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CHAPTER 1 INTRODUCTION

The best proximity point evolves as a generalization of the idea of the best
approximation. The best approximation results provide an approximate solution to
the fixed point equation T'r = x, when the non-self-mapping 7" has no fixed point.
In respective, a well-known best approximation theorem, due to Fan [1], insists the
fact that if K is a nonempty compact convex subset of a Hausdorff locally convex
topological vector space E' and T : K — F is a continuous mapping, then there
exists an element x satisfying the condition d(z, Tx) = inf{d(y, Ty) : y € K}, where
d is a metric on E. The best approximation theorem assures the existence of an
approximate solution; the best proximity point theorem is considered for solving
the problem to find an approximate solution which is optimal. Given nonempty
closed subsets A and B of F, when a non-self-mapping 7' : A — B has not a fixed
point, it is quite natural to find an element z* such that d(z*,Tz*) is minimum.
The best proximity point theorems assure the existence of an element x* such that
d(z*,Tx*) = d(A, B) := inf{d(z,y) : © € A,y € B}; this element is called the best
proximity point of T'. Moreover, if the mapping under discussion is a self-mapping,
the best proximity point theorem becomes to a fixed point result. Some of interesting
results regarding best proximity points can be found in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16]

In Chapter 1,we review the background of this thesis for best proximity point
theorems.

In Chapter 2, we give the necessary notations, definitions, some useful lemmas
which will be used in the later chapter.

In Chapter 3, we prove the existence of best proximity point theorems which is
a generalized contraction for non-self mapping and also give some examples.

Finally, in Chapter 4, we give the summary of all the results and the conclusion

of this dissertation.



CHAPTER 2 PRELIMINARIES

In this chapter, we give some basic concepts including with definitions, notations
and some useful lemmas which are all necessary to the later chapters. Throughout
this dissertation, let R and N stand for the set of all real numbers and the set of all

natural numbers, respectively.

2.1 Some Definitions

Definition 2.1.1. Let X be a nonempty set. A metric on X is a real function

d: X x X — R satisfying the following conditions:

(1) d(xz,y) > 0 for all x,y € X;

(2) d(z,y) =0<=z =y for all z,y € X

(3) d(z,y) = d(y,z) for all x,y € X;

(4) d(z,y) < d(z,z) +d(z,y) for all z,y,z € X.

A set X with a metric d is called a metric space. The elements of X are called

the points of the metric space (X, d).

Definition 2.1.2. A sequence {z,} is a metric space (X, d) is said to converge to

x € X if, for every € > 0, there exist N € N such that
d(x,,x) <€,

for n > N. In such case, we write x,, — x or lim,,_,., x,, = = and x is called the limit
of a sequence {z,}. If lim,,_,o 2, = = for some x € X, the sequence {z,} is called

convergent; otherwise it is called divergent.

Definition 2.1.3. A sequence {z,} in a metric space (X,d) is called Cauchy se-

quence if for every € > 0 there is N € N such that d(x,, x,,) < € for all n,m > N.

Definition 2.1.4. A metric space (X,d) is said to be complete if every Cauchy

sequence in X converges.



Definition 2.1.5. A subset M of metric space (X,d) is closed if every sequence

{z,} in M such that lim, ., =, = = implies z € M.

Definition 2.1.6. Let (X, d) be a metric space, a € X and B C X. The distance

from a point a to B C X is given by

d(a, B) = inf{d(a,b) : b € B}.

2.2 Best Proximity Point

Let A and B be nonempty subsets of a metric space (X, d), we recall the following

notations and notions that will be used in what follows:
d(A, B) .= inf{d(z,y) : x € A,y € B},
Ag:={x € A:d(z,y) = d(A, B) for some y € B},
By :={y € B:d(z,y) = d(A, B) for some = € A}.
If AN B # 0, then Ay and By are non-empty. Further, it is interesting to notice

that Ay and By are contained in the boundaries of A and B respectively, provided

A and B are closed subsets of a normed linear space such that d(A4, B) > 0 [17].

Definition 2.2.1. A point x in A is said to be a best prozimity point of the mapping
S : A — B if it satisfies the condition that

d(xz,Sz) = d(A, B).

It can be observed that a best proximity reduces to a fixed point if the underlying

mapping is a self-mapping.

Definition 2.2.2. [18] A mapping T : A — B is called a prozimal contraction of
the first kind if there exists k € [0, 1) such that

d(u,Tz) = d(A, B)

d(v, Ty) = d(A, B)

= d(u,v) = kd(x,y),

for all z,y,u,v € A.
It is easy to see that a self-mapping that is a proximal contraction of the first
kind is precisely a contraction. However, a non-self-proximal contraction is not

necessarily a contraction.



Definition 2.2.3. [18] A mapping T : A — B is called a proximal contraction of
the second kind if there exists k € [0,1) such that

d(u,Tz) = d(A, B)

= d(Tu,Tv) = kd(Tz,Ty),
d(v, Ty) = d(A, B)

for all z,y,u,v € A.

Definition 2.2.4. [19] A mapping S : A — B is called a generalized proximal

—contraction of the first kind if for all x,y,u,v € A satisfies

d(u,Sx) = d(A, B)

— d(u,v) = Yd(z,y),
d(v, Sy) = d(A, B)

where 9 : [0,00) — [0,00) is an upper semicontinuous function from the right such

that ¢ (t) <t for all t > 0.

Definition 2.2.5. [19] A mapping S : A — B is called a generalized proximal

—contraction of the second kind if for all x,y,u,v € A satisfies

= d(Su, Sv) = ¥d(Sz, Sy),

where ¢ : [0,00) — [0,00) is an upper semicontinuous function from the right such

that ¢(t) <t for all ¢ > 0.

It is easy to see that if we take ¢(t) = «(t), where a € [0, 1), then a generalized
proximal @ —contraction of the first kind and generalized proximal )—contraction
of the second kind reduce to a proximal contraction of the first kind and a proximal
contraction of the second kind, respectively. Moreover, it is easy to see that a self-
mapping generalized proximal 1)—contraction of the first kind and the second kind

reduces to the condition of Boy and Wong’ s fixed point theorem [20].

