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Abstract

Influenza is a serious disease caused by an influenza virus. This disease is spreading
so widely that it is difficult to control. Vaccination is a common method to protect
this disease. The Susceptible-Vaccinated-Exposed-Infectious-Recovered (SVEIR)
model is used to predict the number of infected population and the duration of an
outbreak when it occurs. Both disease-free and endemic equilibriums of the model
are derived to study the effect of vaccination on the number of infectious popula-
tion. In this research, the threshold value of the model which is called the basic
reproductive number is derived. The stability analysis of the model shows that
the disease-free equilibrium is locally asymptotically stable if the basic reproduc-
tive number is less than unity by using Next Generation Method. It is also shown
that the disease can be eradicated from the population if the vaccination coverage
level exceeds a certain threshold value. On the other hand, the disease will persist
within the population if the coverage level of vaccination is below this critical value.
These results are verified by the numerical simulations. Numerical results show the
number of infectious proportion when the vaccination rates are varied. The critical
value of vaccination rate is 0.00715. It is found that sufficient vaccination rate can
be eradicated the disease.

Keywords : Basic Reproductive Number / Disease-Free Equilibrium / Endemic
Equilibrium / Stability
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CHAPTER 1 INTRODUCTION

1.1 Introduction

Influenza is a contagious disease, caused by an Influenza virus. It is transmitted be-
tween the human contact from the contaminated objects and the air that contains
the virus. A lot of people around the world have a die caused from the disease. The
important cause of influenza virus is it has spreading widely. Sometimes it spreads
into worldwide then the disease can not stop. Basically, every winter, there are a lot
of the patients from this disease more than other diseases. The cause of virus has
now spread widely is that the capacity of virus can change to other strain. When
the virus is changed its strain to another strain, there is an effect on the human
who never receive this virus. In particular, they cannot protect the new breed of
virus. Thus, when the virus has changed to one that is often followed by an outbreak
because no immunity to the new virus. So there are many strains of influenza virus.
However the level of outbreak now are increase more than before. Mathematical
models is useful to understand the disease dynamics and the implications of various
preventive and control strategies [1].

Vaccination is the preparation which can improves the immunity to influenza disease.
It is a common method to control disease .The coverage vaccination is important
factor to prevent human from the disease. Most of vaccination programs are specific
for each individual.There are many studies to identify the mass vaccination and the
efficacy of vaccination which need to control the disease [2].

Mathematical models have been used to determine the ability an imperfect vaccine
to control other infectious diseases. There are several published mathematical mod-
els suggested for the transmission dynamics of influenza [3, 4]. Such as, Samsuzzoha,
et al. constructed a system of ODE which is called an influenza epidemic model and
analyze the basic reproductive number and the effect of all parameters by using the
sensitivity analysis to the basic reproductive number.

Alexander, et al.[5] constructed a deterministic mathematical model to study the
transmission dynamic of influenza. The model is analyzed qualitatively to determine
criteria for control of an influenza epidemic and is used to compute the threshold
vaccination rate necessary for community-wide control of vaccination. Lui et al.
[6] studied two SVIR models which are established to describe continuous vacci-
nation strategy and puse vaccination strategy. It shown that both systems exhibit
stric threshold dynamics which depend on the reproduction number. Mathematical
results suggest that vaccination is helpful for disease control by decreasing the re-
production number.

Samsuzzoha, et al.[3] presented the impact of vaccination as well as diffusion on the
transmission dynamics of influenza. Sensitivity analysis of the reproduction number
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based on parameters are investigated.

Kuniya [7] studied the global stability of a multi-group SVIR epidemic model is in-
vestigated. The heterogeneity of population and the effect of immunity are induced
by vaccination. The method of Lyaponov is used to prove the globally asymptoti-
cally stable.

Samsuzzoha, et al. [4] studied the sensitivity analysis based on mathematical as
well as statistical technique and determined the important of the epidemic model
parameters. It is shown that the reproduction number is the most sensitive to the
transmission rate of the disease.

1.2 Objective

The objective of this research is to analyze the stability of SVEIR influenza epidemic
model with vaccination by samsuzzoha, et al. [4].

1.3 Scope

To study the mathematical model of influenza with vaccination and the effect of
reproduction number using specific estimated input parameters values.

In Chapter 2, epidemic models with vaccination are reviewed and background math-
ematics used in later chapters are given. Chapter 3, the basic reproduction number
of the model 2.1 is derived. The local stability is analyzed to verify that the equi-
librium of the model are locally asymptotically stable under the condition of the
reproductive number and the vaccination coverage level exceeds a certain threshold
value. Chapter 4, we discuss the numerical solutions of the model 2.1 to describe
the effect of vaccination. Finally, discussion and conclusions of this thesis are given.



CHAPTER 2 LITERATURE REVIEWS AND BASIC
MATHEMATICS

2.1 Literature Reviews

Alexander, et al.[5] constructed a deterministic mathematical model SVIR to study
the transmission dynamic of influenza. The model is divided the population N
into four subpopulations: susceptible S, vaccinated V , infected I and recovered
R. The model is analyzed qualitatively to determine criteria for control of an in-
fluenza epidemic and is used to compute the threshold vaccination rate necessary for
community-wide control of influenza by using two specific populations of similar size,
an office and a personal care home. The linear stability analysis showed that the
model has a disease-free which is locally asymtotically stable when the basic repro-
ductive number (R0) is less than unity and unstable otherwise. In this research the
persistence of the disease depends on the initial size of the subpopulation. However,
the estimated parameters in the model and indeed for any infection where immunity
acquired by natural infection does not wane faster than by vaccination. The model
showed that the spread of influenza can be controlled if the combined effect of the
vaccine efficacy and vaccination rate reached a threshold determined by the duration
of infectiousness and the rate of contact between infected and susceptible individuals.

Lui, et al. [6] studied two SVIR models which are established to describe contin-
uous vaccination strategy and pulse vaccination strategy. This research is shown
that both models exhibit strict threshold dynamic which depend on the basic repro-
ductive number (R0). If this number is below unity, the disease can be eradicated.
On the other hand if it is above the unity, the disease is endemic in the sense of
global asymptotical stability of the a positive equilibrium for continuous vaccina-
tion strategy and disease parameters. This research determined a control system
for the optimality and its existence, and the optimal control are derived. Mathe-
matical results suggest that vaccination is helpful for disease control by decreasing
the reproduction number (R0). The results verified by a numerical solution of the
optimality system consisting of the original state system, the adjoint system and
their boundary condition.

