un], PC [un−1]− PC [un]⟩. (5.2.27)

Now, from(5.2.23)-(5.2.27), it follows that

⟨vn, xn − z⟩ ≥ 1

(1− αn)βn
⟨un − PC [un], PC [un−1]− PC [un]⟩

+
αn

(1− αn)βn
⟨(I − f)z, xn − z⟩+ ⟨(I − S)z, xn − z⟩

+
1

(1− αn)

n∑
i=1

(αi−1 − αi)⟨(I − Vi)yn, xn − Sxn⟩

+
(1− ρ)αn

(1− αn)βn
∥xn − z∥2. (5.2.28)

We observe from (5.2.28) that

∥xn − z∥2 ≤ (1− αn)βn
(1− ρ)αn

[
⟨vn, xn − z⟩ − ⟨(I − S)z, xn − z⟩

]
+
∥un−1 − un∥
(1− ρ)αn

∥un − PC [un]∥ −
1

1− ρ
⟨(I − f)z, xn − z⟩

− βn
(1− ρ)αn

n∑
i=1

(αi−1 − αi)⟨(I − Vi)yn, xn − Sxn⟩, (5.2.29)

since vn → 0 and (I − Vi)yn → 0, as n→ ∞ , then every weak cluster point of {xn}

is also a strong cluster point. By Proposition 5.2.2, {xn} is bounded, thus there

exists a subsequence {xnk
} converging to x∗.
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For all z ∈ F by (5.2.23), we compute

⟨(I − f)xnk
, xnk

− z⟩ =
(1− αnk

)βnk

αnk

⟨vnk
, xnk

− z⟩

− 1

αnk

⟨unk
− PC [unk

], PC [unk−1]− z⟩

−(1− αnk
)βnk

αnk

⟨xnk
− Sxnk

, xnk
− z⟩

− 1

αnk

nk∑
i=1

(αi−1 − αi)⟨ynk
− Viynk

, xnk
− z⟩

≤ (1− αnk
)βnk

αnk

⟨vnk
, xnk

− z⟩

− βnk

(αnk

nk∑
i=1

(αi−1 − αi⟨(I − Vi)ynk
, xnk

− Sxnk
⟩

− 1

αnk

∥unk−1 − unk
∥∥unk

− PC [unk
]∥

−(1− αnk
)βnk

αnk

⟨(I − S)z, xnk
− z⟩. (5.2.30)

Since vn → 0, (I − Vi)yn → 0 for all i ≥ 1, and ∥un − un−1∥/αn → 0, letting k → ∞

in (5.2.30), we obtain

⟨(I − f)x∗, x∗ − z⟩ ≤ −τ⟨(I − S)z, x∗ − z⟩, ∀z ∈ F .

Since (5.2.20) has the unique solution, it follows that ωw(xn) = {x∗}. Since every

weak cluster point of {xn} is also a strong cluster point, we conclude that xn → x∗

as n→ ∞ . This completes the proof.

If we take Ti = T , for all i ≥ 1, where T : C → C is a k-strict pseudo-contraction

mapping in Theorem 5.2.4, then we get the following result:

Corollary 5.2.7. Let C be a nonempty closed and convex subset of a real Hilbert

space H. Let f : C → H be a ρ-contraction mapping, S : C → H be a nonexpansive

mapping and T : C → C be a k-strict pseudo-contraction mapping such that F (T ) ̸=

∅. Let x1 ∈ C and define the sequence {xn} by yn = PC [βnSxn + (1− βn)xn],

xn+1 = PC [αnf(xn) + (1− αn)V yn], ∀n ≥ 1,
(5.2.31)

where V = kI + (1 − k)T, {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) are sequences satisfying

the conditions (H2) with τ = 0, (H3), either (H4) and (H5) , or (H6) and (H7).
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Then the sequence {xn} converges strongly to a point z ∈ F (T ), which is the unique

solution of the variational inequality:

⟨(I − f)z, x− z⟩ ≥ 0, ∀x ∈ F (T ).

Taking ki = 0, for all i ≥ 1 in Theorem 5.2.4, then we get the following result:

Corollary 5.2.8. Let C be a nonempty closed and convex subset of a real Hilbert

space H. Let f : C → H be a ρ-contraction mapping, S : C → H be a nonexpansive

mapping and {Ti}∞i=1 : C → C be a countable family of nonexpansive mappings and

F =
∞
∩
i=1
F (Ti) ̸= ∅. Let α0 = 1, x1 ∈ C and define the sequence {xn} by

yn = PC [βnSxn + (1− βn)xn],

xn+1 = PC [αnf(xn) +
n∑

i=1

(αi−1 − αi)Tiyn], ∀n ≥ 1,
(5.2.32)

where {αn} ⊂ (0, 1) and {αn} is a strictly decreasing sequence, {βn} ⊂ (0, 1) and

{αn} and {βn} are sequences satisfying the conditions (H2) with τ = 0, (H3), either

(H4) and (H5) , or (H6) and (H7). Then the sequence {xn} converges strongly to a

point z ∈ F , which is the unique solution of the variational inequality:

⟨(I − f)z, x− z⟩ ≥ 0, ∀x ∈ F .

If we take k = 0 in Corollary 5.2.7, then we get the following result:

Corollary 5.2.9. Let C be a nonempty closed and convex subset of a real Hilbert

space H. Let f : C → H be a ρ-contraction mapping, S : C → H be a nonexpansive

mapping and T : C → C be a nonexpansive mapping such that F (T ) ̸= ∅. Let

x1 ∈ C and define the sequence {xn} by yn = PC [βnSxn + (1− βn)xn],

xn+1 = PC [αnf(xn) + (1− αn)Tyn], ∀n ≥ 1,
(5.2.33)

where {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {αn} and {βn} are sequences satisfying the

conditions (H2) with τ = 0, (H3), either (H4) and (H5) , or (H6) and (H7). Then

the sequence {xn} converges strongly to a point z ∈ F (T ), which is the unique

solution of the variational inequality:

⟨(I − f)z, x− z⟩ ≥ 0, ∀x ∈ F (T ).
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If we take Ti = T , for all i ≥ 1, where T : C → C is a k-strict pseudo-contraction

mapping in Theorem 5.2.6, then we obtain the following result:

Corollary 5.2.10. Let C be a nonempty closed and convex subset of a real Hilbert

space H. Let f : C → H be a ρ-contraction mapping, S : C → C be a nonexpansive

mapping and T : C → C be a k-strict pseudo-contraction mapping and F = F (T ) ̸=

∅. Let x1 ∈ C and define the sequence {xn} by yn = βnSxn + (1− βn)xn,

xn+1 = PC [αnf(xn) + (1− αn)V yn], ∀n ≥ 1,
(5.2.34)

where V = kI + (1 − k)T , {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {αn} and {βn} are

sequences satisfying the conditions (H2) with τ ∈ (0,∞), (H3), (H8) and (H9).

Then the sequence {xn} converges strongly to a point x∗ ∈ F , which is the unique

solution of the variational inequality:

⟨1
τ
(I − f)x∗ + (I − S)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F . (5.2.35)

If we take ki = 0, for all i ≥ 1 in Theorem 5.2.6, then we get the following result:

Corollary 5.2.11. Let C be a nonempty closed and convex subset of a real Hilbert

space H. Let f : C → H be a ρ-contraction mapping, S : C → C be a nonexpansive

mapping and {Ti}∞i=1 : C → C be a countable family of nonexpansive mappings and

F =
∞
∩
i=1
F (Ti) ̸= ∅. Let α0 = 1, x1 ∈ C and define the sequence {xn} by

yn = βnSxn + (1− βn)xn,

xn+1 = PC [αnf(xn) +
n∑

i=1

(αi−1 − αi)Tiyn], ∀n ≥ 1,
(5.2.36)

where {αn} ⊂ (0, 1) and {αn} is a strictly decreasing sequence, {βn} ⊂ (0, 1) and

{αn} and {βn} are sequences satisfying the conditions (H2) with τ ∈ (0,∞), (H3),

(H8) and (H9). Then the sequence {xn} converges strongly to a point x∗ ∈ F , which

is the unique solution of the variational inequality:

⟨1
τ
(I − f)x∗ + (I − S)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F . (5.2.37)

If k = 0 in Corollary 5.2.10, then we get the following Corollary:
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Corollary 5.2.12. Let C be a nonempty closed and convex subset of a real Hilbert

space H. Let f : C → H be a ρ-contraction mapping, S, T : C → C be nonexpansive

mappings and F = F (T ) ̸= ∅. Let x1 ∈ C and define the sequence {xn} by yn = βnSxn + (1− βn)xn,

xn+1 = PC [αnf(xn) + (1− αn)Tyn], ∀n ≥ 1,
(5.2.38)

where {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {αn} and {βn} are sequences satisfying the

conditions (H2) with τ ∈ (0,∞), (H3), (H8) and (H9). Then the sequence {xn}

converges strongly to a point x∗ ∈ F , which is the unique solution of the variational

inequality:

⟨1
τ
(I − f)x∗ + (I − S)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F . (5.2.39)

Remark 5.2.13. Theorem 5.2.4 and Theorem 5.2.6 extend and improve the result

of Gu et al. [54] from the countable family of nonexpansive mappings to more

general the countable family of strictly pseudo contraction mappings.

5.3 Iterative Algorithm for Solving Triple Hierarchical Fixed

Point Problem

In this section, we introduce an iterative algorithm for solving the monotone

variational inequality over triple hierarchical fixed point problem. Always in this

section, we may assume that the set Θ := V I(Υ, I − ϕ) is nonempty where Ω :=

V I(F (T ), A− γf) and Υ := V I(Ω, B).

Theorem 5.3.1. Let H be a real Hilbert space, C be a closed convex subset of H.

Let A : C → H be a strongly positive linear bounded operator, f : C → H be a

ρ-contraction, γ be a positive real number such that γ̄−1
ρ

< γ < γ̄
ρ
. Let T : C → C

be a nonexpansive mapping, B : C → C be a β-strongly monotone and L-Lipschitz

continuous. Let ϕ : C → C be a k-contraction mapping with k ∈ [0, 1). Suppose

{xn} is a sequence generated by the following algorithm x0 ∈ C arbitrarily
zn = TPC [I − δn(A− γf)]xn,

yn = (I − µβnB)zn,

xn+1 = αnϕ(xn) + (1− αn)yn, ∀n ≥ 0,

(5.3.1)

where {αn}, {δn} ⊂ [0, 1]. If µ ∈ (0, 2β
L2 ) is used and if {βn} ⊂ (0, 1] satisfy the

following conditions:
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(C1): Σ∞
n=1|δn+1 − δn| <∞, Σ∞

n=1δn = ∞;

(C2): Σ∞
n=1|βn+1 − βn| <∞;

(C3): Σ∞
n=1|αn+1 − αn| <∞, limn→∞ αn = 0;

(C4): δn ≤ βn and βn ≤ αn.

Then {xn} converges strongly to x∗ ∈ Υ, which is the unique solution of the varia-

tional inequality:

Find x∗ ∈ Υ such that ⟨(I − ϕ)x∗, x− x∗⟩ ≥ 0, ∀x ∈ Υ, (5.3.2)

where Υ := V I(Ω, B) := V I
(
V I(F (T ), A− γf), B

)
.

Proof. We will divide the proof into four steps.

Step 1. We will show {xn} is bounded. For any q ∈ Θ, we have

∥zn − q∥ = ∥TPC [I − δn(A− γf)]xn − TPCq∥

≤ ∥[I − δn(A− γf)]xn − q∥

≤ δn∥γf(xn)− γf(q)∥+ δn∥γf(q)− Aq∥+ ∥I − δnA∥∥xn − q∥

≤ δnγρ∥xn − q∥+ δn∥γf(q)− Aq∥+ (1− δnγ̄)∥xn − q∥

= [1− (γ̄ − γρ)δn]∥xn − q∥+ δn∥γf(q)− Aq∥. (5.3.3)

By Lemma 2.7.7, it is found that

∥yn − q∥ = ∥(I − µβnB)zn − (I − µβnB)q∥

≤ (1− βnτ)∥zn − q∥

≤ (1− βnτ)
{
[1− (γ̄ − γρ)δn]∥xn − q∥

+δn∥γf(q)− Aq∥
}
. (5.3.4)

From (5.3.1), we get

∥xn+1 − q∥ ≤ αn∥ϕ(xn)− ϕ(q)∥+ αn∥ϕ(q)− q∥+ (1− αn)∥yn − q∥

≤ αnk∥xn − q∥+ αn∥ϕ(q)− ϕ(q)∥+ (1− αn)∥yn − q∥

≤ αnk∥xn − q∥+ (1− αn)(1− βnτ)
{
[1− (γ̄ − γρ)δn]∥xn − q∥

+δn∥γf(q)− Aq∥
}
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≤ αn∥xn − q∥+ (1− αn)(1− βnτ)[1− (γ̄ − γρ)δn]∥xn − q∥

+(1− αn)(1− βnτ)δn∥γf(q)− Aq∥

= αn∥xn − q∥+ (1− αn)[1− (γ̄ − γρ)δn − βnτ

+βnτ(γ̄ − γρ)δn]∥xn − q∥

+(1− αn)(1− βnτ)δn∥γf(q)− Aq∥

= αn∥xn − q∥+ (1− αn)
[
1− {(γ̄ − γρ)δn + βnτ

−βnτ(γ̄ − γρ)δn}
]
∥xn − q∥

+(1− αn)(1− βnτ)δn∥γf(q)− Aq∥

= αn∥xn − q∥+
[
1− αn − {(γ̄ − γρ)δn + βnτ

−βnτ(γ̄ − γρ)δn}(1− αn)
]
∥xn − q∥

+(1− αn)(1− βnτ)δn∥γf(q)− Aq∥

=
[
1− (1− αn){(γ̄ − γρ)δn + βnτ − βnτ(γ̄ − γρ)δn}

]
∥xn − q∥

+(1− αn)(1− βnτ)δn∥γf(q)− Aq∥

=
[
1− (1− αn){(γ̄ − γρ)δn(1− βnτ) + βnτ}

]
∥xn − q∥

+(1− αn)(1− βnτ)δn∥γf(q)− Aq∥

= [1− (1− αn)(γ̄ − γρ)δn(1− βnτ)− (1− αn)βnτ ]∥xn − q∥

+(1− αn)(1− βnτ)δn∥γf(q)− Aq∥

= [1− (1− αn)(γ̄ − γρ)δn(1− βnτ)]∥xn − q∥ − (1− αn)βnτ∥xn − q∥

+(1− αn)(1− βnτ)δn∥γf(q)− Aq∥

≤ [1− (γ̄ − γρ)(1− αn)(1− βnτ)δn]∥xn − q∥

+(γ̄ − γρ)(1− αn)(1− βnτ)δn
∥γf(q)− Aq∥

γ̄ − γρ

= (1− σn)∥xn − q∥+ σn
∥γf(q)− Aq∥

γ̄ − γρ
,

where σn := (γ̄ − γρ)(1− αn)(1− βnτ)δn. Then, by mathematical induction implies

that

∥xn − q∥ ≤ max
{
∥x0 − q∥, ∥γf(q)− Aq∥

γ̄ − γρ

}
, ∀n ≥ 0.