Definition 2.2.6. Let S: A — B and T : B — A be mappings. The pair (5,7 is

called a prozimal cyclic contraction pair if there exists k € [0,1) such that

d(a, Sz) = d(A, B)

= d(a,b) < kd(z,y)+ (1 — k)d(A, B),
d(b,Ty) = d(A, B)

for all a,z € A and b,y € B.



Definition 2.2.7. Leting S: A — B and g : A — A be an isometry. The mapping

S is said to preserve isometric distance with respect to g if
d(Sgz, Sgy) = d(Sz, Sy),
for all z,y in A.

Definition 2.2.8. A is said to be approzimatively compact with respect to B if every
sequence z,, in A satisfies the condition that d(y, x,) — d(y, A) for some y in B has

a convergent subsequence.

Definition 2.2.9. [21] Let (A, B) be a pair of nonempty subsets of X with Ag # 0.

Then the pair (A, B) is said to have the P-property if and only if

d(z1,11) = d(A, B) = d(v1,22) = (y1,%)
d(x2,12) = d(A, B) | o

where x1, x5 € Ag and yq,y2 € By.

It is easy to see that, for any nonempty subset A of X, the pair (A, A) has the
P-property.

Definition 2.2.10. [22] Let (A, B) be a pair of nonempty subsets of a metric space
(X, d) with Ay # (). Then the pair (A, B) is said to have the weak P-property if and
only if

d(z1,51) = d(A, B)

d(x2,y2) = d(A, B)
for all z1,29 € A and y1,y, € B

—  d(x1,22) < d(y1,99),

Definition 2.2.11. [23] A self mapping 7' : X — X is said to be a-admissible,
where a1 X x X — [0, 00), if

r,y€e X, alx,y) > 1= a(Tz,Ty) > 1.

Definition 2.2.12. [24] Let T: A - B and a: A x A — [0,00). We say that T is

a— prorimal admissible, if

a(zy,x9) > 1
d(uy, Tzy)

=d(A, B) = a(u,ug) > 1,
d(’UQ,T.CUQ) = d(A

, B)

for all x1, x9, ur, us € A.



Clearly, for self-mapping, T" is a-proximal admissible implies T is a-admissible.

Definition 2.2.13. We say the function ¢ : [0,00) — [0,00) is a (c)-comparison
function if and only if the following conditions hold:

(®1) ¢ is a nondecreasing function,

(®g) for any t > 0, > 7 ©"(t) is a convergent series.

We denote the set of (c)-comparison function by W.

It is easily proved that if ¢ is a (c)-comparison function, then (t) < ¢ for all
t>0.

Definition 2.2.14. [25] Let 6 : [0,00)* — [0, 00) satisfies the following conditions:
(1) 6 is continuous,

(2) O(a,b,c,d) = 0 if and only if the product abed = 0.

We denote the class of function 6 by ©.

Definition 2.2.15. A set P is partially ordered by a relation < on P (we call < a
partial order) provided the following are true:

(1) (= is reflexive) for each x € P, < x,

(2) (R is transitive) if x <y and y < z, then z < z,

(3) (= is antisymmetric) if + <y and y < z, then z = y.

Definition 2.2.16. [26] Let (X, <) be a partially ordered set. The mapping F :
X x X — X is said to have the mized monotone property if F(x,y) is monotone

nondecreasing in x and monotone nonincreasing in y; that is, for any xz,y € X,
T1, 02 € X, 11 X @9, implies, F(z1,y) X F(za,y),
Y1,Y2 € X, y1 = yo, implies, F(z,y1) = F(x,y2).

Definition 2.2.17. Let (X, d, <) be a ordered metric space and A, B are nonempty
subset of X. A mapping F' : A x A — B is said to be prozimal mixed monotone
property if F(x,y) is proximally nondecreasing in x and is proximally non-increasing

in y, that is, for all z,y € A.



and

Y1 = Yo
d(us, F(z,y1)) = d(A,B) ¢ = us = ug,
d<u47F(377y2)) = d(A7 B)

where T1,T2,Y1,Y2, U1, U2, U3, Us S A

One can see that, if A = B in the above definition, the notion of proximal mixed

monotone property reduces to that of mixed monotone property.

Lemma 2.2.18. [26] Let (X, d, <) be an ordered metric space and A, B are nonempty
subset of X. Assume Aq is nonempty. A mapping F : A x A — B has proximal
mized monotone property with F(Ay X Ag) C By then for any xg,x1, T2, y0 and y;

are elements in Ag
xo < x1 and Yo > Y1
d(xq, F(zo,90)) = d(A,B) ¢ = x1 < Xa.
d(z2, F(z1,y1)) = d(A, B)
Lemma 2.2.19. [26] Let (X, d, <) be an ordered metric space and A, B are nonempty
subset of X. Assume Aq is nonempty. A mapping F : A x A — B has proximal
mized monotone property with F(Ag X Ag) C By then for any o, x1,Y0,y1 and ys
are elements in Ag
o < x1 and Yo > Y1
d(y1, F(yo, 0)) = d(A, B) ¢ == Y1 = Y.
d(y2, F'(y1, 1)) = d(A, B)
Definition 2.2.20. Let (X, d, <) be an ordered metric space and A, B are nonempty

subset of X. A mapping F' : A x A — B is said to be proximally coupled weak

contraction if it satisfies the following condition:

r1 < zoand y; > Yo
— w<d(u1, UQ)) < w<maX(d<l‘1, x2>7 d(yla y2>>)

—¢(max(d(zy, %3), d(y1,12)))

d(“h F(%; yl)) = d(A, B)
d(ug, F(x2,12)) = d(A, B)

for all xq1,x9,y1,y2, ur,us € A, where 1 is altering distance function, ¢ is nonde-

creasing function also ¢(t) = 0 iff ¢ = 0.