Samsuzzoha, et al. [3] presented the impact of vaccination as well as diffusion on
the transmission dynamics of influenza. The model based on SVEIR model. The
population is divided into five sub-population, which are susceptible (S), vaccinated
(V ), exposed (E), infective (I) and recovered (R).
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dS

dt
= −ββ

E
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N
− ββ

I

IS

N
− φS − µS + δR + θV + rN,

dV

dt
= −ββ

E
β

V

EV

N
− ββ

I
β

V

IV

N
− µV − θV + φS,

dE

dt
= ββ

E

ES

N
+ ββ

I

IS

N
+ ββ

E
β

V

EV

N
+ ββ

I
β

V

IV

N
− (µ+ κ+ σ)E, (2.1)

dI

dt
= σE − (µ+ α + γ)I,

dR

dt
= κE + γI − µR− δR.

and

dN

dt
= rN + µN − αI.

The total population size is denoted by N = S + V + E + I + R. The system has
been solved by using the operator splitting method with three different initial con-
ditions to study the effect of the rate of vaccination and vaccine efficiency. Contact
parameter, the conclusion may be summarized. Measure of vaccination efficacy is
essential before implementation of mass vaccination program. An increase of vacci-
nation rate decreases reproduction number RV AC , thus resulting in less severity of
outbreak of disease. Contact parameter, β, is very sensitive to spread of disease. Its
value must not exceed the bifurcation point to make the system unstable. Diffusion
in the system can help to stabilize the system, thus reducing the chances of out-
break of disease beyond control. Initial distribution of popupation definitely plays
an important role in the spread of disease. Sensitivity analysis of the reproduction
number based on parameters are investigated.

Kuniya [7] investigeted the global stability of a multi-group SVIR epidemic model
by consider the heterogeneity of population and the effect of immunity are induced
by vaccination. The basic reproductive number is derived. R0 played the role of a
threshold for the long-time behavior of the model. That is, the disease-free equi-
librium is globally asymtotically stable when R0 ≤ 1 and endemic equilibrium E∗

existed uniquely and is globally asymtotically stable if R0 > 1. The method of
Lyaponov is used to prove the globally asymptotically stable.

Recently, Samsuzzoha, et al. [4] studied the sensitivity analysis based on mathemat-
ical and well as statistical techniques are determined the importance of the epidemic
model parameters.
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dS

dt
= −ββ

E
ES − ββ

I
IS + αIS − φS − rS + δR + θV + r,

dV

dt
= −ββ

E
β

V
EV − ββ

I
β

V
IV − rV + αIV − rV − θV + φS,

dE

dt
= ββ

E
ES + ββ

I
IS + ββ

E
β

V
EV + ββ

I
β

V
IV + αIE − (r + κ+ σ)E,(2.2)

dI

dt
= σE − (r + α + γ)I + αI2,

dR

dt
= κE + γI − rR− δR + αIR.

and

1 = S + V + E + I +R.

It was shown that the reproduction number is the most sensitive to the transmission
rate of the disease. There are six parameters out of the 11 input parameters play a
prominent role in determining the magnitude of the basic reproductive number. It
was also shown that the control of transmission rate and recovery rate of clinically
ill were crucial to stop the spreading of influenza epidemics.

In this thesis, the reproductive number of the model (2.2) is derived and the stability
of the disease-free and endemic equilibriums are analyzed and will be discussed in
Chapter 3.

2.2 Basic Mathematics

In this section, some theories and basic mathematics are reviewed, and will be used
in Chapter 3.

2.2.1 Linear Stability Analysis

Linear stability of the systems of ordinary differential equations arised in interacting
population models and reaction kinetics system is determined by the roots of the
characteristic polynomial. The stability analysis are concerned with involving linear
systems in the vector form

dx

dt
= Ax, (2.3)

where A is an n×n matrix and x = (x1, x2, . . . , xn)T , T denotes transpose. Solutions
of (2.3) are obtained by setting

x = veλt, (2.4)

where v is a constant vector (eigenvector corresponding to eigenvalue λ) and λ is
the eigenvalue which is a root of the characteristic polynomial

|A− λI| = 0, (2.5)
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where I is the identity matrix. The solution of (2.3) is stable if all roots λ of the
characteristic polynomial lie on the left-hand complex plane, that is the real part of
λ, Re(λ), is less than zero for all roots λ [8].

The stability of linear system (2.3) is given in the following definitions and theorem.
(see more detail in [11]).

Definition 2.1. Stable Critical Point [11] Let x∗ ≡ 0 be an equilibrium (criti-
cal) point of (2.3), and let x = x(t) denote the solution which satisfies the initial
condition x(0) = x0 where x0 6= x∗. The equilibrium x∗ is a stable critical point
if given any radius ρ > 0, there is a corresponding radius r > 0, such that if initial
position x0 satisfies |x0 − x∗| < r, then the corresponding solution x(t) satisfies
|x(t) − x∗| < ρ for all t > 0. In addition, if lim

t→∞
x(t) = x∗ wherever |x0 − x∗| < r,

then x∗ is an asymptotically stable critical point.

Definition 2.2. Unstable Critical Point [11] Let x∗ be an equilibrium (critical)
point of (2.3), and let x = x(t) denote the solution which satisfies the initial con-
dition x(0) = x0 where x0 6= x∗. The equilibrium x∗ is a unstable critical point
in this case: There is a disk of radius ρ > 0 with the property that, for any r > 0,
there is an initial position x0 satisfies |x0 − x∗| < r, yet the corresponding solution
x(t) satisfies |x(t)− x∗| ≥ ρ for at least one t > 0.

Theorem 2.1. [11] Let x∗ be a critical point of
dx

dt
= Ax. Then

(i) if A has all eigenvalues with negative real part, then x∗ is a locally asymptot-
ically stable (LAS) critical point.

(ii) if A has an eigenvalue with positive real part, then x∗ is an unstable critical
point.

2.2.2 Linearization of Nonlinear System

In this section, the linearization of system described by a nonlinear differential equa-
tion is performed. The procedure is based on the Taylor series expansion and on
knowledge of the behaviour solution of linear systems. The main idea is to approx-
imate a nonlinear system by a linearized system (around the equilibrium point),
which is known that the behaviour of the solutions of the linear system will be the
same as the nonlinear one.