Therefore {xn} is bounded and so are {yn}, {zn}, {Axn}, {Bxn}, {ϕ(xn)} and

{f(xn)}.

Step 2. We claim that limn→∞ ∥xn+1 − xn∥ = 0 and limn→∞ ∥xn − Txn∥ = 0.
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From (5.3.1), we have

∥zn+1 − zn∥ = ∥TPC [I − δn+1(A− γf)]xn+1 − TPC [I − δn(A− γf)]xn∥

≤ ∥PC [I − δn+1(A− γf)]xn+1 − PC [I − δn(A− γf)]xn∥

≤ ∥[I − δn+1(A− γf)]xn+1 − [I − δn(A− γf)]xn∥

= ∥δn+1(γf(xn+1)− γf(xn)) + (δn+1 − δn)γf(xn) (5.3.5)

+(I − δn+1A)(xn+1 − xn) + (δn − δn+1)Axn∥

≤ δn+1γ∥f(xn+1)− f(xn)∥+ (1− δn+1γ̄)∥xn+1 − xn∥

+|δn+1 − δn|(∥γf(xn)∥+ ∥Axn∥)

≤ δn+1γρ∥xn+1 − xn∥+ (1− δn+1γ̄)∥xn+1 − xn∥

+|δn+1 − δn|(∥γf(xn)∥+ ∥Axn∥)

= [1− (γ̄ − γρ)δn+1]∥xn+1 − xn∥

+|δn+1 − δn|(∥γf(xn)∥+ ∥Axn∥) (5.3.6)

and

∥yn+1 − yn∥ = ∥(I − µβn+1B)zn+1 − (I − µβnB)zn∥

≤ ∥(I − µβn+1B)zn+1 − (I − µβn+1B)zn∥

+∥(I − µβn+1B)zn − (I − µβnB)zn∥

≤ (1− βnτ)∥zn+1 − zn∥+ µ|βn+1 − βn|∥Bzn∥. (5.3.7)

Using (5.3.5) and (5.3.8), we get

∥xn+2 − xn+1∥ = ∥αn+1ϕ(xn+1) + (1− αn+1)yn+1 − αnϕ(xn)− (1− αn)yn∥

≤ αn+1∥ϕ(xn+1)− ϕ(xn)∥+ |αn+1 − αn|∥ϕ(xn+1)∥

+(1− αn+1)∥yn+1 − yn∥+ |αn+1 − αn|∥yn∥

≤ αn+1k∥xn+1 − xn∥+ |αn+1 − αn|(∥ϕ(xn+1)∥+ ∥yn∥)

+(1− αn+1)∥yn+1 − yn∥

≤ αn+1k∥xn+1 − xn∥+ |αn+1 − αn|(∥ϕ(xn+1)∥+ ∥yn∥)

+(1− αn+1)
{
(1− βnτ)∥zn+1 − zn∥+ µ|βn+1 − βn|∥Bzn∥

}
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= αn+1k∥xn+1 − xn∥+ |αn+1 − αn|(∥ϕ(xn+1)∥+ ∥yn∥)

+(1− αn+1)(1− βnτ)∥zn+1 − zn∥

+(1− αn+1)µ|βn+1 − βn|∥Bzn∥

≤ αn+1∥xn+1 − xn∥+ |αn+1 − αn|(∥ϕ(xn+1)∥+ ∥yn∥)

+(1− αn+1)µ|βn+1 − βn|∥Bzn∥

+(1− αn+1)
{
[1− (γ̄ − γρ)δn+1]∥xn+1 − xn∥

+|δn+1 − δn|(∥γf(xn)∥+ ∥Axn∥)
}

≤ αn+1∥xn+1 − xn∥+ |αn+1 − αn|(∥ϕ(xn+1)∥+ ∥yn∥)

+(1− αn+1)µ|βn+1 − βn|∥Bzn∥

+(1− αn+1)[1− (γ̄ − γρ)δn+1]∥xn+1 − xn∥

+(1− αn+1)|δn+1 − δn|(∥γf(xn)∥+ ∥Axn∥)

≤ [1− (γ̄ − γρ)δn+1(1− αn+1)]∥xn+1 − xn∥

+|αn+1 − αn|(∥ϕ(xn+1)∥+ ∥yn∥)

+µ|βn+1 − βn|∥Bzn∥+ |δn+1 − δn|(∥γf(xn)∥+ ∥Axn∥)

≤ [1− (γ̄ − γρ)δn+1(1− αn+1)]∥xn+1 − xn∥

+{|αn+1 − αn|+ |βn+1 − βn|+ |δn+1 − δn|}M, (5.3.8)

where M is some constant such that

sup
n≥0

{
∥ϕ(xn)∥+ ∥yn∥, µ∥Bzn∥, ∥γf(xn)∥+ ∥Axn∥

}
≤ M.

From (C1)-(C3) and the boundedness of {xn}, {yn}, {Axn}, {Bzn}, {ϕ(xn)} and

{f(xn)}. By Lemma 2.7.6, then we have

lim
n→∞

∥xn+1 − xn∥ = 0. (5.3.9)

On the other hand, we note that

∥zn − Txn∥ = ∥TPC [I − δn(A− γf)]xn − Txn∥

= ∥TPC [I − δn(A− γf)]xn − TPCxn∥

≤ ∥[I − δn(A− γf)]xn − xn∥

≤ δn∥(A− γf)]xn∥,

by (C3)-(C4) and it follows that

lim
n→∞

∥zn − Txn∥ = 0. (5.3.10)
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From (5.3.1), we compute

∥xn+1 − zn∥ = ∥αnϕ(xn) + (1− αn)yn − zn∥

= ∥αnϕ(xn) + (1− αn)(I − µβnB)zn − zn∥

≤ αn∥ϕ(xn)− zn∥+ (1− αn)∥(I − µβnB)zn − zn∥

≤ αnk∥xn − zn∥+ αn∥ϕ(zn)− zn∥+ (1− αn)µβn∥Bzn∥.

By (C3) and (C4), it follows that

lim
n→∞

∥xn+1 − zn∥ = 0. (5.3.11)

Since

∥xn − Txn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − zn∥+ ∥zn − Txn∥.

By (5.3.9), (5.3.10) and (5.3.11), we obtain

lim
n→∞

∥xn − Txn∥ = 0. (5.3.12)

From (5.3.1), we compute

∥xn+1 − yn∥ = ∥αnϕ(xn) + (1− αn)yn − yn∥

= ∥αnϕ(xn) + yn − αnyn − yn∥

≤ αn∥ϕ(xn)− yn∥. (5.3.13)

By (C3), it follows that

lim
n→∞

∥xn+1 − yn∥ = 0. (5.3.14)

Since

∥xn − yn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − yn∥.

From (5.3.9) and (5.3.14), we obtain

lim
n→∞

∥xn − yn∥ = 0. (5.3.15)

Step 3. First, lim supn→∞⟨un − x∗, γf(x∗) − Ax∗⟩ ≤ 0 is proven. Choose a

subsequence {xni
} of {xn} such that

lim sup
n→∞

⟨xn − x∗, γf(x∗)− Ax∗⟩ = lim
i→∞

⟨xni
− x∗, γf(x∗)− Ax∗⟩.
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The boundedness of {xni
} implies the existences of a subsequence {xnij

} of {xni
}

and a point x̂ ∈ H such that {xnij
} converges weakly to x̂. We may assume without

loss of generality that limi→∞⟨xni
, w⟩ = ⟨x̂, w⟩, w ∈ H. Assume x̂ ̸= T (x̂). By

limn→∞ ∥xn − Txn∥ = 0 with F (T ) ̸= ∅ guarantee that

lim inf
i→∞

∥xni
− x̂∥ < lim inf

i→∞
∥xni

− T (x̂)∥

= lim inf
i→∞

∥xni
− T (xni

) + T (xni
)− T (x̂)∥

= lim inf
i→∞

∥T (xni
)− T (x̂)∥

≤ lim inf
i→∞

∥xni
− x̂∥.

which has a contradiction. Therefore x̂ ∈ F (T ). From x∗ ∈ V I(F (T ), A − γf), we

find

lim sup
n→∞

⟨xn − x∗, γf(x∗)− Ax∗⟩ = lim
i→∞

⟨xni
− x∗, γf(x∗)− Ax∗⟩

= ⟨x̂− x∗, γf(x∗)− Ax∗⟩

≤ 0.

Setting un = [I − δn(A− γf)]xn and by (C3)-(C4), we notice that

∥un − xn∥ ≤ δn∥(A− γf)∥ → 0.

Hence,we get

lim sup
n→∞

⟨un − x∗, γf(x∗)− Ax∗⟩ ≤ 0. (5.3.16)

Second, lim supn→∞⟨x∗−xn+1, Bx
∗⟩ ≤ 0 is proven. From limn→∞ ∥xn+1−xn∥ = 0

guarantees the existences of a subsequence {xnk+1} of {xnk
} and a point x̄ ∈ H such

that lim supn→∞⟨x∗−xn+1, Bx
∗⟩ = limk→∞⟨x∗−xnk+1, Bx

∗⟩ and limk→∞⟨xnk
, w⟩ =

limk→∞⟨xnk+1, w⟩ = ⟨x̄, w⟩, w ∈ H. By the same discussion as in the proof of

x̂ ∈ F (T ), we have x̄ ∈ F (T ). Let y ∈ F (T ) be fixed arbitrarily. Then, it follows

from T : C → C is a nonexpansive mappings with F (T ) ̸= ∅, A : C → H be a

strongly positive linear bounded operator and f : C → H be a contraction that, for

all n ∈ N. From (5.3.1)

∥zn − y∥ = ∥TPCun − TPCy∥

≤ ∥un − y∥. (5.3.17)
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By (C3)-(C4), we observe that

∥un − y∥ = ∥[I − δn(A− γf)]xn − y∥

≤ ∥xn − y∥+ δn∥(A− γf)xn∥

≤ ∥xn − y∥. (5.3.18)

Using (5.3.17) and (5.3.18)

∥un − y∥2 = ∥[I − δn(A− γf)]xn − y∥2

=
∥∥∥δn(γf(xn)− Ay) + (I − δnA)(xn − y)

∥∥∥2

≤ (1− δnγ̄)
2∥xn − y∥2 + 2δn⟨γf(xn)− Ay, un − y⟩

≤ (1− 2δnγ̄ + δ2nγ̄
2)∥xn − y∥2 + 2δnγρ∥xn − y∥∥un − y∥

+2δn⟨γf(y)− Ay, un − y⟩

≤ (1− 2δnγ̄ + δ2nγ̄
2)∥xn − y∥2 + 2δnγρ∥xn − y∥2

+2δn⟨γf(y)− Ay, un − y⟩

= [1− 2δn(γ̄ − γρ)]∥xn − y∥2 + δ2nγ̄
2∥xn − y∥2 +

2δn⟨γf(y)− Ay, un − y⟩,

which implies that

0 ≤
(
∥xn − y∥2 − ∥un − y∥2

)
− 2δn(γ̄ − γρ)∥xn − y∥2 + δ2nγ̄

2∥xn − y∥2

+2δn⟨γf(y)− Ay, un − y⟩

= (∥xn − y∥+ ∥un − y∥)(∥xn − y∥ − ∥un − y∥)− 2δn(γ̄ − γρ)∥xn − y∥2

+δ2nγ̄
2∥xn − y∥2 + 2δn⟨γf(y)− Ay, un − y⟩

≤ M2∥xn − un∥ − 2δn(γ̄ − γρ)∥xn − y∥2 + δ2nγ̄
2∥xn − y∥2

+2δn⟨γf(y)− Ay, un − y⟩,

where M2 := sup{∥xn − y∥ + ∥un − y∥ : n ∈ N} < ∞, for every n ∈ N. By the

weak convergence of {uni
} to x̄ ∈ F (T ), limn→∞ ∥un − xn∥ = 0 and (C3)-(C4), we

get ⟨(γf − A)y, x̄ − y⟩ ≤ 0 for all y ∈ F (T ). A mapping A be a strongly positive

linear bounded operator and f be a contraction ensures ⟨(γf − A)y, x̄− y⟩ ≤ 0 for

all y ∈ F (T ), that is, x̄ ∈ V I(F (T ), A− γf). Thus x∗ ∈ V I(V I(F (T ), A− γf), B),
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we have

lim sup
n→∞

⟨x∗ − xn, Bx
∗⟩ = lim sup

i→∞
⟨x∗ − xni

, Bx∗⟩

= ⟨x∗ − x̄, Bx∗⟩

≤ 0.