One can see that, if A = B in the above definition, the notion of proximally

coupled weak contraction reduces to that coupled weak contraction



CHAPTER 3 BEST PROXIMITY POINT THEOREMS

The aim of this chapter is to introduce new mappings which is generalize con-
traction in non-self mapping and and prove best proximity point in metric spaces

for these class.

3.1 Generalized Proximal a-i-Contraction Mappings and

Best Proximity Points

In this section, we introduce the new class of generalized proximal a——contraction
mappings and prove best proximity theorems for this class and also give some ex-

amples to illustrate our main Theorem.

Definition 3.1.1. A mapping S : A — B is said to be a generalized prozimal

a — P—contraction of the first kind, if satisfies
d(u,Sx) = d(v,Sy) = d(A, B) = a(z,y)d(u,v) < (d(z,y)),

for all u,v,z,y in A, where 9 : [0,00) — [0, 00) is an upper semicontinuous function

from the right such that ¢ (t) <t for allt > 0and a: A x A — [0, +00).
Example. Consider the complete metric space R? with metric defined by
d((x1,91), (22,92)) = |21 — 22| + [t1 — v2],
for all (z1,y1), (T2, y2) € R Let
A={(z,0):0<z <1},

B={(z,1):0<z<1}.

Then d(A, B) = 1. Define the mappings S : A — B as follows:

S((z,0)) = (g - %2 1) .

First, we show that .S is generalized proximal a — 1)—contraction of the first kind.
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Consider a function ¢ : [0,00) — [0, 00) defined by

We define the mapping o : A x A — [0, +00) by

2, Ve,ye A
a(z,y) =
0, otherwise.

Let (z1,0), (22,0), (a1,0) and (ag,0) be elements in A satisfying
d((z1,0),S(a1,0)) =d(A,B) =1 and d((x9,0),S5(az,0)) =d(A,B)=1.

It follows that
. 2
@:%—%{mi:Lz

Since « is commutative, we may assume that a; — as > 0, so we have

a<<a17 0)7 <a27 0))d((:€1, O)? (va 0)) = 2d((£l}1, 0)7 <x27 O)

4
_ o (m_a) (e 4
N 2 4 2 4
_ (ﬂ_%>_ ai a3
n 2 2 4 4
1 1
= 2{5(@1-&2)—1(01%—@3)}
1
< (al_a2)_§(a1_a2)2

Thus, S is a generalized proximal o ——contraction of the first kind. Next, we show
that S is not a ¥»—proximal contraction of the first kind. Suppose S is ¥)—proximal

contraction of the first kind then for each (z,0), (y,0), (a,0), (b,0) € A satisfying
d((x,0),5(a,0)) = d(A, B) =1 and d((y,0),5(b,0)) = d(A, B) = 1.

The function ¥ : [0, 00) — [0, 00) defined by
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It follows that

So, we have
d((z,0), (y,0)) # ¢ (d((a,0),(b,0))).

Therefore, S is not a 1—proximal contraction of the first kind.

Definition 3.1.2. A mapping S : A — B is said to be a generalized prozimal

a — YP—contraction of the second kind, if satisfies
d(u, Sx) = d(v, Sy) = d(A, B) = a(z,y)d(Su, Sv) < P(d(Sz, Sy)),

for all u,v,z,y in A, where ¢ : [0,00) — [0,00) is an upper semicontinuous from

the right such that ¥ (t) <t forallt >0and a: A x A — [0, +00).

Definition 3.1.3. Let (X, d) be a metric space. A subset A of X satisfies property
* , if {z,} is a sequence in A such that a(z,,z,41) > 1 and x, — = € A for all

n € N, then a(z,z,) > 1 for all n € N.

Definition 3.1.4. Let A and B be two subsets of metric space (X,d). Let T': A —
Band g: AUB — AU B. A mapping T satisfies condition Uy, if Vx,y € A such
that d(gz, Tx) = d(A, B) and d(gy, Ty) = d(A, B), we have a(z,y) > 1.

Theorem 3.1.5. Let (X, d) be a complete metric space and let A and B be non-
empty, closed subsets of X such that Ay and By are nonempty and A and B satisfies
property x. Let S: A— B, T:B — Aandg: AUB — AU B satisfy the following
conditions:

(a) S and T are generalized proximal o — h—contraction of the first kind with
a—proximal admissible;

(b) g is an isometry;

(¢c) S(Ag) C By, T(By) C Ayp;

(d) Ay C g(Ao) and By C g(Bo);

(e) There exist elements xy and x1 in Ay such that d(gxy,Sxo) = d(A, B) and
azg,x1) > 1.

(f) S and T satisfies property Orp.

Then, there exists a unique point x in A and there exists a unique point y € B such
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that
d(gz,Sx) = d(gy, Ty) = d(z,y) = d(A, B).

Moreover, for any fived xq in Ag, the sequence {x,}, defined by
d(gxn41, Sz,) = d(A, B),

converges to the element x. For any fized yo in By, the sequence {y,}, defined by
d(gyn+1, Tyn) = d(A, B),

converges to the element y. On the other hand, a sequence {u,} in A converges to

x with o(zn,,u,) > 1, if there is a sequence of positive numbers {€,} such that
nll_)IIQloen =0 and d(tupi1, 2nt1) < €n,

where zp11 in A satisfies the condition that d(gzp41, Sun) = d(A, B).

Proof. From condition (g), there exist elements zy and z7 in Ay such that

d(gzy, Szo) = d(A, B), and a(zg,z1) > 1. (3.1.1)

Again, since S(Ag) € By and Ay C g(Ap), there exists an element x5 in Ay such
that
d(gza, Sz1) = d(A, B). (3.1.2)

By (3.1.1), (3.1.2) and the a-proximal admissible, we get
a(xy, za) > 1.
Since S(Ag) € By and Ay C g(Ap), there exists an element z3 in Ay such that
d(gxs, Sxe) = d(A, B). (3.1.3)
Again, By (3.1.2), (3.1.3) and the a-proximal admissible, we get
azy, x3) > 1.