Consider the general nonlinear system given by

dx

dt
= F(x) (2.6)

where

x =


x1
x2
...
xn

 and F(x) =


F1(x1, x2, . . . , xn)
F2(x1, x2, . . . , xn)

...
Fn(x1, x2, . . . , xn)

 .
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Supposed that x∗ = (x1, x2, . . . , xn)T is an equilibrium point which is obtained by
setting dx

dt
= 0 where 0 is and n × 1 zero matrix. Linearization (2.6) about x∗ by

setting z = x− x∗, where z = (z1, z2, . . . , zn)T represents a small quantity. Using
Taylor series expansion on the right-hand side of (2.6), it yields that

dz1
dt

= F1(x
∗
1, x
∗
2, . . . , x

∗
n) + z1

∂F1

∂x1
+ z2

∂F1

∂x2
+ · · ·+ zn

∂F1

∂xn
+higher order term,

dz2
dt

= F2(x
∗
1, x
∗
2, . . . , x

∗
n) + z1

∂F2

∂x1
+ z2

∂F2

∂x2
+ · · ·+ zn

∂F2

∂xn
(2.7)

+higher order term,
...

dzn
dt

= Fn(x∗1, x
∗
2, . . . , x

∗
n) + z1

∂Fn
∂x1

+ z2
∂Fn
∂x2

+ · · ·+ zn
∂Fn
∂xn

+higher order term,

where all partial derivatives are evaluated at x∗. Canceling higher order terms
(which contain very small quantities), the matrix form of (2.8) is given by

d

dt


z1
z2
...
zn

 ≈

F1(x

∗
1, x
∗
2, . . . , x

∗
n)

F2(x
∗
1, x
∗
2, . . . , x

∗
n)

...
Fn(x∗1, x

∗
2, . . . , x

∗
n)

+


∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xn

∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xn
...

∂Fn

∂x1
∂Fn

∂x2
· · · ∂Fn

∂xn



z1
z2
...
zn

 ,
or

dz

dt
≈ F(x∗) + J(x∗)z,

where J(x∗) is called the Jacobian matrix of F at x∗. Since F(x∗) = 0, the linearized
system can be represented as

dz

dt
≈ J(x∗)z. (2.8)

The stability of nonlinear system (2.6) may be analyzed in a neighborhood of the
equilibrium point x∗ by studying the linearized system (2.8).

2.2.3 Next generation method

The next generation method is used to establish the local asymptotic stability of
the disease-free equilibrium (DFE) for epidemiological models which can be grouped
into n homogeneous compartments. The method was first introduced by Diekmann,
et al [9], and refined for epidemiological models by P. van den Driessche and Wat-
mough [10]. The formulation is reproduced below.

First of all, let x = (x1, x2, . . . , xn)T , with each xi ≥ 0, be the number of individuals
in each compartment of the model. Define Xs = {x ≥ 0|xi = 0, i = 1, 2, . . . ,m}
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with m < n be the set of disease-free states of the model. It is important to
distinguish new infections from all other changes in population. Let F i(x) be the
rate of appearance of new infections in compartment i, V+

i (x) be the rate of transfer
of individuals into compartment i by all other means, and V−i (x) be the rate of
transfer of individuals out of compartment i. It is assumed that each function is
at least twice continuously differentiable in each variable. Suppose that the disease
transmission model, with non-negative initial conditions, can be written in the term
of the following system:

dxi
dt

= f i(x) = Fi(x)− V i(x), i = 1, 2, . . . , n, (2.9)

where V i(x) = V i−(x) − V i+(x) and the functions satisfy assumptions A(1)−A(5)
described below.

A(1) if x ≥ 0, then F i(x),V i+(x),V i−(x) ≥ 0 for i = 1, 2, . . . ,m.

A(2) if xi = 0, then V i−(x) = 0. In particular, if x ∈ Xs then V i−(x) = 0 for
i = 1, 2, . . . ,m.

A(3) F i(x) = 0 if i > m.

A(4) if x ∈ Xs, then F i(x) = 0 and V i+(x) = 0 for i = 1, 2, . . . ,m.

A(5) if Fi(x) is set to be zero, then all eigenvalues of Df(x0) have negative real
parts.

Here, Fi(x) represents the rate of appearance of new infections in compartment i,
V i−(x) represents the rate of transfer of individuals out in the compartment i,
V i+(x) represents the rate of transfer of individuals into in compartment i,

x0 denotes the disease-free equilibrium, Df(x0) is derivative
∂fi
∂xj

evaluated at x0.

The following lemma is obtained to partition the matrix Df(x0) by above conditions.

Lemma 2.1 ([10]). If x0 is a disease-free eqiolibrium of (2.9) and fi satisfies
A(1)−A(5), then the derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =

[
F 0
0 0

]
, DV(x0) =

[
V 0
J3 J4

]
,

where F and V are the m×m matrices defined by

F =

[
∂Fi
∂xj

(x0)

]
and V =

[
∂Vi
∂xj

(x0)

]
with 1 ≤ i, j ≤ m.

Further, F is non-negative, V is a non-singular M-matrix and J3 , J4 are matrices
associated with the transmission terms of the model, and all eigenvalues of J4 have
positive real parts.
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Finally, the following stability result follows.

Definition 2.3. Let λ1, λ2, . . . , λs be the eigenvalues of square matrix A. Then its
spectral radius denoted by ρ(A), that is defined as ρ(A) = maxi(|λi|).

Theorem 2.2. [10]. Consider the disease transmission model given by (2.9) with
f(x) satisfying conditions A(1)− A(5). If x0 is a DFE of the model, then x0 is
locally asymptotically stable if R0 < 1, but unstable if R0 > 1, where R0 is defined
by R0 = ρ

(
FV −1

)
and ρ is the spectral radius (dominate eigenvalue is magnitude).

2.2.4 Center manifold theorem

Theorem 2.3. [12] Consider the following general system of ordinary differential
equation with a parameter φ

dx

dt
= f(x, φ), f : Rn × R→ R, andf ∈ C2(Rn × R) (2.10)

Without loss of generality, it is assumed that 0 is an equilibrium for system (2.10)
for all values of the parameter φ, (that is f(0, φ)≡ 0 for all φ).

Assume

(A1) : A = Dx f(0,0)=(
∂fi
∂xj

, (0, 0)) is the linearized matrix of system (2.10) around

the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and all
other eigenvalues of A have negative real parts;

(A2) : Matrix A has a nonnegative right eigenvector ω and a left eigenvector υ
corresponding to the zero eigenvalue.