From (5.3.15), we notice that

lim sup
n→∞

⟨x∗ − yn, Bx
∗⟩ ≤ 0. (5.3.19)

Third, lim supn→∞⟨xn − x∗, ϕ(x∗) − x∗⟩ ≤ 0 is proven. Choose a subsequence

{xng} of {xn} such that

lim sup
n→∞

⟨xn − x∗, ϕ(x∗)− x∗⟩ = lim
g→∞

⟨xng − x∗, ϕ(x∗)− x∗⟩.

The boundedness of {xng} implies the existences of a subsequence {xngh
} of {xng}

and a point x̃ ∈ H such that {xngh
} converges weakly to x̃. By limn→∞ ∥xn+1 −

xn∥ = 0, we have limh→∞⟨xngh
+1, w⟩ = ⟨x̃, w⟩, w ∈ H. We may assume without

loss of generality that limi→∞⟨xng , w⟩ = ⟨x̃, w⟩, w ∈ H. Assume x̃ ̸= T (x̃). By

limn→∞ ∥xn − Txn∥ = 0 with F (T ) ̸= ∅ guarantee that

lim inf
g→∞

∥xng − x̃∥ < lim inf
g→∞

∥xng − T (x̃)∥

= lim inf
g→∞

∥xng − T (xng) + T (xng)− T (x̃)∥

= lim inf
g→∞

∥T (xng)− T (x̃)∥

≤ lim inf
g→∞

∥xng − x̃∥.

This is a contradiction, that is, x̃ ∈ F (T ). From x∗ ∈ V I
(
V I(V I(F (T ), A −

γf), B), I − ϕ
)
, we find

lim sup
n→∞

⟨xn − x∗, ϕ(x∗)− x∗⟩ = lim
g→∞

⟨xng − x∗, ϕ(x∗)− x∗⟩

= ⟨x̃− x∗, ϕ(x∗)− x∗⟩

≤ 0. (5.3.20)

Step 4. Finally, we prove limn→∞ ∥xn − x∗∥ = 0. By Lemma 2.7.7, we compute

∥xn+1 − x∗∥2 = ∥αnϕ(xn) + (1− αn)yn − x∗∥2

=
∥∥∥αn(ϕ(xn)− ϕ(x∗)) + αn(ϕ(x

∗)− x∗) + (1− αn)(yn − x∗)
∥∥∥2
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≤ αn∥ϕ(xn)− ϕ(x∗)∥2 + (1− αn)∥yn − x∗∥2

+2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

≤ αnk
2∥xn − x∗∥2 + (1− αn)∥(I − µβnB)zn − x∗∥2

+2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

= αnk
2∥xn − x∗∥2 + (1− αn)∥(zn − µβnBzn)

−(x∗ − µβnBx
∗)− µβnBx

∗∥2 + 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

≤ αnk
2∥xn − x∗∥2 + (1− αn)

{
∥(zn − µβnBzn)− (x∗ − µβnBx

∗)∥2

+2µβn⟨x∗ − yn, Bx
∗⟩
}
+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

≤ αnk
2∥xn − x∗∥2 + (1− αn)(1− τβn)

2∥zn − x∗∥2

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

≤ αnk
2∥xn − x∗∥2 + (1− αn)(1− τβn)∥un − x∗∥2

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

= αnk
2∥xn − x∗∥2 + (1− αn)(1− τβn)∥[I − δn(A− γf)]xn − x∗∥2

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

= αnk
2∥xn − x∗∥2 + (1− αn)(1− τβn)∥(I − δnA)(xn − x∗)

+δn(γf(xn)− Ax∗)∥2 + 2µβn⟨x∗ − yn, Bx
∗⟩

+2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

≤ αnk
2∥xn − x∗∥2 + (1− αn)(1− τβn)

{
(1− δnγ̄)

2∥xn − x∗∥2

+2δn⟨γf(xn)− Ax∗, un − x∗⟩
}
+ 2µβn⟨x∗ − yn, Bx

∗⟩

+2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

≤ αnk∥xn − x∗∥2 + (1− αn)(1− τβn)
{
(1− 2δnγ̄ + δ2nγ̄

2)∥xn − x∗∥2

+2δn⟨γf(xn)− γf(x∗), un − x∗⟩+ 2δn⟨γf(x∗)− Ax∗, un − x∗⟩
}

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

≤ αnk∥xn − x∗∥2 + (1− αn)(1− τβn)
{
(1− 2δnγ̄)∥xn − x∗∥2

+δ2nγ̄
2∥xn − x∗∥2 + 2δnγρ∥xn − x∗∥∥un − x∗∥+ 2δn⟨γf(x∗)− Ax∗, un − x∗⟩

}
+2µβn⟨x∗ − yn, Bx

∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩
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≤ αn∥xn − x∗∥2 + (1− αn)(1− τβn)[1− 2δn(γ̄ − γρ)]∥xn − x∗∥2

+(1− αn)(1− τβn)δ
2
nγ̄

2∥xn − x∗∥2 + 2δn⟨γf(x∗)− Ax∗, un − x∗⟩

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

= αn∥xn − x∗∥2 + (1− αn)[1− 2δn(γ̄ − γρ)− τβn + τβn2δn(γ̄ − γρ)]∥xn − x∗∥2

+(1− αn)(1− τβn)δ
2
nγ̄

2∥xn − x∗∥2 + 2δn⟨γf(x∗)− Ax∗, un − x∗⟩

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

= αn∥xn − x∗∥2 + (1− αn)[1− {2δn(γ̄ − γρ) + τβn − τβn2δn(γ̄ − γρ)}]∥xn − x∗∥2

+(1− αn)(1− τβn)δ
2
nγ̄

2∥xn − x∗∥2 + 2δn⟨γf(x∗)− Ax∗, un − x∗⟩

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

= [1− (1− αn){2δn(γ̄ − γρ) + τβn − τβn2δn(γ̄ − γρ)}]∥xn − x∗∥2

+(1− αn)(1− τβn)δ
2
nγ̄

2∥xn − x∗∥2 + 2δn⟨γf(x∗)− Ax∗, un − x∗⟩

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

= [1− (1− αn){2δn(γ̄ − γρ)(1− τβn) + τβn}]∥xn − x∗∥2

+(1− αn)(1− τβn)δ
2
nγ̄

2∥xn − x∗∥2 + 2δn⟨γf(x∗)− Ax∗, un − x∗⟩

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

= [1− (1− αn)2δn(γ̄ − γρ)(1− τβn)]∥xn − x∗∥2 − (1− αn)τβn∥xn − x∗∥2

+(1− αn)(1− τβn)δ
2
nγ̄

2∥xn − x∗∥2 + 2δn⟨γf(x∗)− Ax∗, un − x∗⟩

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩

≤ [1− 2(γ̄ − γρ)(1− αn)(1− τβn)δn]∥xn − x∗∥2

+(1− αn)(1− τβn)δ
2
nγ̄

2∥xn − x∗∥2 + 2δn⟨γf(x∗)− Ax∗, un − x∗⟩

+2µβn⟨x∗ − yn, Bx
∗⟩+ 2αn⟨ϕ(x∗)− x∗, xn+1 − x∗⟩. (5.3.21)

Since {xn}, {Axn}, {Bxn}, {ϕ(xn)} and {f(xn)} are all bounded, we can choose a

constant M1 > 0 such that

sup
n

1

γ̄ − γρ

{δnγ̄2
2

∥xn − x∗∥2
}
≤M1.

It follows that

∥xn+1 − x∗∥2 ≤ [1− 2(γ̄ − γρ)(1− αn)(1− τβn)δn]∥xn − x∗∥2

+2(γ̄ − γρ)(1− αn)(1− τβn)δnςn, (5.3.22)
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where

ςn = δnM1 +
1

(γ̄ − γρ)(1− αn)(1− τβn)
⟨γf(x∗)− Ax∗, un − x∗⟩

+
µβn

(γ̄ − γρ)(1− αn)(1− τβn)δn
⟨x∗ − yn, Bx

∗⟩

+
αn

(γ̄ − γρ)(1− αn)(1− τβn)δn
⟨ϕ(x∗)− x∗, xn+1 − x∗⟩.

By (5.3.16), (5.3.19), (5.3.20) and (C3)-(C4) then we get lim supn→∞ ςn ≤ 0. Ap-

plying Lemma 2.7.6, we can conclude that xn → x∗. This completes the proof.

Next, the following example shows that all conditions of Theorem 5.3.1 are sat-

isfied.

Example 5.3.2. For instance, let αn = 1
n
, βn = 1

2n
and δn = 1

3n
. We will show that

the condition (C1) is achieves. Then, clearly, the sequences {δn}

Σ∞
n=1δn = Σ∞

n=1

1

3n
= ∞

and

Σ∞
n=1|δn+1 − δn| = Σ∞

n=1| 1
3(n+1)

− 1
3n
|

≤ | 1
3·1 −

1
3·2 |+ | 1

3·2 −
1
3·3 |+ | 1

3·3 −
1
3·4 |+ . . .

= 1
3
.

The sequence {δn} satisfy the condition (C1).

Next, we will show that the condition (C2) is achieves. We compute

Σ∞
n=1|βn+1 − βn| = Σ∞

n=1| 1
2(n+1)

− 1
2n
|

≤ | 1
2·1 −

1
2·2 |+ | 1

2·2 −
1
2·3 |+ | 1

2·3 −
1
2·4 |+ . . .

= 1
2
.

The sequence {βn} satisfy the condition (C2).

Next, we will show that the condition (C3) is achieves. We compute

Σ∞
n=1|αn+1 − αn| = Σ∞

n=1| 1
n+1

− 1
n
|

≤ |1
1
− 1

2
|+ |1

2
− 1

3
|+ |1

3
− 1

4
|+ . . .

= 1

and

lim
n→∞

αn = lim
n→∞

1

n
= 0,
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The sequence {αn} satisfy the condition (C3).

Finally, we will show that the condition (C4) is achieves.

1

3n
<

1

2n
and

1

2n
<

1

n
.

Corollary 5.3.3. Let H be a real Hilbert space, C be a closed convex subset of H.

Let A : C → H be an inverse-strongly monotone. Let T : C → C be a nonexpansive

mapping. Let B : C → C be a β-strongly monotone and L-Lipschitz continuous.

Suppose {xn} is a sequence generated by the following algorithm x0 ∈ C arbitrarily
zn = T (I − δnA)xn,

yn = (I − µβnB)zn,

xn+1 = (1− αn)yn, ∀n ≥ 0,

(5.3.23)

{αn}, {δn} ⊂ [0, 1]. If µ ∈ (0, 2β
L2 ) is used and if {βn} ⊂ (0, 1] satisfy the following

conditions:

(C1): Σ∞
n=1|δn+1 − δn| <∞, Σ∞

n=1δn = ∞;

(C2): Σ∞
n=1|βn+1 − βn| <∞;

(C3): Σ∞
n=1|αn+1 − αn| <∞, limn→∞ αn = 0;

(C4): δn ≤ βn and βn ≤ αn.

Then {xn} converges strongly to x∗ ∈ V I(F (T ), A), which is the unique solution of

the variational inequality:

Find x∗ ∈ V I(F (T ), A) such that ⟨Bx∗, x− x∗⟩ ≥ 0, ∀x ∈ V I(F (T ), A). (5.3.24)

Proof. Putting PC is the identity and f, ϕ ≡ 0 in Theorem 5.3.1, we can obtain

desired conclusion immediately.

Remark 5.3.4. Corollary 5.3.3 generalizes and improves the results of Iiduka [7].

Corollary 5.3.5. Let H be a real Hilbert space, C be a closed convex subset of H.

Let A : C → H be a strongly positive linear bounded operator, f : C → H be a

ρ-contraction, γ be a positive real number such that γ̄−1
ρ

< γ < γ̄
ρ
. Let T : C → C

be a nonexpansive mapping. Suppose {xn} is a sequence generated by the following
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algorithm x0 ∈ C arbitrarily
zn = TPC [I − δn(A− γf)]xn,

yn = (I − µβnB)zn,

xn+1 = αn(xn) + (1− αn)yn, ∀n ≥ 0,

(5.3.25)

where {αn}, {δn} ⊂ [0, 1]. If µ ∈ (0, 2β
L2 ) is used and if {βn} ⊂ (0, 1] satisfy the

following conditions:

(C1): Σ∞
n=1|δn+1 − δn| <∞, Σ∞

n=1δn = ∞;

(C2): Σ∞
n=1|βn+1 − βn| <∞;

(C3): Σ∞
n=1|αn+1 − αn| <∞, limn→∞ αn = 0;

(C4): δn ≤ βn and βn ≤ αn.

Then {xn} converges strongly to x∗ ∈ Ω, which is the unique solution of the varia-

tional inequality:

Find x∗ ∈ Ω such that ⟨Bx∗, x− x∗⟩ ≥ 0, ∀x ∈ Ω. (5.3.26)

Proof. Putting ϕ is the identity in Theorem 5.3.1, we can obtain desired con-

clusion immediately.

Remark 5.3.6. Corollary 5.3.5 generalizes and improves the results of Marino and

Xu [22].