By similar fashion, we can find z,, in Ay. Having chosen x,,, one can determine an

element x, 1 in Ay such that

d(gxni1, Szy) = d(A, B), (3.1.4)
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and
Ty, Tpyr) > 1. (3.1.5)

Because of the facts that S(Ag) € By and Ay C g(Ap), by a generalized proximal
a — p—contraction of the first kind of S, ¢g is an isometry and property of v, for

each n in N, we have

d(anrla xn) S a(mnfla $n>d(l’n+1, xn)
- a(xn—ly xn)d(gl‘n-i—la gxn)
< (d(wy-1, 7))

S d(ajnfh xn)

Hence, that the sequence {d(x,41,x,)} is non-decreasing and bounded bolow.

Hence, then exists » > 0 such that

lim d(z,i1,2,) =7
n—oo

We claim that » = 0.
If r > 0, then

ro= lim d(zp41, %)
n—0o0

< ILm Y(d(2n, Tp-1))

= ¥(r)

< T
which is a contradiction and hence r = 0. That is,

lim d(z,41,2,) = 0. (3.1.6)

n—o0

Next we show that {z,} is a Cauchy sequence. Suppose the contrary, then there

exists € > 0 and subsequence {z,, },{zn,} of {z,} such that ny > m; > k with
Tk = ATy, Tny,) > € and d(Tpm,,, Tn,—1) < €,
for k € {1,2,3,...}. Putting 8, = d(x,11, ),

£ S Tk S d(fEmk, xnk—l) + d<xnk—1a xnk>

< €+6nk—17
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it follows from, that

lim r, = €. (3.1.7)

k—o0

On the other hand, by constructing the sequence {z,}, we have
d(gTmy+1, ST, ) = d(A,B) and  d(gxn, 11,57, ) = d(A, B).

By the transitive of «, we get a(zy,,,,) > 1. Since S is a generalized proximal

a — —contraction of the first kind and ¢ is an isometry, we have

A Tpyi1, Tnpr1) = d(9Tmy41, 9Tny41)

IN

Oz(l‘mk,l'nk) (g$mk+1>g$nk+l)
= a<xmkaxnk) (xmk’xnk>
(d

(8

IN

(T Ty )
and we also have
sy < d(ZL’mk,ZEmk+1) + d(xnk+1a x”k) + d<xmk+17 $77»k+1)

= Bmk + Bnk + d(xmqul’ .Tnk+1)

= Bm, + By + A9y 41, 9T, 41)

VAN

Bmk + /Bnk +a xmk7xnk) (gxmk"!‘l?g'rnk"‘l)

(
< By + By, + (AT, 20y )

Taking £ — oo in above inequality, by (3.1.6), (3.1.7) and property of ¥, we get
e <1(e) < e, which is a contradiction, ¢ = 0. Thus {z,} is Cauchy sequence in A.
Since A is subset of complete metric space X. Then the sequence {x,,} is converges to
some element z in A. Similarly, in view of the fact that T'(By) C Ap and Ay C g(Ay),
we can conclude that there is a sequence {y,} such that d(gy,+1,Ty,) = d(A, B)

and converge to some element y € B.

By g is an isometry, we have

d($n+17 yn+1) = d(9$n+1a gyn+1)

it follows that
d(z,y) = d(A, B),
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so, we concluded that x € Ay and y € By. Since S(Ag) C By and T(By) C Ayg, there

isu € A and v € B such that
d(u,Sx) = d(A, B), (3.1.8)
d(v,Ty) = d(A, B).

Since A satisfies property * and, we get a(x,z,) > 1 for all n € N.
From (3.1.4), (3.1.5) and (3.1.8), and the notion of generalized proximal o — p—

contraction of first kind of S, we get

d(ua gmn—&-l) < O./(.%, l‘n)d(u, gxn-H) < ¢(d($7 xn))

Letting n — oo,we get d(u, gzr) < 1(0) = 0 and thus u = gz.
Therefore, we get

d(gx, Sz) = d(A, B). (3.1.9)
Similarly, we can show that v = gy and then
d(gy,Ty) = d(A, B). (3.1.10)
From (3.1.9) and (3.1.10), we get
d(z,y) = d(gz, Sx) = d(gy, Ty) = d(A, B).

Next, to prove the uniqueness, let us suppose that there exist z* € A and y* € B

with x # o*,y # y* such that
d(gx™,Sz*) = d(A, B)

and

d(gy*, Ty*) = d(A, B).

Since g is an isometry, S and T are generalized proximal o — 1¥»—contration of the

first kind and from the (h); it follows that
d(z,2*) = d(gz, gz*) < a(x,z*)d(gz, gx*) < Y(d(z,x*)) < d(z,z*),
d(y,y*) = d(gy, 9y") < aly, y")d(gy, 9y") < ¥(d(y, y")) < d(y,y").

which is a contradiction, so we have x = z* and y = y*. On the other hand, let

{u,} be a sequence in A and {e,} a sequence of positive real numbers such that

lime, =0 and d(upi1, 2ni1) < €n,
n—oo
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where 2,41 € A satisfies the condition that d(gz,+1, Su,) = d(A, B) and a(x,, u,) >

1. Since S is a generalized proximal o — )—contraction of first kind, we have

d(anrla ZTL+1) < O‘(xna un)d(xna Zn)

< Y(d(n, un)).

Given € > 0, we choose a positive integer N such that ¢, < € for all n > N, we

obtain that

IN

d(un+17 I) d(un—l-la xn—o—l) + d<$n+17 I)

IN

d(unJrla Zn+1) + d<zn+1; anrl) + d(anrla .1')

IN

Y(d(2p, un)) + €n + d(Tpy1, ).

This claim that d(u,,z) — 0 as n — oo, suppose the contrary, by a inequality

(3.1.10) and property of ¥, we get

IA

lim d(tp41, ) lHm (d(upi1, Tns1) + d(Tpi1,x))

T}ggo(w(d(xm Un)) + € + d(@n41, 7))

IN

lim d(x,,, u,)
n—oo

lim (d(z,, z) + d(z,u,))

n—o0

IN A

Jggod(x, Up).