Let fk be the kth component of f and

ã =
n∑

k,i,j=1

υkωiωj
∂2fk
∂xi∂xj

(0, 0),

b̃ =
n∑

k,i=1

υkωi
∂2fk
∂xi∂φ

(0, 0)

The local dynamics of system 2.10 are totally round 0 determinate by â and b̂.

i. â > 0, b̂ > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable and
there exits a positive unstable equilibrium; when 0< φ�1, 0 is unstable, and
there exists a negative and locally asymptotically stable equilibrium;

ii. â < 0, b̂ < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0< φ �1, 0 is
locally asymtotically stable, and there exists a positive unstable equilibrium;
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iii. â > 0, b̂ < 0. When φ < 0 with |φ| � 1, 0 is unstable and there exits a locally
asymptotically stable equilibrium; when 0< φ �1, 0 is stable, and a positive
unstable equilibrium appears;

iv. â < 0, b̂ > 0. When φ changes from negative to positive , 0 changes its stabil-
ity from stable to unstable. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable. Particularly, if â > 0 and
b̂ > 0, then a backward bifurcation occurs at φ = 0.



CHAPTER 3 ANALYSIS OF A VACCINATED
EPIDEMIC MODEL OF INFLUENZA

This chapter is organized as follows. The model is displayed in section 3.1. The
model with vaccination which illustrated by Samsuzzoha, et al. [4] is divided into
five population groups : susceptible (S), vaccinated (V ), exposed (E), Infectious
(I) and recovered (R). In section 3.2, the effect of vaccine studied via mathematical
analysis of model including stability of equilibria of the model has been provided.

3.1 Model Formulation

A vaccinated epidemic model of influenza is based on monitoring the dynamics of the
sub-population (susceptible;S(t), vaccinated;V (t), exposed(latent); E(t), infectious;
I(t), recovered; R(t) at time t. Thus the total population in the system is given by
N = S(t) + V (t) + E(t) + I(t) +R(t).

Figure 3.1: The flow diagram of SVEIR model

The susceptible population is increased by new born and vaccinated population who
loss immunity because of earlier infection and vaccination. The susceptible popula-
tion is reduced through vaccination (moving to V ), infection (moving to I) and by
natural death.

The vaccinated population is increased by vaccination of susceptible. Since the vac-
cine does not confer immunity to all vaccine recipients the the vaccinated population
is reduced through susceptible (moving to S), vaccinated individuals may become
exposed (moving to E) and by natural death.
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The exposed population is increased by vaccinated who remain susceptible even af-
ter being vaccination, by susceptible who are not vaccinated (moving to E). The
exposed population is reduced by the recover (moving to R), natural death and
infected (moving to I).

The infected population is increased by exposed individuals become to infected. The
infected population is reduced by natural death, flu related death and recover (mov-
ing to R).

The recovered population is increased by recovered individuals from infected and
exposed. The recovered population is reduced by natural death and loss immunity
(moving to S).

A flow diagram of these processes is shown in Figure 3.1. The details of transmissions
between the populations can be transformed to the following non-linear differential
equations:

dS

dt
= −ββ

E

ES

N
− ββ

I

IS

N
− φS − µS + δR + θV + rN,

dV

dt
= −ββ

E
β

V

EV

N
− ββ

I
β

V

IV

N
− µV − θV + φS,

dE

dt
= ββ

E

ES

N
+ ββ

I

IS

N
+ ββ

E
β

V

EV

N
+ ββ

I
β

V

IV

N
− (µ+ κ+ σ)E, (3.1)

dI

dt
= σE − (µ+ α + γ)I,

dR

dt
= κE + γI − µR− δR.

and

N = S + V + E + I + R. (3.2)

The total population is defined by the derivative of N with depends on t is

dN

dt
= rN − µN − αI. (3.3)

To reduce the model (3.2) in terms of the dimensionless proportions of susceptible,
vaccinated, exposed, infectious and recovered populations, let

s =
S

N
, v =

V

N
, e =

E

N
, i =

I

N
, r1 =

R

N
. (3.4)

After calculating and replacing s by S, v by V, e by E, i by I and r1 by R, systems
3.2-3.3 can be written as
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dS

dt
= −ββ

E
ES − ββ

I
IS + αIS − φS − rS + δR + θV + r,

dV

dt
= −ββ

E
β

V
EV − ββ

I
β

V
IV − rV + αIV − rV − θV + φS,

dE

dt
= ββ

E
ES + ββ

I
IS + ββ

E
β

V
EV + ββ

I
β

V
IV + αIE − (r + κ+ σ)E,(3.5)

dI

dt
= σE − (r + α + γ)I + αI2,

dR

dt
= κE + γI − rR− δR + αIR.

and

1 = S + V + E + I +R.

Table 3.1: Description and parameter values of the models (3.5)

Parameters Descriptions Values References

β Contact rate 0.514 day−1 [4]

βE Ability to cause infection by ex-
posed individuals

0.250 [4]

βI Ability to cause infection by infec-
tious individuals

1.000 [4]

βV Ability to cause infection by vacci-
nation individuals

0.1 [4]

σ Rate of latency 0.5 day−1 [4]

γ Rate of clinically ill 0.2 day−1 [4]

δ Rate of duration of immunity loss 1/365 day−1 [4]

µ Natural mortality rate 5.5× 10−8 day−1 [4]

r Birth rate 7.14× 10−5 day−1 [4]

κ Recovery rate of latents 1.857× 10−4 day−1 [4]

α Flu induced mortality rate 9.3× 10−6 day−1 [4]

θ Rate of susceptible 1/365 day−1 [4]

φ Rate of vaccination Varied [4]

3.2 Analysis of the Model

The equilibrium points will be explored in the case of disease-free and endemic. In
each points, the locally of its associated equilibrium is investigated to understand
the effect of vaccine for disease transmission.