5.4 Iteration Algorithm for Solvig Hierarchical Generalized

Variational Inequality Problem

In this section, we consider and study the convex feasibility problem (CFP)

in the case that each Cm is a solution set of generalized variational inequality

GV I(C,Bm, Am) and we introduce an iterative algorithm for solve the following

the HGVIP: find x̃ ∈ ∩r
m=1GV I(C,Bm, Am) such that

⟨(γf − µG)x̃, x− x̃⟩ ≤ 0, ∀x ∈ ∩r
m=1GV I(C,Bm, Am). (5.4.1)

Theorem 5.4.1. Let C be a nonempty closed and convex subset of a real Hilbert

space H such that C ± C ⊂ C. Let f : C → C be a contraction with coefficient

k ∈ (0, 1). Let G : C → C be a ξ-strongly monotone and L-Lipschitz continuous
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mapping. let Am : C → H be a relaxed (ηm, ρm)-cocoercive and νm-Lipschitz continu-

ous mapping and Bm : C → H be a relaxed (η̂m, ρ̂m)-cocoercive and ν̂m-Lipschitz con-

tinuous mapping for each 1 ≤ m ≤ r. Let pm =
√
1− 2λmρm + λ2mν

2
m + 2λmηmν2m

and qm =

√
1− 2λ̂mρ̂m + λ̂2mν̂

2
m + 2λ̂mη̂mν̂2m, where {λm} and {λ̂m} are two pos-

itive sequences for each 1 ≤ m ≤ r. Assume that ∩r
m=1GV I(C,Bm, Am) ̸= ∅,

ξ > 0, L > 0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ − µL2/2)/k = π/k and pm, qm ∈ [0, 1
2
),

for each 1 ≤ m ≤ r. Given the initial guess x1 ∈ C and {xn} is a sequence generated

by

xn+1 = αnγf(xn)+(I−αnµG)Σ
r
m=1β(m,n)PC(λ̂mBmxn−λmAmxn), ∀n ≥ 1, (5.4.2)

where {αn}, {β(1,n)}, {β(2,n)}, ..., {β(r,n)} are sequences in (0, 1), satisfying the follow-

ing conditions:

(C1) limn→∞ αn = 0,Σ∞
n=1αn = ∞ and Σ∞

n=1|αn+1 − αn| <∞;

(C2) Σr
m=1β(m,n) = 1, ∀n ≥ 1 ,Σ∞

n=1|β(m,n+1) − β(m,n)| <∞

and limn→∞ β(m,n) = βm ∈ (0, 1),∀1 ≤ m ≤ r.

Then {xn} converges strongly to a common element x̃ ∈ ∩r
m=1GV I(C,Bm, Am),

which is the unique solution of the following problem:

⟨(γf − µG)x̃, x− x̃⟩ ≤ 0, ∀x ∈ ∩r
m=1GV I(C,Bm, Am). (5.4.3)

Proof. Put Tm = PC(λ̂mBm − λmAm), ∀1 ≤ m ≤ r. For each x, y ∈ C and for each

m ≥ 1, we have

∥Tmx− Tmy∥ = ∥PC(λ̂mBm − λmAm)x− PC(λ̂mBm − λmAm)y∥

≤ ∥(λ̂mBm − λmAm)x− (λ̂mBm − λmAm)y∥

≤ ∥(x− y)− λm(Amx− Amy)∥

+∥(x− y)− λ̂m(Bmx−Bmy)∥. (5.4.4)

It follows from the assumption that each Am is relaxed (ηm, ρm)-cocoercive and

νm-Lipschitz continuous that

∥(x− y)− λm(Amx− Amy)∥2 = ∥x− y∥2 − 2λm⟨Amx− Amy, x− y⟩

+λ2m∥Amx− Amy∥2
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≤ ∥x− y∥2 − 2λm
[
(−ηm)∥Amx− Amy∥2

+ρm∥x− y∥2
]
+ λ2mν

2
m∥x− y∥2

≤ (1− 2λmρm + λ2mν
2
m)∥x− y∥2

+2λmηmν
2
m∥x− y∥2

= p2m∥x− y∥2.

This shows that

∥(x− y)− λm(Amx− Amy)∥ ≤ pm∥x− y∥. (5.4.5)

In a similar way, we can obtain that

∥(x− y)− λ̂m(Bmx−Bmy)∥ ≤ qm∥x− y∥. (5.4.6)

Substituting (3.4) and (3.5) into (3.3), we have

∥Tmx− Tmy∥ ≤ (pm + qm)∥x− y∥

≤ ∥x− y∥.

Hence Tm is a nonexpansive mapping and F (Tm) = F (PC(λ̂mBm − λmAm)) =

GV I(C,Bm, Am) for each 1 ≤ m ≤ r.

Put Sn = Σr
m=1β(m,n)Tm. By Lemma 2.7.19, we conclude that Sn is a nonexpansive

mapping and F (Sn) = ∩r
m=1GV I(C,Bm, Am), ∀n ≥ 1. We can rewrite the algorithm

(5.4.2) as

xn+1 = αnγf(xn) + (I − αnµG)Snxn. (5.4.7)

Step 1: We will show that {xn} is bounded.

Take v ∈ F (Sn) = ∩r
m=1GV I(C,Bm, Am), from (5.4.7) and lemma 2.7.3, we have

∥xn+1 − v∥ = ∥αnγf(xn) + (I − αnµG)Snxn − v∥

= ∥αn(γf(xn)− µGv) + (I − αnµG)Snxn − (I − αnµG)v∥

≤ αn∥γ(f(xn)− f(v)) + γf(v)− µGv∥+ (1− αnπ)∥xn − v∥

≤ αnγk∥xn − v∥+ αn∥γf(v)− µGv∥+ (1− αnπ)∥xn − v∥

= (1− αn(π − γk))∥xn − v∥+ αn∥γf(v)− µGv∥

≤ max

{
∥xn − v∥, ∥γf(v)− µGv∥

π − γk

}
.
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By induction, we btain

∥xn − v∥ ≤ max

{
∥x1 − v∥, ∥γf(v)− µGv∥

π − γk

}
.

Hence {xn} is bounded.

Since Sn is nonexpansive mappings for n ≥ 1, we see that

∥Snxn − v∥ = ∥Snxn − Snv∥

≤ ∥xn − v∥

≤ max

{
∥x1 − v∥, ∥γf(v)− µGv∥

π − γk

}
.

Therefore, {Snxn} is bounded. Since G is a L-Lipschitz continuous mapping, we

have

∥GSnxn −Gv∥ = ∥GSnxn −GSnv∥

≤ L∥Snxn − Snv∥

≤ L∥xn − v∥

≤ max

{
L∥x1 − v∥, L∥γf(v)− µGv∥

π − γk

}
.

Hence {GSnxn} is bounded. Since f is contraction, so f(xn) is bounded.

Step 2: We will show that limn→∞ ∥xn+1 − xn∥ = 0.

From (5.4.7), we consider

xn+1 − xn = [αnγf(xn) + (I − αnµG)Snxn]

−[αn−1γf(xn−1) + (I − αn−1µG)Sn−1xn−1]

= αnγ(f(xn)− f(xn−1)) + [(I − αnµG)Snxn − (I − αnµG)Sn−1xn−1]

+(αn − αn−1)γf(xn−1) + (αn−1 − αn)µGSn−1xn−1,

it follows that

∥xn+1 − xn∥ ≤ αnγk∥xn − xn−1∥+ (1− αnπ)∥Snxn − Sn−1xn−1∥

+|αn − αn−1|(γ∥f(xn−1)∥+ µ∥GSn−1xn−1∥)

≤ αnγk∥xn − xn−1∥+ (1− αnπ)∥Snxn − Sn−1xn−1∥

+|αn − αn−1|M1, (5.4.8)



149

where M1 = supn≥1{γ∥f(xn)∥+ µ∥GSnxn∥}. On the other hand, we note that

∥Snxn − Sn−1xn−1∥ ≤ ∥Snxn − Snxn−1∥+ ∥Snxn−1 − Sn−1xn−1∥

≤ ∥xn − xn−1∥+ ∥Σr
m=1β(m,n)Tmxn−1 − Σr

m=1β(m,n−1)Tmxn−1∥

≤ ∥xn − xn−1∥+M2Σ
r
m=1|β(m,n) − β(m,n−1)|, (5.4.9)

where M2 = max{supn≥1 ∥Tmxn∥,∀1 ≤ m ≤ r}.

Substituting (5.4.9) into (5.4.8) yields

∥xn+1 − xn∥ ≤ αnγk∥xn − xn−1∥+ (1− αnπ)∥xn − xn−1∥+M1|αn − αn−1|

+M2Σ
r
m=1|β(m,n) − β(m,n−1)|

≤ αnγk∥xn − xn−1∥+ (1− αnπ)∥xn − xn−1∥

+M3(|αn − αn−1|+ Σr
m=1|β(m,n) − β(m,n−1)|),

where M3 is an appropriate constant such that M3 ≥ max{M1,M2}.

By conditions (C1) and (C2) and Lemma 2.7.6, we obtain that

lim
n→∞

∥xn+1 − xn∥ = 0. (5.4.10)

Step 3: We will show that limn→∞ ∥Sxn − xn∥ = 0.

Define a mapping S : C → C by

Sx = Σr
m=1βmTmx, ∀x ∈ C,

where βm = limn→∞ β(m,n). From Lemma 2.7.19, we see that S is a nonexpansive

mapping and

F (S) = ∩r
m=1F (Tm) = ∩r

m=1GV I(C,Bm, Am),∀n ≥ 1.

From (5.4.7), we observe that

∥xn+1 − Snxn∥ = αn∥γf(xn) + µGSnxn∥

≤ αn(γ∥f(xn)− f(v)∥+ ∥γf(v) + µGSnv∥+ µ∥GSnxn −GSnv∥).

It follows from the condition (C1) and the boundedness of {f(xn)} and {GSnxn},

we obtain that

lim
n→∞

∥xn+1 − Snxn∥ = 0. (5.4.11)
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We observe that

∥xn − Snxn∥ = ∥xn − xn+1 + xn+1 − Snxn∥

≤ ∥xn − xn+1∥+ ∥xn+1 − Snxn∥.

From (5.4.10) and (5.4.11), we obtain

lim
n→∞

∥xn − Snxn∥ = 0. (5.4.12)

Now, we show that Sxn − xn → 0 as n→ ∞. Note that

∥Sxn − xn∥ = ∥Sxn − Snxn + Snxn − xn∥

≤ ∥Σr
m=1βmTmxn − Σr

m=1β(m,n)Tmxn∥+ ∥Snxn − xn∥

≤ M2(Σ
r
m=1|βm − β(m,n)|) + ∥Snxn − xn∥.

By the condition (C2) and (5.4.12), we have

lim
n→∞

∥xn − Sxn∥ = 0. (5.4.13)

From the boundedness of xn, we deduced that xn converges weakly in F (S), say

xn ⇀ p, by Lemma 2.7.1 and (5.4.13), we obtain p = Sp. So, we have

ωw(xn) ⊂ F (S). (5.4.14)

By Lemma 2.7.4, µG−γf is strongly monotone, so the variational inequality (5.4.3)

has a unique solution x̃ ∈ F (S) = ∩r
m=1GV I(C,Bm, Am).

Step 4: We show that lim supn→∞⟨(γf − µG)x̃, xn − x̃⟩ ≤ 0.

Indeed, since {xn} is bounded, then there exists a subsequence {xni
} ⊂ {xn} such

that

lim sup
n→∞

⟨(γf − µG)x̃, xn − x̃⟩ = lim
i→∞

⟨(γf − µG)x̃, xni
− x̃⟩.

Without loss of generality, we may further assume that xni
⇀ p. It follows from

(5.4.14) that p ∈ F (S). Since x̃ is the unique solution of (5.4.3), we obtain

lim sup
n→∞

⟨(γf − µG)x̃, xn − x̃⟩ = lim
i→∞

⟨(γf − µG)x̃, xni
− x̃⟩

= ⟨(γf − µG)x̃, p− x̃⟩ ≤ 0. (5.4.15)
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Step 5: Finally, we will show that xn → x̃ as n→ ∞.

From Lemma 2.7.15, we have

∥xn+1 − x̃∥2 = ∥αn(γf(xn)− µGx̃) + (I − αnµG)Snxn − µG(I − αnµG)x̃∥2

≤ (1− αnπ)
2∥xn − x̃∥2 + 2αn⟨γf(xn)− µGx̃, xn+1 − x̃⟩

≤ (1− αnπ)
2∥xn − x̃∥2 + 2αnγ⟨f(xn)− f(x̃), xn+1 − x̃⟩

+2αn⟨γf(x̃)− µGx̃, xn+1 − x̃⟩

≤ (1− αnπ)
2∥xn − x̃∥2 + 2αnγk∥xn − x̃∥∥xn+1 − x̃∥

+2αn⟨γf(x̃)− µGx̃, xn+1 − x̃⟩

≤ (1− αnπ)
2∥xn − x̃∥2 + αnγk(∥xn − x̃∥2 + ∥xn+1 − x̃∥2)

+2αn⟨γf(x̃)− µGx̃, xn+1 − x̃⟩

≤ 1− 2αnπ + (αnπ)
2 + αnγk

1− αnγk
∥xn − x̃∥2

+
2αn

1− αnγk
⟨γf(x̃)− µGx̃, xn+1 − x̃⟩

= [1− 2αn(π − γk)

1− αnγk
]∥xn − x̃∥2 + (αnπ)

2

1− αnγk
∥xn − x̃∥2

+
2αn

1− αnγk
⟨γf(x̃)− µGx̃, xn+1 − x̃⟩

= (1− θn)∥xn − x̃∥2 + δn,

where θn := 2αn(π−γk)
1−αnγk

and δn := αn

1−αnγk
[αnπ

2∥xn − x̃∥2 +2⟨γf(x̃)− µGx̃, xn+1 − x̃⟩].

Note that,

θn :=
2αn(π − γk)

1− αnγk
≤ 2(π − γk)

1− γk
αn.

By the condition (C1), we obtain that

lim
n→∞

θn = 0. (5.4.16)

On the other hand, we have

θn :=
2αn(π − γk)

1− αnγk
≥ 2αn(π − γk).

From the condition (C1), we have

∞∑
n=1

θn = ∞. (5.4.17)

Put M = supn∈N{∥xn − x̃∥}, we have

δn
θn

=
1

2(π − γk)
[αnπ

2M + 2⟨γf(x̃)− µGx̃, xn+1 − x̃⟩].
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From the condition (C1) and (3.14), we have

lim sup
n→∞

δn
θn

≤ 0. (5.4.18)

Hence, by Lemma 2.7.6, (5.4.16), (5.4.17) and (5.4.18), we conclude that

lim
n→∞

∥xn − x̃∥ = 0.