Which is a contradiction, so we have {u,} is convergent and it converges to x. This

completes the proof of the theorem. O

Example. Consider the complete metric space R? with Euclidean metric. Let

A={(0,y):y eR}
and
B=1{(1,y):ycR}.

Define two mappings S: A — B, T: B— Aand g: AUB — AU B as follows:

S((0.9) = (1.%).

T(1y) = (0.%).
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9((z,y)) = (z, —y).

We define the mapping o : A x A — [0, +00) by

(2.1) 2, Vr,y € A,
al\r,y) =
0, otherwise.

Then it is easy to see that d(A, B) =1, Ay = A, By = B and the mapping g is an
isometry.

Next, we claim that S and T" are generalized proximal o — ¢ —contractions of the
first kind.

Consider a function # : [0,00) — [0, 00) defined by 1 (t) = t/2 for all t > 0.
If (0,41),(0,y2) € A such that

OZ((O, yl)? (anQ) Z 17
d(gu, S(0,11)) =d(A,B) =1,
d(gv, S(0,y2)) = d(A,B) =1,

for all u,v € A, then we have

We have,

a((0,91), (0,y9))d(gu, gv) = 2d(gu, gv)

)

Y Y2
I Y
1
= 2<§|y1—yg|)
1
= Z'yl_y2|

< (0.9, 0,12)

= ¥d((0,91), (0, 42)).

Hence S is a generalized proximal o — ¢)—contraction of the first kind.
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If (1,41), (1,y2) € A such that

&((17y1)7 (17y2) 2 17
d(ga,T(1,11)) =d(A,B) =1,
d(gb, T(1,y9)) = d(A, B) = 1.

for all a,b € A, then, we get

1?/1 b 1y2
ga = 7§ y g0 = 7§ .

In the same way, we can see that T' is a generalized proximal o — @ —contraction of
the first kind.
Further, it is easy to see that the unique element (0,0) € A and (1,0) € B such
that
d(9(0,0),5(0,0)) = d(g(1,0),T(1,0)) = d((0,0), (1,0)) = d(A, B).

Theorem 3.1.6. Let (X,d) be a complete metric space and A and B be nonempty,
closed subsets of X. Further, suppose that Ay and By are nonempty and A and B
satisfies property x. Let S: A — B and g : A — A satisfy the following conditions:

(a) S is a generalized prozimal oo —— contractions of first and second kinds with
a—proximal admissible;

(b) g is an isometry;

(c) S preserves isometric distance with respect to g;

(d) S(Ap) C Bo;

(e) Ao C g(Ao).

(f) There exist elements xo and xy in Ay such that d(z,,Tzo) = d(A, B) and
alzo,z1) > 1;

(9) S and T satisfies property Or.

Then, there exists a unique point x in A such that
d(gx,Sz) = d(A, B).
Moreover, for any fized xo in Ag, the sequence {x,}, defined by

d(gxny1, Sz,) = d(A, B),
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converges to the element x.
On the other hand, a sequence {u,} in A converges to x with a(x,,u,) > 1, if

there is a sequence of positive numbers {€,} such that

lime, =0 and d(upi1, 2ni1) < €n,
n—oo

where z, 11 in A satisfies the condition that d(gzpy1, Su,) = d(A, B).

Proof. Since S(Ag) C By and Ay C g(Ap), similarly in the proof of Theorem(3.1.5),

we can construct the sequence {x,} of element in Ay such that
d(gxns1, S,) = d(A, B), and a(zp, xp1) > 1, (3.1.11)

for all non-negative number n. It follows from ¢ is an isometry and the virtue of a

generalized proximal o — ¢p—contraction of the first kind of .S, we see that

d(zp, Tpy1) = d(gTn, gTni1) < Y(A(Tn, Tn-1)),

for all n € N. Similarly to the proof of Theorem(3.1.5), we can conclude that the
sequence {z,} is a Cauchy sequence and converges to some x in A. Since S is a
generalized proximal o — ¢p—contraction of the second kind and preserves isometric

distance with respect to g that

d(an,an+1) S A\ Tp— 173:11) (an—i—lasxn)

IN

(
(Tp-1,2n)d(SGTnt1, SgTy)
D(d(San_1, S,))
< d(Swn_1,S1).

Hence, that the sequence {d(Sz,1,Sx,)} is non-decreasing and bounded below.

Hence, there exists r > 0 such that

lim d(Sx,41,Sz,) =1

n—o0

We claim that » = 0. If » > 0 then by (3.1.12) and (3.1.12), we get

r = hHl d(an+17 an)

n—oo

lim ¢(d(S2p_1,Sn))

= ()

< T

IN
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which is a contradiction and hence

lim d(Szy,.1,Sz,) = 0. (3.1.12)

n—o0

Next, we show that {Sx,} is a Cauchy sequence. Suppose the contrary.
There exists € > 0 and subsequence {Sx,, }, {Sz,, } of {Sx,} such that nj, > my >k
with

1k = d(STp,, STy, ) > ¢ and d(Szy,, Stn,—1) <&,
for k € {1,2,3,...}. Putting v, = d(Sx,41,Sz,), then
e<r < d(STm,,STp, 1)+ d(Sxp,—1,5Tn,)
< €4 Vnp—1,

it follows from (3.1.12), that
lim r, = €. (3.1.13)

k—o00

On the other hand, by constructing the sequence {z,}, we have
d(gTm, 41, 5Cm, ) = d(A,B) and d(gx,, 41, STy, ) = d(A, B).

Using the transitive of «, we get a(zm, ,xn,) > 1. Since S is a generalized proximal

a — p—contraction of the second kind and g is an isometry, we have

d(STmyt1, STnt1) = dA(SGTmy41,S9Tn,+1)

S a(xmkawnk) (ngmk+17sg$nk+l)
= a<xmk7xnk) (Smmk+1ﬂsxnk+1>
< Y(d(STmy, STn,))-

Notice also that

e<ry < d(STm,, STm,41) + d(STn 11, STn, ) + (ST 11, SThy+1)
= Yoy + Ve + A(STpnyt1, STpyi1)
< Yo+ Yo T (AT, Sy ).
Taking k — oo in above inequality, by (3.1.12), (3.1.13) and property of i, we get

e < 1(e) < €, which is a contradiction € = 0. So we obtain the claim and then it

converges to some y in B. Therefore, we can conclude that

d(gx,y) = lim d(gan 1, Swn) = d(A, B),
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that is gz in Ap. Since Ag C g(Ap), we have gx = gz for some z in Ay and thus
d(gzx,gz) = 0. By the fact that g is an isometry, we have d(x, z) = d(gz, gz) = 0.