3.2.1 Disease-Free Equilibrium

In the absence of infection (that is E = I = 0), the model (3.2) has a unique disease-
free equilibrium (DFE), P0, obtained by setting the derivatives in (3.2) of zero. The
disease-free equilibrium of the system (3.2) is given by

P 0 = (
S0

N
,
V 0

N
,
E0

N
,
I0

N
,
R0

N
) = (

r(µ+ θ)

µ(µ+ θ + φ)
,

rφ

µ(µ+ θ + φ)
, 0, 0, 0). (3.6)
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The basic reproductive number of (3.2) can be established using the next generation
matrix operator method. Using the notation in Lemma 2.1 and Theorem 2.2, the
F and V (for the transition term) are given by

F =


ββEES

N
+
ββIIS

N
+
ββEβVEV

N
+
ββIβV IV

N
0
0
0
0


and

V =



(µ+ κ+ σ)E
−σE + (µ+ α + γ)I
−κE − γI + µR + δR

ββEES

N
+
ββIIS

N
+ φS + µS − δR− θV − rN

ββEβVEV

N
+
ββIβV IV

N
+ µV + θV − φS


The linear stability of P 0 can be established using the next generation operator
method on the system (3.2). Using the notation in Lemma 2.1 and Theorem 2.2,
the matrices F for the new infection terms and V for the transition terms are given,
respectively, by

DF(P0) = F =

 rββE(µ+ θ + βV φ)

µ(µ+ θ + φ)

rββI(µ+ θ + φ)

µ(µ+ θ + φ)
0 0


and

DV(P0) = V =

(
µ+ κ+ σ 0
−σ µ+ α + γ.

)
.

Hence, the basic reproductive number for model 3.2 is given by RV AC = ρ(FV −1) ,
where ρ is the spectral radius.

RV AC =
rβ(µβE + αβE + γβE + σβI)(µ+ θ + βV φ)

µ(µ+ α + γ)(µ+ κ+ σ)(µ+ θ + βV φ).
(3.7)

Hence, using Theorem 2.2, the following result is established.

Theorem 3.1. The DFE, P 0 , of the model (3.2) is locally asymptotically stable
(LAS) if RV AC < 1 , and unstable if RV AC > 1
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The basic reproductive number [10], denoted as RV AC , represents the expected
number of secondary cases produced in a completely susceptible population, by
a typical infective individual. If RV AC < 1 , when infected individuals, its entire
period of infectivity will produce less than one infected individuals on average. Thus,
disease will be wiped out of population. On the contrary, if RV AC > 1, then infected
individuals in its entire infective period having contact with susceptible individuals
will produce more than one infected individuals on average, which will then lead to
the disease invading the susceptible population.

3.2.2 Endemic Equilibrium

In order to find equilibrium of the model (3.2) (that is, equilibria where at least
one of infected components of the model (3.2) is non-zero), the following steps are
taken. Let P ∗ = (S̃∗, Ṽ ∗, Ẽ∗, Ĩ∗, R̃∗) = (S

∗

N
, V

∗

N
, E

∗

N
, I

∗

N
, R

∗

N
) represents any arbitrary

endemic equilibrium of the model (3.2). Further, let

G = ββEẼ
∗ + ββI Ĩ

∗. (3.8)

Solving the equations in (2.2) at the steady state gives

S̃∗ =
θṼ ∗ + r + δR̃∗

G∗ + µ+ φ
,

Ṽ ∗ =
φS̃∗

G∗βV + µ+ θ
,

Ẽ∗ =
G∗(S̃∗ + βV Ṽ

∗)

µ+ κ+ σ
, (3.9)

Ĩ∗ =
σẼ∗

µ+ α + γ
,

R̃∗ =
Ẽ∗(κµ+ κα + κγ + γσ)

(µ+ δ)(µ+ α + γ)
.

where

S̃∗ =
S∗

N
, Ṽ ∗ =

V ∗

N
, Ẽ∗ =

E∗

N
, Ĩ∗ =

I∗

N
, R̃∗ =

R∗

N
. (3.10)

Substituting (3.8) into (3.9) and simplifying, it can be shown that the non-zero
equilibrium of the model satisfy the following quadratic (in term of G )

G∗(a0G
∗2 + b0G

∗ + c0) = 0. (3.11)

Clearly, G∗ = 0 corresponds to the diseases-free equilibrium P 0 given in (3.2.1). For
G∗ 6= 0 the positive equilibrium of the model (2.2) can be obtained by solving (3.12)

a0G
∗2 + b0G

∗ + c0 = 0. (3.12)
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where

a0 = βV (δκk4 + δγσ − k3k4k5),
b0 = βV φδκk4 − k3k4k5k2 − k3k4k5k1βV + φδσγβV + δκk4k2 + rβV ββEk5k4+

rk5ββV βIσ + δγσk2,

c0 =
µk5k3k4(k2 + φ)

(rβ(k2βV φ)(βEk4 + βIσ))2
[1−RV AC ].

and

k1 = µ+ φ, k2 = µ+ θ, k3 = µ+ κ+ σ, k4 = µ+ α + γ, k5 = µ+ δ. (3.13)

From solving (3.12)for G∗ and substituting the result into (3.8). Thus, the positive
endemic equilibrium of the model (3.2) are obtained by solving for G∗ from the
quadratic (3.12) and substituting the results (positive values of G ) into the expres-
sion in (3.9).

Theorem 3.2. The vaccinated epidemic model has :
(i) a unique endemic equilibrium if c0 < 0⇐⇒ RV AC > 1,
(ii) a unique endemic equilibrium if b0 < 0 and c0 = 0 or b20 − 4a0c0 = 0,
(iii) no endemic equilibrium otherwise.

3.2.3 Local Stability of Endemic Equilibrium

Theorem 3.3. If RV AC > 1, then the unique endemic equilibrium P ∗ is locally
asymptotically stable.

Proof . To apply Theorem 2.3 in Chapter 2, let let S = x1, V = x2, E = x3, I =
x4andR = x5. The system (3.2) can be written in the form as follow:

dx1
dt

= −ββ
E
x3x1 − ββI

x4x1 + αx4x1 − φx1 − rx1 + δx5 + θx2 + r,

dx2
dt

= −ββ
E
β

V
x3x2 − ββI

β
V
x4x2 + αx4x2 − rx2 − θx2 + φx1,

dx3
dt

= ββ
E
x3x1 + ββ

I
x4x1 + ββ

E
β

V
x3x2 + ββ

I
β

V
x4x2 + αx4x3 (3.14)

− (r + κ+ σ)x3,

dx4
dt

= σx3 − (r + α + γ)x4 + αx24,

dx5
dt

= κx3 + γx4 − rx5 − δx5 + αx4x5.