This completes the proof.

If Bm = I, the identity mapping and λ̂m = 1, then Theorem 5.4.1 is reduced to

the following result on the classical variational inequality (2.6.1).

Corollary 5.4.2. Let C be a nonempty closed and convex subset of a real Hilbert

space H such that C ± C ⊂ C. Let f : C → C be a contraction with coefficient k ∈

(0, 1). Let G : C → C be a ξ-strongly monotone and L-Lipschitz continuous map-

ping. Let Am : C → H be a relaxed (ηm, ρm)-cocoercive and νm-Lipschitz continuous

mapping, for each 1 ≤ m ≤ r. Let pm =
√

1− 2λmρm + λ2mν
2
m + 2λmηmν2m, where

{λm} is a positive sequence, for each 1 ≤ m ≤ r. Assume that ∩r
m=1V I(C,Am) ̸= ∅,

ξ > 0, L > 0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ − µL2/2)/k = π/k and pm ∈ [0, 1), for

each 1 ≤ m ≤ r. Given the initial guess x1 ∈ C and {xn} is a sequence generated

by

xn+1 = αnγf(xn) + (I − αnµG)Σ
r
m=1β(m,n)PC(xn − λmAmxn), ∀n ≥ 1,

where {αn}, {β(1,n)}, {β(2,n)}, ..., {β(r,n)} are sequences in (0, 1), satisfying the follow-

ing conditions:

(C1) limn→∞ αn = 0,Σ∞
n=1αn = ∞ and Σ∞

n=1|αn+1 − αn| <∞;

(C2) Σr
m=1β(m,n) = 1,∀n ≥ 1 ,Σ∞

n=1|β(m,n+1) − β(m,n)| < ∞ and limn→∞ β(m,n) =

βm ∈ (0, 1),∀1 ≤ m ≤ r,

Then the sequence {xn} converges strongly to a common element x̃ ∈ ∩r
m=1V I(C,Am),

which is the unique solution of the following problem:

⟨(γf − µG)x̃, x− x̃⟩ ≤ 0, ∀x ∈ ∩r
m=1V I(C,Am).

If r = 1, then Theorem 5.4.1 is reduced to the following Corollary.
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Corollary 5.4.3. Let C be a nonempty closed and convex subset of a real Hilbert

space H such that C ± C ⊂ C. Let f : C → C be a contraction with coefficient

k ∈ (0, 1). Let G : C → C be a ξ-strongly monotone and L-Lipschitz continuous

mapping. Let A : C → H be a relaxed (η, ρ)-cocoercive and ν-Lipschitz continuous

mapping. Let B : C → H be a relaxed (η̂, ρ̂)-cocoercive and ν̂-Lipschitz continuous

mapping. Let p =
√

1− 2λρ+ λ2ν2 + 2λην2 and q =

√
1− 2λ̂ρ̂+ λ̂2ν̂2 + 2λ̂η̂ν̂2,

where λ and λ̂ are two positive real numbers. Assume that GV I(C,B,A) ̸= ∅,

ξ > 0, L > 0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ − µL2/2)/k = π/k and p, q ∈ [0, 1
2
).

Given the initial guess x1 ∈ C and {xn} is a sequence generated by

xn+1 = αnγf(xn) + (I − αnµG)PC(λ̂Bxn − λAxn), ∀n ≥ 1,

where {αn} is a sequences in (0, 1), satisfying the following conditions:

lim
n→∞

αn = 0, Σ∞
n=1αn = ∞ and Σ∞

n=1|αn+1 − αn| <∞.

Then the sequence {xn} converges strongly to a common element x̃ ∈ GV I(C,B,A),

which is the unique solution of the HGVIP (2.6.3):

⟨(γf − µG)x̃, x− x̃⟩ ≤ 0, ∀x ∈ GV I(C,B,A).

For the variational inequality (2.6.1), we can obtain from Corollary 5.4.3 the

following immediately.

Corollary 5.4.4. Let C be a nonempty closed and convex subset of a real Hilbert

space H such that C ± C ⊂ C. Let f : C → C be a contraction with coefficient

k ∈ (0, 1). Let G : C → C be a ξ-strongly monotone and L-Lipschitz continuous

mapping. Let A : C → H be a relaxed (η, ρ)-cocoercive and ν-Lipschitz continuous

mapping. Let p =
√
1− 2λρ+ λ2ν2 + 2λην2, where λ is a positive real number.

Assume that V I(C,A) ̸= ∅, ξ > 0, L > 0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ−µL2/2)/k =

π/k and p ∈ [0, 1). Given the initial guess x1 ∈ C and {xn} is a sequence generated

by

xn+1 = αnγf(xn) + (I − αnµG)PC(xn − λAxn), ∀n ≥ 1,

where {αn} is a sequences in (0, 1), satisfying the following conditions:

lim
n→∞

αn = 0, Σ∞
n=1αn = ∞ and Σ∞

n=1|αn+1 − αn| <∞.
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Then the sequence {xn} converges strongly to a common element x̃ ∈ V I(C,A),

which is the unique solution of the HVIP (2.6.2):

⟨(γf − µG)x̃, x− x̃⟩ ≤ 0, ∀x ∈ V I(C,A).

Remark 5.4.5. (1) If we take G = A and µ = 1, where A is a strongly positive

linear bounded operator on C in Theorem 5.4.1, then our iterative algorithm

define by (5.4.2) converges strongly to x̃ ∈ ∩r
m=1GV I(C,Bm, Am), such that

⟨(γf − A)x̃, x − x̃⟩ ≤ 0, ∀x ∈ ∩r
m=1GV I(C,Bm, Am), Equivalently, x̃ is the

unique solution to the minimization problem:

min
x∈∩r

m=1GV I(C,Bm,Am)

1

2
⟨Ax, x⟩ − h(x),

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

(2) If we taking G = I and γ = µ = 1, where I is a identity mapping in Theorem

5.4.1, then our iterative algorithm define by (5.4.2) converges strongly to a

common element x̃ ∈ ∩r
m=1GV I(C,Bm, Am), such that ⟨(f − I)x̃, x − x̃⟩ ≤

0, ∀x ∈ ∩r
m=1GV I(C,Bm, Am).

In case, f = 0, our iterative algorithm define by (5.4.2) converges strongly to

x̃ which is the unique solution to the quadratic minimiztion problem:

z = argmin
x∈∩r

m=1GV I(C,Bm,Am)

∥x∥2. (5.4.19)

In case, f = u, where u is fixed element in C, our iterative algorithm define by

(5.4.2) converges strongly to a common element x̃ ∈ ∩r
m=1GV I(C,Bm, Am),

such that ⟨u− x̃, x− x̃⟩ ≤ 0, ∀x ∈ ∩r
m=1GV I(C,Bm, Am).

(3) Note that, our iterative algorithm define by (5.4.2) are more flexible in solving

the HGVIP than the one introduced by Yu and Liang [51].

5.5 Iteration Algorithm for Solving Hierarchical Equilib-

rium and Generalized Variational Inequality Problem

In this section, we introduce the convex feasibility problem (CFP) in the case

that each is a solution set of the generalized variational inequality and the equilib-

rium problem and show a new approach method to find a common element in the
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intersection of the set of the solutions of a finite family of equilibrium problems and

the intersection of the set of the solutions of a finite family of generalized variational

inequality problems in a real Hilbert space which is is a unique solution of the hier-

archical equilibrium and generalized variational inequality problems(HEGVIP).

Let I = {1, 2, ..., l} be a finite index set. For each i ∈ I, let Fi be a bi-function from

C × C into ℜ satisfying (A1)-(A4). Denote T i
rn : H → C by

T i
rn(x) =

{
z ∈ C : Fi(z, y) +

1

rn
⟨y − z, z − x⟩ ≥ 0,∀y ∈ C

}
.

Theorem 5.5.1. Let C be a nonempty closed and convex subset of a real Hilbert

space H such that C±C ⊂ C. For each i ∈ I, let Fi be a bi-function from C×C into

R satisfying (A1)-(A4). Let f : C → C be a contraction with coefficient k ∈ (0, 1).

Let G : C → C be a ξ-strongly monotone and L-Lipschitz continuous mapping. let

Am : C → H be a relaxed (ηm, ρm)-cocoercive and νm-Lipschitz continuous mapping

and Bm : C → H be a relaxed (η̂m, ρ̂m)-cocoercive and ν̂m-Lipschitz continuous

mapping for each 1 ≤ m ≤ r. Let pm =
√

1− 2λmρm + λ2mν
2
m + 2λmηmν2m and qm =√

1− 2λ̂mρ̂m + λ̂2mν̂
2
m + 2λ̂mη̂mν̂2m, where {λm} and {λ̂m} are two positive sequences

for each 1 ≤ m ≤ r. Assume that Ω = (∩l
i=1EP (Fi)) ∩ (∩r

m=1GV I(C,Bm, Am))

̸= ∅, ξ > 0, L > 0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ − µL2/2)/k = π/k and pm, qm ∈

[0, 1
2
), for each 1 ≤ m ≤ r. Given {xn} is a sequence generated by

x1 ∈ C,

uin = T i
rnxn, ∀i ∈ I,

vn = u1
n+u2

n+···+ul
n

l
,

ymn = PC(λ̂mBmvn − λmAmvn), ∀m = 1, 2, . . . , r,

xn+1 = αnγf(xn) + (I − αnµG)
∑r

m=1 β(m,n)y
m
n , ∀n ≥ 1,

(5.5.1)

where {αn}, {β(m,n)} ⊂ (0, 1),∀1 ≤ m ≤ r and {rn} ⊂ (0,+∞) satisfying the

following conditions:

(C1) limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn+1 − αn| <∞;

(C2)
∑r

m=1 β(m,n) = 1,∀n ≥ 1 ,
∑∞

n=1 |β(m,n+1) − β(m,n)| <∞ and

limn→∞ β(m,n) = βm ∈ (0, 1), ∀1 ≤ m ≤ r.

(C3) lim infn→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn| <∞;



156

Then the sequence {xn} converges strongly to a common element c ∈ Ω, which is

the unique solution of the HEGVIP:

⟨(γf − µG)c, x− c⟩ ≤ 0, ∀x ∈ Ω. (5.5.2)

Proof. We will proceed with the following steps.

Step 1: We prove that PC(λ̂mBm − λmAm) is a nonexpansive mapping.

Put Tm = PC(λ̂mBm − λmAm),∀1 ≤ m ≤ r. ∀x, y ∈ C and 1 ≤ m ≤ r, we have

∥Tmx− Tmy∥ ≤ ∥(x− y)− λm(Amx− Amy)∥

+∥(x− y)− λ̂m(Bmx−Bmy)∥. (5.5.3)

It follows from the assumption that each Am is relaxed (ηm, ρm)-cocoercive and νm-

Lipschitz continuous that ∥(x− y)− λm(Amx− Amy)∥2 ≤ p2m∥x− y∥2. This shows

that ∥(x− y)−λm(Amx−Amy)∥ ≤ pm∥x− y∥. In a similar way, we can obtain that

∥(x− y)− λ̂m(Bmx−Bmy)∥ ≤ qm∥x− y∥. So, we have

∥Tmx− Tmy∥ ≤ (pm + qm)∥x− y∥ ≤ ∥x− y∥. (5.5.4)

Hence Tm is a nonexpansive mapping and

F (Tm) = F (PC(λ̂mBm − λmAm)) = GV I(C,Bm, Am),∀1 ≤ m ≤ r

. Put Sn =
∑r

m=1 β(m,n)Tm. By Lemma 2.7.19, we conclude that Sn is a nonex-

pansive mapping and F (Sn) = ∩r
m=1GV I(C,Bm, Am),∀n ≥ 1. We can rewrite the

algorithm (5.5.1) as

xn+1 = αnγf(xn) + (I − αnµG)Snvn. (5.5.5)

Step 2: We prove that the sequence {xn}, {ymn }, {vn} and {uin} are bounded.

Take c ∈ Ω. For each i ∈ I, we have

∥uin − c∥ = ∥T i
rnxn − T i

rnc∥ ≤ ∥xn − c∥, ∀n ≥ 1. (5.5.6)

From (5.5.1) and (5.5.6) we have

∥vn − c∥ ≤ ∥xn − c∥, ∀n ≥ 1 (5.5.7)

For each 1 ≤ m ≤ r, we have

∥ymn − c∥ ≤ (pm + qn)∥vn − c∥ ≤ ∥xn − c∥ (5.5.8)
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From (5.5.1), (5.5.8) and Lemma 2.7.3 , we have

∥xn+1 − c∥ ≤ αn∥γ(f(xn)− f(c)) + γf(c)− µGc∥

+(1− αnπ)∥
r∑

m=1

β(m,n)y
m
n − c∥

≤ max

{
∥xn − c∥, ∥γf(c)− µGc∥

π − γk

}
, ∀n ≥ 1.

By induction, we obtain ∥xn−c∥ ≤ max

{
∥x1−c∥, ∥γf(c)−µGc∥

π−γk

}
, ∀n ≥ 1. Hence {xn}

is bounded. Also, we know that {ymn }, {vn} and {uin} are all ∀1 ≤ m ≤ r, ∀1 ≤ i ≤ l.

Since Sn is nonexpansive mappings for n ≥ 1, we see that

∥Snxn − c∥ ≤ ∥xn − c∥ ≤ max

{
∥x1 − c∥, ∥γf(c)− µGc∥

π − γk

}
.

Therefore, {Snxn} is bounded. Since G is a L-Lipschitz continuous mapping, we

have ∥GSnxn−Gc∥ ≤ L∥xn− c∥ ≤ max

{
L∥x1− c∥, L∥γf(c)−µGc∥

π−γk

}
. Hence {GSnxn}

is bounded. Since f is contraction and {xn} is bounded, so {f(xn)} is bounded.