Hence x = z and so = becomes to a point in Ag. As S(Ag) C By that
d(u,Sx) = d(A, B) (3.1.14)

for some w in A. It follows from (3.1.11), (3.1.14), condition (c¢) and S is a generalized

proximal o — ¥—contraction of the first kind that

d(“v gmn—&-l) < a(xnv x)d(u7 gmn—i—l)
P(d(zn, )
d(x,,x),

IN

IN

for all n in N. Taking limit as n — oo, we get the sequence {gz,} converges to a

point u. By the fact that x,, converges to x and g is continuous, we have
gT, — gT as n — oo.

By the uniqueness of limit of the sequence, we conclude that u = gx. Therefore,
it results that d(gz, Sz) = d(u, Sx) = d(A, B). The uniqueness and the remaining
part of the proof follows as in Theorem(3.1.5). This completes the proof of the

theorem. []

3.2 Existence and Uniqueness of Best Proximity Points for

Generalized Almost Contractions

In this section, we introduce the new class of generalized almost contraction
mappings in metric spaces by using the a—proximal admissible of Jleli et al. [24]
and prove best proximity theorems for this class and also give some illustrative

examples and applications to support our main results.

Definition 3.2.1. Let A and B be nonempty subsets of metric space X. A mapping

T : A — Bissaid to be a generalized almost (p,0), contraction, if and only if

a(z,y)d(Tz,Ty) < @(M(z,y)) +0(d(y, Tx) — d(A, B),d(z, Ty) — d(A, B),
d(xz,Tz) —d(A, B),d(y, Ty) — d(A, B))7
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for all z,y € A, where a: A X A — [0,00), p € ¥, § € O and

M(z,y) = max{d(z,y),d(x,Tx)—d(A, B),d(y,Ty) — d(A, B),
Ld(w, Ty) + d(y, Tx)] — d(A, B)}.

Clearly, if we take a(z,y) = 1 for all z,y € A and M(x,y) = d(z,y), the

generalized almost (¢, ), contraction reduce to almost (¢, 6) contraction.

3.2.1 Existence of Best Proximity Points for Generalized Almost Con-

tractions

Theorem 3.2.2. Let A and B be nonempty closed subsets of a complete metric
space X such that Ay is nonempty and the pair (A, B) has the P— property. Let
T : A — B satisfy the following conditions:

(a) T are a-proximal admissible and generalized almost (o, 0),— contraction;

(b) T is continuous;

(c) there exist element xo and xy in Ay such that d(xy,Txz¢) = d(A,B) and
oo, m) > 1;

(d) T(Ao) C Bo.

Then there exists an element x € A such that

d(xz,Tz) = d(A, B).
Moreover, for any fized xo € Ay, the sequence {x,}, defined by
d(xpy1, Tz,) = d(A, B),

converges to the element x.

Proof. By the hypothesis (¢), there exist xy and x; in Ag such that
d(x1,Tzo) =d(A,B) and «a(xg,z1) > 1. (3.2.1)
From the fact that T'(Ag) C By, there exists an element x5 € Ay such that
d(xe, Tz1) = d(A, B). (3.2.2)
By (3.2.1), (3.2.2) and the a-proximal admissible, we get

a(xy, z9) > 1.
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Since T'(Ap) C By, we can find an element z3 € Ay such that
d(x3,Tzo) = d(A, B). (3.2.3)
Again, by (3.2.2), (3.2.3) and the a-proximal admissible, we have
a(xe,x3) > 1.

By similar fashion, we can find z,, in Ay. Having chosen x,,, one can determine

an element x,, .1 € Ag such that
d(zpi1,Tx,) =d(A,B) and oz, Tne1) > 1. (3.2.4)

In view the facts that, the pair (A, B) has P— property and generalized almost

(p, 0)o—contraction of 7', we have

d(wl, 33'2) = d(Tl'o, T.CL’l)

< afzg, z1)d(Txo, Tx1)
< o(M(zp,21))
+0(d(z1, Txo) — d(A, B),d(zo, Tx1) — d(A, B),
d(xo, Txg) — d(A, B),d(x1,Tz1) — d(A, B)) (3.2.5)

= @(M(x()axl))
+6(0, d(xg, Tx1) — d(A, B),d(zo, Tzo) — d(A, B),
d(xy,Tz) — d(A, B))

= (M (zo, 1))

Since

M (zg, 1) = max{d(zo,x1),d(xo, Txo) — d(A, B),d(z1,Tx1) — d(A, B),
Hd(zo, Tx1) + d(z1, Txo)] — d(A, B)}

max{d(zo, z1), d(zo, 1) + d(z1, Tx) — d(A, B),d(x1, x2)
+d(x2, Txy) — d(A, B)[d(wo, 21) + d(x1, 22) + d(x2, T1)
+d(A, B)] —d(A,B)}

= max{d(zo, 1), d(z1,22), 3[d(z0, 21) + d(21,22) + d(A, B)

+d(A,B)] —d(A,B)}
= max{d(xo, 21), d(21,22), 5ld(x0, 21) + d(z1, 22)]}
= max{d(xg,z1),d(z1,22)}.

IN

(3.2.6)
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By (3.2.5) and (3.2.6), we get

d(x1,29) < p(max{d(xg, 1), d(x1,22)}).