It is found that the model (3.2) has the disease-free, P 0, and reproductive number,RV AC

which are identical to (3.6) and (5.3) , when µ = r , respectively, in Section 3.2.1.
Choosing β = β∗ as a bifurcation parameter and solving for β = β∗ from RV AC gives

β = β∗ =
(r + α + γ)(r + κ+ σ)(r + θ + σ)

(rβE + αβE + γβE + σβI)(r + θ + βV φ)
(3.15)
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The Jacobian of the system evacuated at disease-free, P 0 when β = β∗ is given by

J(P 0, β∗) =


−k1 θ − β1k2

(k2+φ)
− β2k2

(k2+φ)
δ

φ −k2 − β1βV φ
(k2+φ)

− β2βV φ
(k2+φ)

0

0 0 β1(k2+βV φ)
(k4+φ)

− k3 β2(k2+βV φ)
(k4+φ)

0

0 0 σ −k4 0
0 0 κ γ −k5

 (3.16)

where

β1 = ββE, β2 = ββI , k1 = r + φ, k2 = r + θ,

k3 = r + κ+ σ, k4 = r + α + γ, k5 = r + δ.

It can be verified that the eigenvalues of (3.14) has a simple zero eigenvalue and
the other negative eigenvalues. Hence, the DFE, P 0 is a nonhyperbolic equilibrium
when β = β∗ . The assumption (A1) of the Theorem (2.3) is then verified.

Further, the J(P 0, β∗) eigenvectors are computed as follows.
Let w = [w1, w2, w3, w4, w5]

T and v = [v1, v2, v3, v4, v5]
T be a right and a left eigen-

vector of J(P 0, β∗) respectively. It follows that the components of w are given by

w1 = w4
k5k4

2 − k4k7 − k42k6 − k6θφ+ βV k5θφ

θφ− φk4 − rk4
,

w2 = w4φ
−rk6 + k4k5 − k7 − k4k6 − φk6 + βV φk5 + rβV k5

θφ− φk4 − rk4
,

w3 = w4
k2
σ
, (3.17)

w4 > 0,

w5 = w4
κk2 + γσ

σ(r + δ)
.

Similarly, the components of V are given by,

v1 = 0, v2 = 0, v3 =
v4k2

k3βIk4 + k3βIβV φ
, (3.18)

v4 > 0, v5 = 0.

where

k1 = r + κ+ σ, k2 = r + α + δ, k3 =
k1k2

k2βE + σβI(k4 + βV φ)
, k4 = r + θ,

k5 =
k3(k2βE + σβI)

σ
, k6 =

α

k4 + φ
, k7 =

δ(κ(r + α + γ) + γσ)

σ(r + δ)
, k8 = k2βE + σβI .

To compute the coefficients â and b̂ (defined in Theorem 2.3):
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ã =
n∑

k,i,j=1

υkωiωj
∂2fk
∂xi∂xj

(0, 0), (3.19)

b̃ =
n∑

k,i=1

υkωi
∂2fk
∂xi∂β∗

(0, 0) (3.20)

the associated non-zero second-order partial derivatives of all functions on the right-
hand sides of system (3.14) are evaluated at DFE and are given by

∂2f1
∂x1∂x3

= −β∗βE,
∂2f4
∂x1∂x4

= −β∗βI + α,

∂2f2
∂x2∂x3

= −β∗βEβV ,
∂2f2
∂x2∂x4

= −β∗βEβV + α,

∂2f3
∂x1∂x3

= β∗βE,
∂2f3
∂x1∂x4

= β∗βI ,

∂2f3
∂x2∂x3

= β∗βEβV ,
∂2f3
∂x2∂x4

= β∗βIβV ,

∂2f3
∂x3∂x4

= α,
∂2f4
∂x42

= 2α,

∂2f5
∂x4∂x5

= α,
∂2f1
∂β∗∂x3

= −βE(r + θ)

r + θ + φ
,

∂2f1
∂x4∂β∗

= −βI(r + θ)

r + θ + φ
,
∂2f2
∂x3∂β∗

= − βEβV φ

r + θ + φ
,

∂2f2
∂x4∂β∗

= − βIβV φ

r + θ + φ
,
∂2f3
∂x3∂β∗

=
βE(r + θ)

r + θ + φ
+

βEβV φ

r + θ + φ
,

∂2f3
∂x4∂β∗

=
βI(r + θ)

r + θ + φ
+

βIβV φ

r + θ + φ
.

Thus, it follows from the above expressions that

ã =
2k8v4w4

2β∗

k1rβIσβk8(k4 + φ)
[r(αk2k8 + σαβIk1)(k4 + φ) +Q1Q2 + φβVQ1Q3

−{Q1Q4}]

b̃ =
5v4k2w4(k4 + φβV )(k2βE + σβI)

k1(k4 + φ)
[
βEk2 + σβI
σk2βI

] (3.21)

where Q1=β
∗k8k2βE + βIσβk8.

Q2=k4k7 + k4
2k6 + k6θφ.

Q3=rk6 + k7 + k4k6 + φk6.
Q4=k4

2k5 + θφβV k5) + φβVQ1(k5k4 + φβV k5 + rβV k5).

The coefficient ã is negative if Q1Q4 > r(αk2k8+σαβIk1)(k4+φ)+Q1Q2+φβVQ1Q3)
and b̃ is positive so that, according to Theorem (2.3), the unique endemic equilib-
rium point, P ∗, is locally asymptotically stable whenever RV AC > 1 and β > β∗
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with β close to β∗. This completes the proof.

In particular, by, theory of center manifold is confirmed that the unique endemic
equilibrium is locally asymptotically stable when RV AC > 1.

3.2.4 The Optimal Vaccine Coverage Level

The epidemiological implication of Lemma (2.1) is that if model parameters can
be selected (either via vaccination or other control measures) such that the basic
reproductive number, RV AC is less than unity, then the disease will be eradicated
from the community. The effect of vaccinated rate, φ , on RV AC is investigated by
using sensitivity analysis (i.e., differentiating RV AC partially with respect to control
parameter φ ). It is found that

∂RV AC

∂φ
= −(1− βV )(µ+ θ)R0

(µ+ θ + φ)2
(3.22)

where R0 is the basic reproductive number of infection for the vaccination-free model
(φ = 0).

R0 =
rβ(µβE + αβE + γβE + σβI)

µ(µ+ α + γ)(µ+ κ+ σ)
. (3.23)

from which it follows that RV AC is decreasing function of φ . It is clear that vac-
cination is critically important in making RV AC less than unity. This implies that
vaccination to susceptible populations will reduce number of infections down. From
the definition of RV AC in 3.7, it can be seen that if

φc =
(µ+ θ)(R0 − 1)

1− βVR0

(3.24)

then RV AC = 1. Since RV AC is a decreasing function of φ, it follows that if φ > φc
then RV AC < 1 . Thus, the condition for disease eradication is satisfied if φ > φc
and φc is called the optimal vaccine coverage level needed for disease eradication.