Step 3: We prove that limn→∞ ∥xn+1 − xn∥ = 0.

From (5.5.1), we consider

xn+1 − xn = [(I − αnµG)
r∑

m=1

β(m,n)y
m
n − (I − αnµG)

r∑
m=1

β(m,n−1)y
m
n−1]

+(αn − αn−1)γf(xn−1) + (αn−1 − αn)µG
r∑

m=1

β(m,n−1)y
m
n−1

+αnγ(f(xn)− f(xn−1)),

it follows that

∥xn+1 − xn∥ ≤ (1− αnπ)∥
r∑

m=1

β(m,n)y
m
n −

r∑
m=1

β(m,n−1)y
m
n−1∥

+αnγk∥xn − xn−1∥+ |αn − αn−1|M1, (5.5.9)

where M1 = supn≥1{γ∥f(xn)∥+ µ∥G
∑r

m=1 β(m,n)y
m
n ∥}, and

∥
r∑

m=1

β(m,n)y
m
n −

r∑
m=1

β(m,n−1)y
m
n−1∥ ≤M2

r∑
m=1

|β(m,n)−β(m,n−1)|+∥vn−vn−1∥, (5.5.10)

where M2 = max{supn≥1 ∥ymn ∥,∀1 ≤ m ≤ r}. ∀ ∈ I, since uin−1, u
i
n ∈ C, we have

Fi(u
i
n, u

i
n−1) +

1

rn
⟨uin−1 − uin, u

i
n − xn⟩ ≥ 0, (5.5.11)
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and

Fi(u
i
n−1, u

i
n) +

1

rn−1

⟨uin − uin−1, u
i
n−1 − xn−1⟩ ≥ 0. (5.5.12)

From (5.5.11), (5.5.12) and (A2), we see that

0 ≤ rn[Fi(u
i
n, u

i
n−1) + Fi(u

i
n−1, u

i
n)] + ⟨uin−1 − uin, u

i
n − xn −

rn
rn−1

(uin−1 − xn−1)⟩

≤ ⟨uin−1 − uin, u
i
n − xn −

rn
rn−1

(uin−1 − xn−1)⟩

which implies

⟨uin−1−uin, u
i
n−1−uin+xn−xn−1+xn−1−uin−1+

rn
rn−1

(uin−1−xn−1)⟩ ≤ 0. (5.5.13)

It follows from (5.5.13) that

∥uin − uin−1∥ ≤ ∥xn − xn−1∥+ | rn − rn−1

rn−1

|∥xn−1 − uin−1∥, ∀n ≥ 1. (5.5.14)

Without loss of generality, let us assume that there exists a real number d such that

rn > d > 0 for all n ≥ 1. Since vn = 1
l
(u1n + u2n + . . .+ uln), by (5.5.14), we have

∥vn−vn−1∥ ≤ 1

l

l∑
i=1

∥uin−uin−1∥ ≤ ∥xn−xn−1∥+
|rn − rn−1|

d
M3, ∀n ≥ 1, (5.5.15)

where M3 = max{supn≥1
1
l

∑l
i=1 ∥xn−1 − uin−1∥, ∀1 ≤ i ≤ l}. From (5.5.9), (5.5.10)

and (5.5.17), we have

∥xn+1 − xn∥ ≤ (1− αn[π − γk])∥xn − xn−1∥

+M

[
|αn − αn−1|+

r∑
m=1

|β(m,n) − β(m,n−1)|

+
|rn − rn−1|

d

]
, (5.5.16)

where M is appropriate constant such that M ≥ max{M1,M2,M3}. By conditions

(C1), (C2) and (C3) and Lemma 2.7.6 , we obtain that

lim
n→∞

∥xn+1 − xn∥ = 0. (5.5.17)

Define a mapping S : C → C by

Sx =
r∑

m=1

βmPC(λ̂mBmx− λmAmx), ∀x ∈ C, (5.5.18)

where βm = limn→∞ β(m,n). From Lemma 2.7.19, we see that S is a nonexpansive

mapping and F (S) = ∩r
m=1F (Tm) = ∩r

m=1GV I(C,Bm, Am), ∀n ≥ 1.
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Step 4: We will show that limn→∞ ∥Sxn − xn∥ = 0.

By Lemma 2.7.21, we see that

∥uin − c∥2 ≤ ⟨T i
rnxn − T i

rnc, xn − c⟩

= ∥xn − c∥2 − ∥uin − xn∥2. (5.5.19)

From (5.5.19) and Lemma 2.7.22,

∥vn − c∥2 ≤ 1

l

l∑
i=1

∥uin − c∥2 ≤ ∥xn − c∥2 − 1

l

l∑
i=1

∥uin − xn∥2. (5.5.20)

From (5.5.20) and Lemma 2.7.15, we have

∥xn+1 − c∥2 ≤ (1− αnπ)
2∥vn − x∥2 + 2αn⟨γf(xn)− µGc, xn+1 − c⟩

≤ ∥vn − x∥2 + 2αn∥γf(xn)− µGc∥∥xn+1 − c∥

≤ ∥xn − c∥2 − 1

l

l∑
i=1

∥uin − xn∥2 + 2αn∥γf(xn)− µGc∥∥xn+1 − c∥.

It follows that

1

l

l∑
i=1

∥uin − xn∥2 ≤
[
∥xn − c∥ − ∥xn+1 − c∥

]
∥xn+1 − xn∥

+2αn∥γf(xn)− µGc∥∥xn+1 − c∥. (5.5.21)

Letting n→ ∞ in the equality (5.5.21), we obtain

lim
n→∞

∥uin − xn∥ = 0, ∀i ∈ I. (5.5.22)

By Lemma 2.7.22, we get

∥vn − xn∥2 =
∥∥∥∥ l∑

i=1

1

l
[uin − xn]

∥∥∥∥2

≤ 1

l

l∑
i=1

∥uin − xn∥2. (5.5.23)

Hence

lim
n→∞

∥vn − xn∥ = 0. (5.5.24)

Furthermore, it is easy to prove that

lim
n→∞

∥vn − uin∥ = 0, ∀i ∈ I. (5.5.25)

From (5.5.5), we observe that

∥xn+1 − Snvn∥ = αn∥γf(xn) + µGSnvn∥. (5.5.26)
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Hence, limn→∞ ∥xn+1−Snvn∥ = 0. Since ∥xn−Snvn∥ ≤ ∥xn+1−Snvn∥+∥xn−xn+1∥,

it follows that

lim
n→∞

∥xn − Snvn∥ = 0. (5.5.27)

From (5.5.22), (5.5.24), (5.5.25), (5.5.27) and Sn is nonexapnsive, we have

lim
n→∞

∥xn − Snxn∥ = lim
n→∞

∥vn − Snvn∥ = lim
n→∞

∥uin − Snu
i
n∥ = 0, ∀i ∈ I. (5.5.28)

Now, we show that Sxn − xn → 0 as n→ ∞. Note that

∥Sxn − xn∥ ≤ ∥
r∑

m=1

βmTmxn −
r∑

m=1

β(m,n)Tmxn∥+ ∥Snxn − xn∥

≤ M2(
r∑

m=1

|βm − β(m,n)|) + ∥Snxn − xn∥.

By the condition (C2) and (5.5.28), we have

lim
n→∞

∥xn − Sxn∥ = 0. (5.5.29)

From the boundedness of xn, there exists a subsequence {xnj
} ⊂ {xn} such that

xnj
⇀ z as j → ∞, by Lemma 2.7.1 and (5.5.29), we obtain z = Sz. So, we have

z ∈ F (S) = ∩r
m=1GV I(C,Bm, Am),∀n ≥ 1. (5.5.30)

From (5.5.22), we also have uinj
⇀ z as j → ∞,∀i ∈ I, since Fi(u

i
nj
, y) + 1

rnj
⟨y −

uinj
, uinj

− xnj
⟩ ≥ 0, ∀y ∈ C, it follows from (A2) that

1

rnj

⟨y − uinj
, uinj

− xnj
⟩ ≥ Fi(y, u

i
nj
) + Fi(u

i
nj
, y) +

1

rnj

⟨y − uinj
, uinj

− xnj
⟩

⟨y − uinj
,
uinj

− xnj

rnj

⟩ ≥ Fi(y, u
i
nj
), ∀y ∈ C. (5.5.31)

For (5.5.22) and (A4), we have

Fi(y, z) ≤ 0, ∀y ∈ C. (5.5.32)

Put yt = ty+(1− t)z, t ∈ (0, 1). Then yt ∈ C and Fi(yt, z) ≤ 0 for all i ∈ I. By (A1)

and (A4), we obtain 0 = Fi(yt, yt) ≤ tFi(yt, y) + (1− t)Fi(yt, z) ≤ tFi(yt, y), ∀i ∈ I.

By (A3), we get

Fi(z, y) ≥ lim
t↓0

Fi(ty + (1− t)z, y) = lim
t↓0

Fi(yt, y) ≥ 0, ∀i ∈ I.
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It follows that z ∈
∩l

i=iEP (Fi). Hence, z ∈ Ω. So, we have ωw(xn) ⊂ Ω. By Lemma

2.7.4, µG − γf is strongly monotone, so the variational inequality (5.5.2) has a

unique solution c ∈ Ω.

Step 5: We will show that lim supn→∞⟨(γf − µG)c, xn − c⟩ ≤ 0.

Indeed, since {xn} is bounded, then there exists a subsequence {xni
} ⊂ {xn} such

that

lim sup
n→∞

⟨(γf − µG)c, xn − c⟩ = lim
i→∞

⟨(γf − µG)c, xni
− c⟩. (5.5.33)

Without loss of generality, we may further assume that xni
⇀ z. It follows from

(5.5.13) that z ∈ Ω. Since z is the unique solution of (5.5.2), we obtain

lim sup
n→∞

⟨(γf − µG)c, xn − c⟩ = lim
i→∞

⟨(γf − µG)c, xni
− c⟩

= ⟨(γf − µG)c, z − c⟩ ≤ 0. (5.5.34)

Step 6: Finally, we will show that xn → c as n→ ∞.

From Lemma 2.7.3, Lemma 2.7.15 and (5.5.1) we have

∥xn+1 − c∥2 ≤ (1− αnπ)
2∥1
l

l∑
i=1

(uin − c)∥2 + 2αnγ⟨f(xn)− f(c), xn+1 − c⟩

+2αn⟨γf(c)− µGc, xn+1 − c⟩

≤ [1− 2αn(π − γk)

1− αnγk
]∥xn − c∥2 + (αnπ)

2

1− αnγk
∥xn − c∥2

+
2αn

1− αnγk
⟨γf(c)− µGc, xn+1 − c⟩

= (1− θn)∥xn − c∥2 + δn,

where θn := 2αn(π−γk)
1−αnγk

and δn := αn

1−αnγk
[αnπ

2∥xn − c∥2 + 2⟨γf(c)− µGc, xn+1 − c⟩].

Note that,

θn :=
2αn(π − γk)

1− αnγk
≤ 2(π − γk)

1− γk
αn. (5.5.35)

By (C1), we obtain that limn→∞ θn = 0. On the other hand, we have

θn :=
2αn(π − γk)

1− αnγk
≥ 2αn(π − γk). (5.5.36)

From (C1), we have
∑∞

n=1 θn = ∞. Put M = supn∈N{∥xn − c∥}, we have

δn
θn

=
1

2(π − γk)
[αnπ

2M + 2⟨γf(c)− µGc, xn+1 − c⟩]. (5.5.37)
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It follows that lim supn→∞
δn
θn

≤ 0. Hence, by Lemma 2.7.6, we conclude that

lim
n→∞

∥xn − c∥ = 0. (5.5.38)

Therefore xn → c as n→ ∞. This completes the proof.

As direct consequences of Theorem 5.5.1, we obtain corollaries.

Corollary 5.5.2. Let C be a nonempty closed and convex subset of a real Hilbert

space H such that C ± C ⊂ C. Let F be a bi-function from C × C into R satis-

fying (A1)-(A4). Let f : C → C be a contraction with coefficient k ∈ (0, 1). Let

G : C → C be a ξ-strongly monotone and L-Lipschitz continuous mapping. let

Am : C → H be a relaxed (ηm, ρm)-cocoercive and νm-Lipschitz continuous map-

ping and Bm : C → H be a relaxed (η̂m, ρ̂m)-cocoercive and ν̂m-Lipschitz continuous

mapping for each 1 ≤ m ≤ r. Let pm =
√

1− 2λmρm + λ2mν
2
m + 2λmηmν2m and

qm =

√
1− 2λ̂mρ̂m + λ̂2mν̂

2
m + 2λ̂mη̂mν̂2m, where {λm} and {λ̂m} are two positive se-

quences for each 1 ≤ m ≤ r. Assume that ∆ = EP (F )∩ (∩r
m=1GV I(C,Bm, Am)) ̸=

∅, ξ > 0, L > 0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ−µL2/2)/k = π/k and pm, qm ∈ [0, 1
2
),

for each 1 ≤ m ≤ r. Given {xn} is a sequence generated by

x1 ∈ C,

un = Trnxn,

ymn = PC(λ̂mBmun − λmAmun), ∀m = 1, 2, . . . , r,

xn+1 = αnγf(xn) + (I − αnµG)
∑r

m=1 β(m,n)y
m
n , ∀n ≥ 1,

where {αn}, {β(m,n)} ⊂ (0, 1),∀1 ≤ m ≤ r and {rn} ⊂ (0,+∞) satisfying the

following conditions:

(C1) limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn+1 − αn| <∞;

(C2)
∑r

m=1 β(m,n) = 1,∀n ≥ 1 ,
∑∞

n=1 |β(m,n+1) − β(m,n)| <∞ and

limn→∞ β(m,n) = βm ∈ (0, 1), ∀1 ≤ m ≤ r.