If there exist ny € NU {0} such that z,,41 = xy,,, by (3.2.4) we obtain the best
proximity point. Suppose that x,.1 # z, for all n € NU {0}, then d(z,,x,+1) > 0
for all n € NU{0}. If max{d(zo,x1),d(x1,22)} = d(xy1,22), by the property p(t) <t

for all t > 0, we get
d(x1,29) < p(max{d(zg, z1),d(x1,22)}) < d(x1, z2),
which is a contradiction and hence max{d(z, x1),d(x1,22)} = d(xo,z1). That is,
d(x1,22) < o(d(zg,21)). (3.2.7)

Again, since the pair (A, B) has P— property, a-proximal admissible and gener-

alized almost (p, 0),—contraction of 7', we have

d(ze,x3) = d(Txzy,Txs)
a(zy, x9)d(Txy, Txs)
(M (1, 22))
+0(d(xe, Tx1) — d(A, B),d(z1,Txy) — d(A, B),

d(x1,Tzy) — d(A, B),d(xe, Txy) — d(A, B))

= e(M(x1,22))
+0(0,d(z1, Txs) — d(A, B),d(x1, Txy) — d(A, B),
d(xe, Tzy) — d(A, B))

= o(M(z1,22))

IN

IN

¥

and since
M(zy,29) = max{d(xy,x2),d(x1,T2r1) — d(A, B),d(x9, Tzs) — d(A, B),
sld(z1, Txy) + d(xs, Tx1)] — d(A, B)}
max{d(z1,x2),d(z1,x2) + d(x2, Tx1) — d(A, B),d(xq, x3)
+d(x3, Tx2) — d(A, B)1[d(z1, 22) + d(x2, x3) + d(x3, Txs)
+d(A, B)] — d(A, B)}

IN

= max{d(xy,z3),d(xs, x3),

tld(z1, 29) + d(x2, 23) + d(A, B) + d(A, B)] — d(A, B)}
= max{d(z1,22),d(zs, 3), 3[d(x1, 22) + d(z2, x3)]}
= max{d(x,z3),d(xs,x3)}.
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By (3.2.5) and (3.2.6), we get
d(xg,x3) < p(max{d(z,x3),d(xse,23)}). (3.2.8)

By similar argument as above, we can conclude that, max{d(xy, z3),d(xs,x3)} =
d(x1,79) and thus
d(z9, x3) < p(d(x1,22)). (3.2.9)

Using (3.2.7) and (3.2.9) and the nondecreasing of ¢, we get
d(xa, 23) < @*(d(z0,21)).
Continuing this process, by induction, we have
A(Tp, Tpi1) < @™ (d(z0, 1)), (3.2.10)

for all n € NU{0}. Fix € > 0 and let h = h(e) be a positive integer such that
ng (20, 21)) < €. (3.2.11)
n>h

Let m > n > h, using the triangular inequality, (3.2.10) and (3.2.11), we obtain

that

m

-1 m—1

k

d(xp, ) < d(xg, Try1) < E 0" (d(zo,x1) <§ " (d(zg, 1)) < €.
k=n k=n n>h

This show that {z,} is a Cauchy sequence. Since A is a closed subset of complete

metric spaces X, then there exists x € A such that

lim d(z,,z) =0.

n—o0

By (3.2.4), (3.2.12) and the continuity of 7', we get
d(z,Tz) = lim d(zp41,Tz,) = d(A, B)
n—oo
and the proof is completes. n

Next, we remove condition 7' is continuous in Theorem 3.2.2; by assuming the
following condition which was defined by Jleli et al. [24] for proving the new best
proximity point theorem.

(H) : If {x,} is a sequence in A such that a(z,,x,.1) > 1 for all n and z,, — x
for some = € A as n — oo, then there exists a subsequence {x,, } of {x,} such that

a(xy,,x) > 1 for all k.
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Theorem 3.2.3. Let A and B be nonempty closed subsets of a complete metric
space X such that Ay is nonempty and the pair (A, B) has the P— property. Let
T : A — B satisfy the following conditions:

(a) T are a-proximal admissible and generalized almost (o, 0),— contraction;

(b) A satisfies condition (H);

(c) there exist element xo and xy in Ay such that d(xy,Tx¢) = d(A,B) and
al(xe,z1)) > 1;

(d) T(Ao) C Bo.

Then there exists an element x € A such that
d(z,Tx) = d(A, B).
Moreover, for any fized xo € Ay, the sequence {x,}, defined by
d(xpi1, Txy,) = d(A, B),
converges to the element x.

Proof. As in the proof of Theorem 3.2.2, we have
d(xps1, Tx,) = d(A, B)

for all n > 0 . Moreover, {z,} is a Cauchy sequence and converges to some point

x € A. By the P— property and (3.2.10), we have
ATz, 1,Tx,) = d(xy, Try1) < @™ (d(z0, 1)) (3.2.12)

for all n € NU{0}. That is lim,, o, d(T'z,_1,Tx,) = 0 and by the same argument
as proof of Theorem 3.2.2, we obtain that {T'x,} is a Cauchy sequence. Since B is
a closed subset of the complete metric space (X, d), there exists x, € B such that
Tx, converges to x,. Therefore,

d(xz,z,) = lim d(z,.1,Tx,) = d(A, B).

n—oo

On the other hand, from the condition (H) of T, then there exists a subsequence

{zy, } of {x,} such that a(x,,,z) > 1 for all k. The pair (A, B) has P— property
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and property of mapping 7', we get

d(zp, 41, ) d(Tx,,,Tx)
a(xn,, z)d(Tr,,, TT)
(M (i, )
+0(d(xy,, Tx) — d(A, B),d(z, Tz,,) — d(A, B),

d(z,Tx) —d(A, B),d(xy,, Tx,,) — d(A, B)).

IA

IA

¥

Indeed,

M(zp,,x) = max{d(z,,,x),d(x,,, Tx,,)—d(A, B),d(z,Tx) — d(A, B),

sld(2y,, Tx) 4+ d(x, Txy,)] — d(A, B)}

< max{d(zy,,x), d(Tn,, Tnt1) + AT 41, T2, ) — d(A, B),
d(z,Tz) — d(A, B), td(zy,, z) + d(z, Tx)
+d(x, xp,41) + d(Tp, 41, T2, )] — d(A, B)}

< max{d(zy,,x),d(Tn,, Tnyt1), d(z, Tx) —d(A, B),
Hd(zn,, x) + d(z, Tx) 4+ d(z, THyt1) + d(A, B)] — d(A, B)}

= M(xp,, ).