3.2.5 The effect of the rate of recovery (γ) latency(κ) and vaccination-
induced immunity loss (θ) on (RV AC)

By differentiating RV AC partially with respect to control parameters γ, κ and θ
respectively, yield

∂RV AC

∂γ
= − (rβσβI)(µ+ θ + βV φ)

µ(µ+ θ + φ)(µ+ κ+ σ)(µ+ α + γ)2
< 0, (3.25)

∂RV AC

∂κ
= −rβ(µβE + αβE + γβE + σβI)(µ+ θ + βV φ)

µ(µ+ α + γ)(µ+ θ + φ)(µ+ κ+ σ)2
< 0, (3.26)

∂RV AC

∂θ
=

R0(1− βV )

(µ+ θ + φ)2
> 0, (3.27)
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Clearly, RV AC is decreasing function of γ and κ , see (3.25) and (3.26), respectively.
Whereas RV AC is increasing function of θ , see (3.27).



CHAPTER 4 NUMERICAL EXPERIMENTS

The dynamic of the model (3.5) is illustrated in this chapter. All the numerical
results were performed on a desktop computer with 4.00 GHz core i3 processer
and 4 GB Ram. The software uses MATHLAB R2010a running under window 8.
This chapter is organized as follows. The dynamic behavior of the model, the system
(3.2) is integrated numerically by using fourth order Rungge-Kutta method with the
parameter values in Table 4.1 ,where N = 1, 000, 000 and various value of φ . The
initial conditions [4] are S(0) = 0.799, V (0) = 0.197, E(0) = 0, I(0) = 0, R(0) = 0.

Table 4.1: Description and parameter values of the models (3.2)

Parameters Descriptions Values References

β Contact rate 0.514 day−1 [4]

βE Ability to cause infection by ex-
posed individuals

0.250 [4]

βI Ability to cause infection by infec-
tious individuals

1.000 [4]

βV Ability to cause infection by vacci-
nation individuals

0.1 [4]

σ Rate of latency 0.5 day−1 [4]

γ Rate of clinically ill 0.2 day−1 [4]

δ Rate of duration of immunity loss 1/365 day−1 [4]

µ Natural mortality rate 5.5× 10−8 day−1 [4]

r Birth rate 7.140× 10−5 day−1 [4]

κ Recovery rate of latents 1.857× 10−4 day−1 [4]

α Flu induced mortality rate 9.3× 10−6 day−1 [4]

θ Rate of susceptible 1/365 day−1 [4]

φ Rate of vaccination Varied [4]

With parametervalues in Table 4.1 , the threshold vaccination coverage or critical
vaccination parameter is φc = 0.00715 . Table ?? depicts the variables of the model
at steady-state as a function of φ and RV AC . It is clear from this table that when
the vaccination coverage level ( φ ) increases, the value of RV AC decreases. The
result verify that the endemic equilibrium, P ∗ = (S̃∗, Ṽ ∗, Ẽ∗, Ĩ∗, R̃∗) (that is the
number of exposed ( Ẽ∗ ) and infectious ( Ĩ∗ ) individuals are not zero) is stable if
the vaccination coverage level ( φ )is below the threshold ( φc ) . Thus, the disease
will persist in the population since RV AC is greater than unity. The profiles of in-
fected populations for φ = 0, 0.003, 0.005. are depicted in Figure. 4.1 . The result
show, as increases, the number of infectious individual decreases and the duration
of outbreak is delayed before convergence to the corresponding endemic equilibrium
as shown in Table ??. However, when φ is increased to values greater than φc , such
as φ = 0.0072 Table ?? confirms that the disease-free equilibrium (P 0 ) is stable (
since RV AC is less than unity in this case ) and the infected population ( the sum of
exposed and infected individuals ) vanishes in time. This leads to the eradication of
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the disease from the community. These simulation results are in line with Theorem
2.2 in Chapter 2.

The effect of the recovery rate of latent( κ ), the recovery rate of infectious(γ), and
vaccination-induced immunity loss rate ( θ ) are investigated using the parameter
values in Table 4.1,φ = 0.001 and vary the parameters κ , γ and θ , respectively.
The results are tabulated in Table 4.3-4.5. Tables 4.3 and ?? show that the number
of infectious individuals decrease as κ and γ increase. Table 4.5 also shows that
increasing the duration of the loss of immunity induced by vaccination increase
the number of of infectious individuals because it reduces the threshold vaccination
coverage ( φc ) which is critically important for the success of public health strategies
for controlling an epidemic.
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Figure 4.1: Profile of the proportion of infectious individuals using φ =
0, 0.003, 0.005.
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Figure 4.2: Profile of the proportion of infectious individuals using φ = 0.0072.
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Table 4.2: Effect of vaccination coverage(φ) on RV AC And S∗, V ∗, E∗, I∗, R∗ at
steady state

φ RV AC S∗ V ∗ E∗ I∗ R∗

0 2.82 354,045 0 3,562 8,900 633,493

0.003 1.51 322,759 312,855 2,009 5021 357,356

0.005 1.19 302,812 512,349 1,019 2,546 181,274

0.007 1.01 283,657 703,902 68 171 12,202

0.0071 1.00 282,718 713,261 22 55 3,944

0.0072 0.99 280,800 719,200 0 0 0

Table 4.3: Effect of recovery rate of latents(κ)on RV AC And S∗, V ∗, E∗, I∗, R∗ at
steady state

κ RV AC S∗ V ∗ E∗ I∗ R∗

0 2.15 343,316 105,952 3,037 7,591 540,104

0.1 1.79 411,447 132,370 2,103 5,256 448,824

0.3 1.34 547,613 186,154 924 2,310 262,999

0.5 1.07 683,706 240,667 210 526 74,891

0.55 1.02 717,723 254,368 74 185 27,650

0.6 0.98 737,610 262,390 0 0 0

Table 4.4: Effect of recovery rate of infectious(γ)on RV AC And S∗, V ∗, E∗, I∗, R∗

at steady state

γ RV AC S∗ V ∗ E∗ I∗ R∗

0.1 4.11 180,939 45,862 4,206 21,017 747,976

0.2 2.15 343,444 106,001 3,035 7,586 539,934

0.3 1.50 491,523 163,890 1,908 3,180 339,499

0.4 1.17 627,159 217,960 859 1,074 152,948

0.45 1.06 690,806 243,529 364 405 64,896

0.5 0.98 737,610 262,390 0 0 0

Table 4.5: Effect of rate of vaccination-induced immunity(θ)on RV AC And S∗, V ∗,
E∗, I∗, R∗ at steady state