(C3) lim infn→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn| <∞;

Then the sequence {xn} converges strongly to a common element c ∈ ∆, which is

the unique solution of the HEGVIP: ⟨(γf − µG)c, x− c⟩ ≤ 0, ∀x ∈ ∆.
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Corollary 5.5.3. Let C be a nonempty closed and convex subset of a real Hilbert

space H such that C ±C ⊂ C. Let F be a bi-function from C ×C into R satisfying

(A1)-(A4). Let f : C → C be a contraction with coefficient k ∈ (0, 1). Let G :

C → C be a ξ-strongly monotone and L-Lipschitz continuous mapping. Let A :

C → H be a relaxed (η, ρ)-cocoercive and ν-Lipschitz continuous mapping. Let

B : C → H be a relaxed (η̂, ρ̂)-cocoercive and ν̂-Lipschitz continuous mapping. Let

p =
√

1− 2λρ+ λ2ν2 + 2λην2 and q =

√
1− 2λ̂ρ̂+ λ̂2ν̂2 + 2λ̂η̂ν̂2, where λ and

λ̂ are two positive real numbers. Assume that Λ = EP (F ) ∩ GV I(C,B,A) ̸= ∅,

ξ > 0, L > 0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ − µL2/2)/k = π/k and p, q ∈ [0, 1
2
).

Given the initial guess x1 ∈ C and {xn} is a sequence generated by

x1 ∈ C,

un = Trnxn,

yn = PC(λ̂Bun − λAun),

xn+1 = αnγf(xn) + (I − αnµG)yn, ∀n ≥ 1,

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞), satisfying the following conditions:

(C1) limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn+1 − αn| <∞;

(C2) lim infn→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn| <∞;

Then the sequence {xn} converges strongly to a common element c ∈ Λ, which is

the unique solution of the HEGVIP: ⟨(γf − µG)c, x− c⟩ ≤ 0, ∀x ∈ Λ.

If Fi(x, y) ≡ 0,∀(x, y) ∈ C × C in Theorem 5.5.1, for all i ∈ I. Then, from the

algorithm (5.5.1), we have uin ≡ PCxn, for all i ∈ I. So we have the following result.

Corollary 5.5.4. Let C be a nonempty closed and convex subset of a real Hilbert

space H such that C ± C ⊂ C. Let f : C → C be a contraction with coefficient

k ∈ (0, 1). Let G : C → C be a ξ-strongly monotone and L-Lipschitz continuous

mapping. let Am : C → H be a relaxed (ηm, ρm)-cocoercive and νm-Lipschitz continu-

ous mapping and Bm : C → H be a relaxed (η̂m, ρ̂m)-cocoercive and ν̂m-Lipschitz con-

tinuous mapping for each 1 ≤ m ≤ r. Let pm =
√
1− 2λmρm + λ2mν

2
m + 2λmηmν2m

and qm =

√
1− 2λ̂mρ̂m + λ̂2mν̂

2
m + 2λ̂mη̂mν̂2m, where {λm} and {λ̂m} are two posi-

tive sequences for each 1 ≤ m ≤ r. Assume that Θ = ∩r
m=1GV I(C,Bm, Am) ̸= ∅,

ξ > 0, L > 0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ − µL2/2)/k = π/k and pm, qm ∈ [0, 1
2
),
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for each 1 ≤ m ≤ r. Given the initial guess x1 ∈ C and {xn} is a sequence generated

by

xn+1 = αnγf(xn) + (I − αnµG)Σ
r
m=1β(m,n)PC(λ̂mBmxn − λmAmxn), ∀n ≥ 1,

where {αn} and {β(m,n)} ⊂ (0, 1),∀1 ≤ m ≤ r satisfying the following conditions:

(C1) limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn+1 − αn| <∞;

(C2)
∑r

m=1 β(m,n) = 1,∀n ≥ 1 ,
∑∞

n=1 |β(m,n+1) − β(m,n)| <∞ and

limn→∞ β(m,n) = βm ∈ (0, 1), ∀1 ≤ m ≤ r.

Then the sequence {xn} converges strongly to a common element c ∈ Θ, which is

the unique solution of the HGVIP: ⟨(γf − µG)c, x− c⟩ ≤ 0, ∀x ∈ Θ.

5.6 Some Application to Optimization Problems

From Theorem 5.1.1, we can dedude the following interesting corollary for solving

the quadratic minimiztion problem.

Corollary 5.6.1. Let C be a nonempty closed convex subset of a real Hilbert space

H. Let f : C → H be a ρ-contraction (possibly nonself) with ρ ∈ (0, 1). Let

S, T : C → C be two nonexpansive mappings with F (T ) ̸= ∅.{αn} and {βn} are two

sequences in (0, 1). Starting with an arbitrary initial guess x0 ∈ C and {xn} is a

sequence generated by

yn = βnSxn + (1− βn)xn,

xn+1 = PC [αnf(xn) + (1− αn)Tyn], ∀n ≥ 1. (5.6.1)

Suppose that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) limn→∞
βn

αn
= 0;

(C3) limn→∞
|αn−αn−1|

αn
= 0 and limn→∞

|βn−βn−1|
βn

= 0 or

(C4)
∑∞

n=1 |αn − αn−1| <∞ and
∑∞

n=1 |βn − βn− 1| <∞.
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Then the sequence {xn} converges strongly to a point x̃ ∈ H, which is the unique

solution of the variational inequality:

x̃ ∈ F (T ), ⟨(I − f)x̃, x− x̃⟩ ≥ 0, ∀x ∈ F (T ). (5.6.2)

Equivalently, we have PF (T )(f)x̃ = x̃. In particular, if we take f = 0, then the

sequence {xn} converges in norm to the Minimum norm fixed point x̃ of T , namely,

the point x̃ is the unique solution to the quadratic minimiztion problem:

z = arg min
x∈F (T )

∥x∥2. (5.6.3)

Proof. As a matter of fact, if we take A = I and γ = 1 in Theorem 5.1.1. This

complete the proof. 2



CHAPTER 6 CONCLUSIONS

In this chapter, we conclude all the theorems obtained in this dissertation as

follows:

Let Θ denote the class of those functions θ : (0, 1]5 → [0, 1] such that θ is

continuous and

θ(x, 1, 1, x, x) = x.

(1) Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings of X such

that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),

(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds: (i) f and g satisfy the (CLRg) property;

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ η(x)

0
ψ(s)ds for fx ̸= ffx and

η(x) = θ(M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t),M(fx, gfx, t),M(gx, ffx, t))

for some θ ∈ Θ,

whenever ψ : R+ → R is a Lebesgue integrable mapping which is summable,

nonnegative and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.

(2) Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings of X such

that (f, g) is any one of the following:
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(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),

(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds:

(i) f and g satisfy E.A. property and gX is a closed subspace of X;

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ η(x)

0
ψ(s)ds for fx ̸= ffx and

η(x) = θ(M(gx, gfx, t),M(fx, gx, t),M(ffx, gfx, t),M(fx, gfx, t),M(gx, ffx, t))

for some θ ∈ Θ,

whenever ψ : R+ → R is a Lebesgue integrable mapping which is summable,

nonnegative and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.

Let ∆ denote the class of those functions δ : (0, 1]4 → [0, 1] such that δ is

continuous and

δ(x, 1, x, 1) = x.

(3) Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings of X such

that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),

(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds:

(i) f and g satisfy the (CLRg) property;



168

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ η(x)

0
ψ(s)ds for fx ̸= ffx and

η(x) = δ(M(gx, gfx, t),M(fx, gx, t),M(fx, gfx, t),M(ffx, gfx, t))

for some δ ∈ ∆,

whenever ψ : R+ → R is a Lebesgue integrable mapping which is summable,

nonnegative and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.

(4) Let (X,M, ∗) be a fuzzy metric space and let f, g be self-mappings of X such

that (f, g) is any one of the following:

(a) R-weakly commuting,

(b) R-weakly commuting of type (Ag),

(c) R-weakly commuting of type (Af ),

(d) R-weakly commuting of type (P ).

If the following holds:

(i) f and g satisfy the (E.A.) property and gX is a closed subspace of X;

(ii)
∫M(fx,fy,t)

0
ψ(s)ds ≥

∫M(gx,gy,t)

0
ψ(s)ds for x, y ∈ X;

(iii)
∫M(fx,ffx,t)

0
ψ(s)ds >

∫ η(x)

0
ψ(s)ds for fx ̸= ffx and

η(x) = δ(M(gx, gfx, t),M(fx, gx, t),M(fx, gfx, t),M(ffx, gfx, t))

for some δ ∈ ∆,

whenever ψ : R+ → R is a Lebesgue integrable mapping which is summable,

nonnegative and such that ∫ ϵ

0

ψ(s)ds > 0

for each ϵ > 0, then f and g have a common fixed point.



169

(5) Let (X, d) be a K-metric space with a cone P having non-empty interior

(normal or non-normal) and F : X3 −→ X and g : X → X be mappings satisfy

CLRg property. Suppose that for any x, y, z, u, v, w ∈ X, following condition

d(F (x, y, z), F (u, v, w)) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz) + a4d(F (u, v, w), gu)

+a5d(F (v, w, u), gv) + a6d(F (w, u, v), gw)

+a7d(F (u, v, w), gx) + a8d(F (v, w, u), gy)

+a9d(F (w, u, v), gz) + a10d(F (x, y, z), gu)

+a11d(F (y, z, x), gv) + a12d(F (z, x, y), gw)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw),

holds, where ai, i = 1, · · · , 15 are nonnegative real numbers such that
15∑
i=1

ai < 1.

Then F and g have a tripled coincidence point.

(6)Let (X, d) be a K-metric space with a cone P having non-empty interior

(normal or non-normal) and F : X3 −→ X and g : X → X be mappings satisfy

CLRg property. Suppose that for any x, y, z, u, v, w ∈ X, following condition

d(F (x, y, z), F (u, v, w)) ≼ a1d(F (x, y, z), gx) + a2d(F (y, z, x), gy)

+a3d(F (z, x, y), gz) + a4d(F (u, v, w), gu)

+a5d(F (v, w, u), gv) + a6d(F (w, u, v), gw)

+a7d(F (u, v, w), gx) + a8d(F (v, w, u), gy)

+a9d(F (w, u, v), gz) + a10d(F (x, y, z), gu)

+a11d(F (y, z, x), gv) + a12d(F (z, x, y), gw)

+a13d(gx, gu) + a14d(gy, gv) + a15d(gz, gw),

holds, where ai, i = 1, · · · , 15 are nonnegative real numbers such that
15∑
i=1

ai < 1.

If F and g are W -compatible, then F and g have a unique common tripled fixed

point. Moreover, common tripled fixed point of F and g is of the form (u, u, u) for

some u ∈ X.
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(7) Let C be a nonempty closed convex subset of a real Hilbert space H. Let

f : C → H be a ρ-contraction with ρ ∈ (0, 1). Let S, T : C → C be two nonexpansive

mappings with F (T ) ̸= ∅. Let A be a strongly positive linear bounded operator onH

with coefficient γ̄ > 0. {αn} and {βn} are two sequences in (0, 1) and 0 < γ < γ̄/ρ.

Starting with an arbitrary initial guess x0 ∈ C and {xn} is a sequence generated by

yn = βnSxn + (1− βn)xn,

xn+1 = PC [αnγf(xn) + (I − αnA)Tyn], ∀n ≥ 1.

Suppose that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) limn→∞
βn

αn
= τ = 0;

(C3) limn→∞
|αn−αn−1|

αn
= 0 and limn→∞

|βn−βn−1|
βn

= 0 or

(C4)
∑∞

n=1 |αn − αn−1| <∞ and
∑∞

n=1 |βn − βn−1| <∞.

Then the sequence {xn} converges strongly to a point x̃ ∈ H, which is the unique

solution of the variational inequality:

x̃ ∈ F (T ), ⟨(A− γf)x̃, x− x̃⟩ ≥ 0, ∀x ∈ F (T ).

Equivalently, we have PF (T )(I − A+ γf)x̃ = x̃.

(8) Let C be a nonempty closed convex subset of a real Hilbert space H. Let

f : C → H be a ρ-contraction (possibly nonself) with ρ ∈ (0, 1). Let S, T : C → C

be two nonexpansive mappings with F (T ) ̸= ∅. Let A be a strongly positive linear

bounded operator on a Hilbert space H with coefficient γ̄ > 0 and 0 < γ < γ̄/ρ.

{αn} and {βn} are two sequences in (0, 1). Starting with an arbitrary initial guess

x0 ∈ C nd {xn} is a sequence generated by

yn = βnSxn + (1− βn)xn,

xn+1 = PC [αnγf(xn) + (I − αnA)Tyn], ∀n ≥ 1.

Suppose that the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
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(C2) limn→∞
βn

αn
= τ ∈ (0,∞);

(C5) limn→∞
|αn−αn−1|+|βn−βn−1|

αnβn
= 0;

(C6) there exists a constant K > 0 such that 1
αn
| 1
βn

− 1
βni1

| ≤ K.

Then the sequence {xn} converges strongly to a point x̃ ∈ H, which is the unique

solution of the variational inequality:

x̃ ∈ F (T ), ⟨1
τ
(A− γf)x̃+ (I − S)x̃, x− x̃⟩ ≥ 0, ∀x ∈ F (T ).

(9) Let C be a nonempty closed and convex subset of a real Hilbert space H.

Let f : C → H be a ρ-contraction mapping, S : C → H be a nonexpansive mapping

and {Ti}∞i=1 : C → C be a countable family of ki-strict pseudo-contraction mappings

and F =
∞
∩
i=1
F (Ti) ̸= ∅. Let α0 = 1, and x1 ∈ C and define the sequence {xn} by

yn = PC [βnSxn + (1− βn)xn],

xn+1 = PC [αnf(xn) +
n∑

i=1

(αi−1 − αi)Viyn], ∀n ≥ 1,

where {αn} ⊂ (0, 1) and {αn} is a strictly decreasing sequence, Vi = kiI+(1−ki)Ti,

{βn} ⊂ (0, 1) and {αn} and {βn} are sequences satisfying the conditions (H2) with

τ = 0, (H3), either (H4) and (H5) , or (H6) and (H7). Then the sequence {xn}

converges strongly to a point z ∈ F , which is the unique solution of the variational

inequality:

⟨(I − f)z, x− z⟩ ≥ 0, ∀x ∈ F .

(10) Let C be a nonempty closed and convex subset of a real Hilbert space H.

Let f : C → H be a ρ-contraction mapping, S : C → C be a nonexpansive mapping

and {Ti}∞i=1 : C → C be a countable family of ki-strict pseudo-contraction mappings

and F =
∞
∩
i=1
F (Ti) ̸= ∅. Let α0 = 1, and x1 ∈ C and define the sequence {xn} by
yn = PC [βnSxn + (1− βn)xn] = βnSxn + (1− βn)xn

xn+1 = PC [αnf(xn) +
n∑

i=1

(αi−1 − αi)Viyn], ∀n ≥ 1

where {αn} ⊂ (0, 1) and {αn} is a strictly decreasing sequence, Vi = kiI+(1−ki)Ti,

{βn} ⊂ (0, 1) and {αn} and {βn} are sequences satisfying the conditions (H2) with



172

τ ∈ (0,∞), (H3), (H8) and (H9). Then the sequence {xn} converges strongly to a

point x∗ ∈ F , which is the unique solution of the variational inequality:

⟨1
τ
(I − f)x∗ + (I − S)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F .

(11) Let H be a real Hilbert space, C be a closed convex subset of H. Let

A : C → H be a strongly positive linear bounded operator, f : C → H be a ρ-

contraction, γ be a positive real number such that γ̄−1
ρ

< γ < γ̄
ρ
. Let T : C → C

be a nonexpansive mapping, B : C → C be a β-strongly monotone and L-Lipschitz

continuous. Let ϕ : C → C be a k-contraction mapping with k ∈ [0, 1). Suppose

{xn} is a sequence generated by the following algorithm x0 ∈ C arbitrarily
zn = TPC [I − δn(A− γf)]xn,

yn = (I − µβnB)zn,

xn+1 = αnϕ(xn) + (1− αn)yn, ∀n ≥ 0,

where {αn}, {δn} ⊂ [0, 1]. If µ ∈ (0, 2β
L2 ) is used and if {βn} ⊂ (0, 1] satisfy the

following conditions:

(C1): Σ∞
n=1|δn+1 − δn| <∞, Σ∞

n=1δn = ∞;

(C2): Σ∞
n=1|βn+1 − βn| <∞;

(C3): Σ∞
n=1|αn+1 − αn| <∞, limn→∞ αn = 0;

(C4): δn ≤ βn and βn ≤ αn.

Then {xn} converges strongly to x∗ ∈ Υ, which is the unique solution of the varia-

tional inequality:

Find x∗ ∈ Υ such that ⟨(I − ϕ)x∗, x− x∗⟩ ≥ 0, ∀x ∈ Υ,

where Υ := V I(Ω, B) := V I
(
V I(F (T ), A− γf), B

)
.

(12) Let C be a nonempty closed and convex subset of a real Hilbert space H

such that C ± C ⊂ C. Let f : C → C be a contraction with coefficient k ∈ (0, 1).

Let G : C → C be a ξ-strongly monotone and L-Lipschitz continuous mapping. let

Am : C → H be a relaxed (ηm, ρm)-cocoercive and νm-Lipschitz continuous mapping

and Bm : C → H be a relaxed (η̂m, ρ̂m)-cocoercive and ν̂m-Lipschitz continuous

mapping for each 1 ≤ m ≤ r. Let pm =
√
1− 2λmρm + λ2mν

2
m + 2λmηmν2m and

qm =

√
1− 2λ̂mρ̂m + λ̂2mν̂

2
m + 2λ̂mη̂mν̂2m, where {λm} and {λ̂m} are two positive
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sequences for each 1 ≤ m ≤ r. Assume that ∩r
m=1GV I(C,Bm, Am) ̸= ∅, ξ > 0, L >

0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ − µL2/2)/k = π/k and pm, qm ∈ [0, 1
2
), for each

1 ≤ m ≤ r. Given the initial guess x1 ∈ C and {xn} is a sequence generated by

xn+1 = αnγf(xn) + (I − αnµG)Σ
r
m=1β(m,n)PC(λ̂mBmxn − λmAmxn), ∀n ≥ 1,

where {αn}, {β(1,n)}, {β(2,n)}, ..., {β(r,n)} are sequences in (0, 1), satisfying the follow-

ing conditions:

(C1) limn→∞ αn = 0,Σ∞
n=1αn = ∞ and Σ∞

n=1|αn+1 − αn| <∞;

(C2) Σr
m=1β(m,n) = 1, ∀n ≥ 1 ,Σ∞

n=1|β(m,n+1) − β(m,n)| < ∞ and limn→∞ β(m,n) =

βm ∈ (0, 1),∀1 ≤ m ≤ r.

Then the sequence {xn} converges strongly to x̃ ∈ ∩r
m=1GV I(C,Bm, Am), which is

the unique solution of the HGVIP:

⟨(γf − µG)x̃, x− x̃⟩ ≤ 0, ∀x ∈ ∩r
m=1GV I(C,Bm, Am).

(13) Let I = {1, 2, ..., l} be a finite index set. For each i ∈ I, let Fi be a

bi-function from C × C into ℜ satisfying (A1)-(A4). Denote T i
rn : H → C by

T i
rn(x) =

{
z ∈ C : Fi(z, y) +

1

rn
⟨y − z, z − x⟩ ≥ 0,∀y ∈ C

}
.

Let C be a nonempty closed and convex subset of a real Hilbert space H such that

C ± C ⊂ C. For each i ∈ I, let Fi be a bi-function from C × C into R satisfying

(A1) Fi(x, x) = 0 for all x ∈ C;

(A2) Fi is monotone, i.e., Fi(x, y) + Fi(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt↓0 Fi(tz + (1− t)x, y) ≤ Fi(x, y);

(A4) for each x ∈ C, y 7→ Fi(x, y) is convex and lower semicontinuous.

Let f : C → C be a contraction with coefficient k ∈ (0, 1). Let G : C → C

be a ξ-strongly monotone and L-Lipschitz continuous mapping. let Am : C → H

be a relaxed (ηm, ρm)-cocoercive and νm-Lipschitz continuous mapping and Bm :

C → H be a relaxed (η̂m, ρ̂m)-cocoercive and ν̂m-Lipschitz continuous mapping

for each 1 ≤ m ≤ r. Let pm =
√

1− 2λmρm + λ2mν
2
m + 2λmηmν2m and qm =
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1− 2λ̂mρ̂m + λ̂2mν̂

2
m + 2λ̂mη̂mν̂2m, where {λm} and {λ̂m} are two positive sequences

for each 1 ≤ m ≤ r. Assume that Ω = (∩l
i=1EP (Fi)) ∩ (∩r

m=1GV I(C,Bm, Am))

̸= ∅, ξ > 0, L > 0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ − µL2/2)/k = π/k and

pm, qm ∈ [0, 1
2
), for each 1 ≤ m ≤ r. Given {xn} is a sequence generated by

x1 ∈ C,

uin = T i
rnxn, ∀i ∈ I,

vn = u1
n+u2

n+···+ul
n

l
,

ymn = PC(λ̂mBmvn − λmAmvn), ∀m = 1, 2, . . . , r,

xn+1 = αnγf(xn) + (I − αnµG)
∑r

m=1 β(m,n)y
m
n , ∀n ≥ 1,

where {αn}, {β(m,n)} ⊂ (0, 1), ∀1 ≤ m ≤ r and {rn} ⊂ (0,+∞) satisfying the

following conditions:

(C1) limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn+1 − αn| <∞;

(C2)
∑r

m=1 β(m,n) = 1,∀n ≥ 1 ,
∑∞

n=1 |β(m,n+1) − β(m,n)| <∞ and

limn→∞ β(m,n) = βm ∈ (0, 1), ∀1 ≤ m ≤ r.

(C3) lim infn→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn| <∞;

Then the sequence {xn} converges strongly to a common element c ∈ Ω, which is

the unique solution of the HEGVIP:

⟨(γf − µG)c, x− c⟩ ≤ 0, ∀x ∈ Ω.

Assume that the following conditions hold:

(C1) Ai : H → H is an αi-inverse-strongly monotone mapping and V I(C,Ai) is

the set of solutions to variational inequality problem with A = Ai, for all

i = 1, 2, 3;

(C2) Ki and Ki,β, β ∈ (0, 1), i = 1, 2, 3, are the mappings defined by Ki := PCi
(I − λAi), λ ∈ (0, 2αi],

Ki,β = (1− β)I + βKi, β ∈ (0, 1),

respectively.
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(14) Let Ai and V I(C,Ai) satisfy the condition (C1) and let fi : H → H be

contractions with a contractive constant hi ∈ (0, 1), for all i = 1, 2, 3. Then there

exists a unique element (x∗, y∗, z∗) ∈ V I(C,A1)× V I(C,A2)× V I(C,A3) such that

the following three inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1),

⟨y∗ − f2(z
∗), y − y∗⟩ ≥ 0, ∀y ∈ V I(C,A2),

⟨z∗ − f3(x
∗), z − z∗⟩ ≥ 0, ∀z ∈ V I(C,A3).

(15) Let Ai, V I(C,Ai), Ki and Ki,β satisfy the conditions (C1) and (C2), and let

fi : H → H be contractions with a contractive constant hi ∈ (0, 1), for all i = 1, 2, 3.

Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then

the sequences {xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where

(x∗, y∗, z∗) is the unique element in V I(C,A1) × V I(C,A2) × V I(C,A3) such that

the following three inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1),

⟨y∗ − f2(z
∗), y − y∗⟩ ≥ 0, ∀y ∈ V I(C,A2),

⟨z∗ − f3(x
∗), z − z∗⟩ ≥ 0, ∀z ∈ V I(C,A3).

(16) Let Ai, V I(C,Ai), Ki and Ki,β satisfy the conditions (C1) and (C2) for

each i = 1, 2, 3, and let F : H → H be a µ-Lipschitzian and r-strongly monotone

mapping. Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where f1 := I − ρF, f2 := I − ηF, f3 := I − ξF with ρ, η, ξ ∈ (0, 2r
µ2 ) and {αn}

is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the sequences
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{xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗) is the

unique element in V I(C,A1)×V I(C,A2)×V I(C,A3) such that the following three

inequalities are satisfied
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ V I(C,A1),

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ V I(C,A2),

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0 ∀z ∈ V I(C,A3).

Assume that the following conditions hold:

(C1) Mi : H → 2H is a multi-valued maximal monotone mapping, Ai : H → H

is an αi-inverse-strongly monotone mapping and Ωi is the set of solutions

to variational inclusion problem with A = Ai,M = Mi and Ωi ̸= ∅, for all

i = 1, 2, 3;

(C2) Ki and Ki,β, β ∈ (0, 1), i = 1, 2, 3, are the mappings defined by Ki := JMi,λ(I − λAi), λ ∈ (0, 2αi],

Ki,β = (1− β)I + βKi, β ∈ (0, 1),

respectively.

(17) Let Ai,Mi,Ωi, Ki and Ki,β satisfy the conditions (C1) and (C2), and let fi :

H → H be contractions with a contractive constant hi ∈ (0, 1), for all i = 1, 2, 3.

Then there exists a unique element (x∗, y∗, z∗) ∈ Ω1×Ω2×Ω3 such that the following

three inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨y∗ − f2(z
∗), y − y∗⟩ ≥ 0, ∀y ∈ Ω2,

⟨z∗ − f3(x
∗), z − z∗⟩ ≥ 0, ∀z ∈ Ω3.

(18) Let Ai,Mi,Ωi, Ki and Ki,β satisfy the conditions (C1) and (C2), and let

fi : H → H be contractions with a contractive constant hi ∈ (0, 1), for all i = 1, 2, 3.

Let {xn}, {yn} and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,
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where {αn} is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then

the sequences {xn}, {yn} and {zn} generated be (4.2.3) converge to x∗, y∗ and z∗

respectively, where (x∗, y∗, z∗) is the unique element in Ω1 × Ω2 × Ω3 such that the

following three inequalities are satisfied
⟨x∗ − f1(y

∗), x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨y∗ − f2(z
∗), y − y∗⟩ ≥ 0, ∀y ∈ Ω2,

⟨z∗ − f3(x
∗), z − z∗⟩ ≥ 0, ∀z ∈ Ω3.

(19) Let Ai,Mi,Ωi, Ki and Ki,β satisfy the conditions (C1) and (C2), and let

F : H → H be a µ-Lipschitzian and r-strongly monotone mapping. Let {xn}, {yn}

and {zn} be three sequences defined by

x0, y0, z0 ∈ H,

xn+1 = (1− αn)K1,βxn + αnf1(K2,βyn),

yn+1 = (1− αn)K2,βyn + αnf2(K3,βzn),

zn+1 = (1− αn)K3,βzn + αnf3(K1,βxn), n = 0, 1, 2, . . . ,

where f1 := I − ρF, f2 := I − ηF, f3 := I − ξF with ρ, η, ξ ∈ (0, 2r
µ2 ) and {αn}

is a sequence in (0, 1) satisfying αn → 0 and
∑∞

n=0 αn = ∞. Then the sequences

{xn}, {yn} and {zn} converge to x∗, y∗ and z∗ respectively, where (x∗, y∗, z∗) is the

unique element in Ω1×Ω2×Ω3 such that the following three inequalities are satisfied
⟨ρF (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ Ω1,

⟨ηF (z∗) + y∗ − z∗, y − y∗⟩ ≥ 0, ∀y ∈ Ω2,

⟨ξF (x∗) + z∗ − x∗, z − z∗⟩ ≥ 0, ∀z ∈ Ω3.
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