θ RV AC S∗ V ∗ E∗ I∗ R∗

0.0001 0.65 146,320 853,680 0 0 0

0.0002 0.82 213,465 786,535 0 0 0

0.0003 0.97 270,818 729,182 0 0 0

0.00035 1.03 297,987 560,569 779 1,948 138,717

0.0004 1.10 306,101 479,436 1,182 2,955 210,326
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Figure 4.3: Profile of the proportion of susceptible, vaccinated, exposed, infectious,
recovered individuals using φ = 0.
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Figure 4.4: Profile of the proportion of susceptible, vaccinated, exposed, infectious,
recovered individuals using φ = 0.003.
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Figure 4.5: Profile of the propotion of susceptible, vaccinated, exposed, infectious,
recovered individuals using φ = 0.005.
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Figure 4.6: Profile of the propotion of susceptible, vaccinated, exposed, infectious,
recovered individuals using φ = 0.007.
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Figure 4.7: Profile of the propotion of susceptible, vaccinated, exposed, infectious,
recovered individuals using φ = 0.0071.
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Figure 4.8: Profile of the propotion of susceptible, vaccinated, exposed, infectious,
recovered individuals using φ = 0.0072.



CHAPTER 5 DISCUSSIONS AND CONCLUSIONS

5.1 Conclusion

In this thesis using an influenza model with vaccination presented in [3] analyzed
stability of disease-free equilibrium and endemic equilibrium.

dS

dt
= −ββ

E

ES

N
− ββ

I

IS

N
− φS − µS + δR + θV + rN,

dV

dt
= −ββ

E
β

V

EV

N
− ββ

I
β

V

IV

N
− µV − θV + φS,

dE

dt
= ββ

E

ES

N
+ ββ

I

IS

N
+ ββ

E
β

V

EV

N
+ ββ

I
β

V

IV

N
− (µ+ κ+ σ)E, (5.1)

dI

dt
= σE − (µ+ α + γ)I,

dR

dt
= κE + γI − µR− δR.

The total population is defined by the derivative of N with respect to t is

N = S + V + E + I + R,
dN

dt
= rN − µN − αI. (5.2)

The basic reproductive number of the model is derived by using next generation
method.

RV AC =
rβ(µβE + αβE + γβE + σβI)(µ+ θ + βV φ)

µ(µ+ α + γ)(µ+ κ+ σ)(µ+ θ + φ).
(5.3)

This number (5.3) is the threshold condition for the existence of the endemic state.
Stability analysis of the model (3.2) shows that the disease-free equilibrium (P 0)
is locally asymptotically stable, that is no endemic equilibrium (P ∗), if the basic
reproductive number is less than unity RV AC < 1 and unstable when RV AC > 1

On the other hand, by theory of center manifold, there is non-existence endemic
equilibrium when RV AC < 1. This theory is confirmed that the unique endemic
equilibrium is locally asymptotically stable when RV AC > 1. The model is analyzed
to gain insight into their dynamical features and used to monitor transmission dy-
namics in a population. The study shows the following :

The vaccination coverage level, φc is defined and is given by

φc =
(µ+ θ)(R0 − 1)

(1− βVR0)
(5.4)

where

R0 =
β(µβE + αβE + γβE + σβE)

(µ+ α + γ)(µ+ κ+ σ)
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is the reproductive number of infection for the vaccination-free model (φ = 0).

From the parameters in Table 4.1, The optimal vaccine coverage level is 0.00715.
The reproductive number RV AC is less than one provided the vaccination coverage
level exceeds a certain threshold φc. This result predicts in Table ??. Meanwhile,
the endemic equilibrium is stable if the vaccination coverage level (φ) is less than
φc, see Table ?? and Figure 4.1 Meanwhile, the endemic equilibrium is stable if the
vaccination coverage level (φ) is less than 0.00715 , see Table ?? and Figure 4.2.

The relative importance parameters in the transmission are tabulated in Tables ??-
4.5 These results φ, θ, κ, γ are the sensitive parameters for S∗, V ∗, E∗, I∗, R∗. The
results also show that the use of vaccines that offer life-long protection is a crucial
public health objective for disease control or eradication. This is especially critical
in countries where finances play a critical role in the number of people who receive
vaccines.
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APPENDICES

Appendix A To reduce the model (3.2) in terms of the dimensionless proportions
of susceptible, vaccinated, exposed, infectious and recovered populations,
let

s =
S

N
, v =

V

N
, e =

E

N
, i =

I

N
, r1 =

R

N
.

To calculate derivative of s, v, e, i and r1 with time t.

ds

dt
=

d S
N

dt

=
1

N
[
dS

t
− sdN

dt
]

= −ββ
E
es− ββ

I
is+ αis− φs− rs+ δr1 + θv + r

dv

dt
=

d V
N

dt

=
1

N
[
dV

t
− vdN

dt
]

= −ββ
E
β

V
ev − ββ

I
β

V
iv − αiv − θv + φs

de

dt
=

dE
N

dt

=
1

N
[
dE

t
− edN

dt
]

= ββ
E
es+ ββ

I
is+ ββ

E
β

V
ev + ββ

I
β

V
iv − (r + κ+ σ)e

di

dt
=

d I
N

dt

=
1

N
[
dI

t
− idN

dt
]

= σe− (r + α + γ)i+ αi2

dr1
dt

=
dR
N

dt

=
1

N
[
dR

t
− r1

dN

dt
]

= κe+ γi− rr1 − δr + αir1

After replacing s by S, v by V, e by E, i by I and r1 by R, systems (3.2) - (3.3) can
be written as
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dS

dt
= −ββ

E
ES − ββ

I
IS + αIS − φS − rS + δR + θV + r,

dV

dt
= −ββ

E
β

V
EV − ββ

I
β

V
IV − rV + αIV − rV − θV + φS,

dE

dt
= ββ

E
ES + ββ

I
IS + ββ

E
β

V
EV + ββ

I
β

V
IV + αIE − (r + κ+ σ)E,(5.5)

dI

dt
= σE − (r + α + γ)I + αI2,

dR

dt
= κE + γI − rR− δR + αIR.

and

1 = S + V + E + I +R.
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