From the definition of M(x,, ,x), we get

limy oo M(2p,,x) =d(z,Tz) — d(A, B). (3.2.13)
Since
d(z,Tx) < d(z,zn+1)+ d(@p,41,Txn,) + d(T2,,,TT)
< d(x,zp,4+1) +d(A,B) +d(Tx,,, Tx),
it follows that

d(z,Tz) —d(z,2p,4+1) —d(A, B) < d(Tz,,,Tx)
< a(zy,,r)d(Tz,,, Tx)
< (M (zn,, 7))
+0(d(xp,, Tx) —d(A, B),d(x, Tz, )
—d(A, B),d(z,Tz) — d(A, B),d(z,,, Tty,,)
—d(A, B))
< pM(an, 7))

+0(d(xy,, Tx) —d(A, B),d(x, Tz, )
—d(A, B),d(z,Tz) — d(A, B),d(zy,, Tty,)
—d(A, B)).
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Suppose that
d(x,Tz) — d(A, B) > 0,
then for k large enough, we have M(x,,,z) > 0. Using the property ¢(t) < t for all
t >0, we get
d(z,Tz) —d(z,p,+1) —d(A,B) < Mz, )
+0(d(zp,, Tx) — d(A, B),d(x, Txy,)
—d(A, B),d(z,Tz) — d(A, B),d(zy,, Txy,,)

—d(A, B)).
(3.2.14)

Combining (3.2.13), (3.2.13) with (3.2.14) and the proprety of 6, we obtain that
d(z,Tx) —d(A,B) = limyod(z,Tz)—d(z,2n,+1) — d(A, B)
< limgyoo M(24, , )
+limg 00 0(d(xp,,, Tx) — d(A, B),d(z, Tx,, ) — d(A, B),
d(z,Tx) —d(A, B),d(x,,, Tx,,) — d(A, B))
= limy 0o M(zp,, )
= d(z,Tx)—d(A, B),
which is a contradiction and thus d(x,Tz) —d(A, B) = 0. Hence, d(z, Tx) = d(A, B)
and the proof is complete. O]

3.2.2 The Uniqueness of Best Proximity Points for Generalized Almost

Contractions

Next, we present an example where it can be appreciated that hypotheses in

Theorems 3.2.2 and 3.2.3 do not guarantee uniqueness of the best proximity point.

Example. Let X = R? with the Euclidean metric. Consider A := {(2,0), (0,2)} and
B := {(-2,0),(0,—2)}. Obviously, (A, B) satisfies the P-property and d(A, B) =
2/2, furthermore Ay = A and By = B. Define T : A — B by T'(z,y) = (£, 3£ for
all z,y € A, clearly T is continuous. Let av: A x A — [0, 00) defined by

2 T =y,

3 ITFEY

We can show that T" are a-proximal admissible and generalized almost

ar,y) =

(p, 0)o—contraction with p(t) = ¢/2 for all t > 0 and for all # € ©. Furthermore,

d((2,0),T(2,0)) = d((2,0), (0, ~2)) = d((0,2), (—2,0)) = d((0,2),T(0,2)) = d(A, B).
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Therefore, (2,0) and (0,2) are a best proximity point of mapping 7.

Now, we need a sufficient condition for give uniqueness of the best proximity

point as follows:

Definition 3.2.4. [24] Let T : A — B be a non-self mapping and o : A x A —
[0,00). We say that T is («,d)—regular if for all (z,y) € a~'([0,1)), there exists
z € Ag such that

al(z,z))>1 and a(y,z) > 1.

Theorem 3.2.5. Adding condition (o, d)—reqular of T to the hypotheses of Theorem

3.2.2, then we obtain the uniqueness of the best proximity point of T

Proof. We shall only proof the part of uniqueness. Suppose that there exist x and

x* in A which are distinct best proximity points, that is
d(xz,Tx) =d(A,B) and d(z*,Tz*)=d(A,B).
Using the pair (A, B) has P— property, we have
d(xz,z*) = d(Tx, Tz"). (3.2.15)

Case I If a(z,2*) > 1. By (3.2.15) and generalized almost (¢, 8),—contraction of

T, we have
d(xz,z*) = d(Tz,Tx")
< afz,z*)d(Tx, Tx")
< p(M(z,27))

+0(d(z*, Tx) — d(A, B), d(z, Tz*) — d(A, B),
d(z, Tx) — d(A, B),d(z*, Te*) — d(A, B))
= p(M(z,2%))
+O(d(z*, T) — d(A, B), d(x, Tz*) — d(A, B),0,0)
= p(M(z,z")),

(3.2.16)
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and since

M(z,z*) = max{d(z,z*),d(z,Tx) — d(A, B),d(z*,Tx*) — d(A, B),
sld(z, Ta*) 4+ d(2*, Tx)] — d(A, B)}
= max{d(z,z*),0,0, i[d(z, Tz*) + d(z*, Tz)] — d(A, B)}
< max{d(z,z*), }[d(z,z*) + d(z*, Tz*) + d(z*, z) + d(z, Tz)]
~d(A, B)}
= max{d(z,z*), 5[d(z,z*) + d(z*, 2)]}

= d(z,z").
(3.2.17)

Combining (3.2.16) with (3.2.17) and using the property ¢(t) <t for all £ > 0 , we
get
Az, 77) < p(M(z,2%)) = p(d(w,27)) < d(z,7"),

which is a contradiction and hence x = z*.

Case II If a(x,z*) < 1. By the (a, d)—regular of T, there exists z € Ay such that

al(z,z)) > 1 and a(z*,z) >1

Since T'(Ag) C By, there exists a point vy € Ay such that
d(vy, Tz) = d(A, B).

From «a((z,2)) > 1, d(z,Tx) = d(A, B) and d(vy,Tz) = d(A, B) and by the a-
proximal admissible, we have

a(z,vy) > 1.
Since T'(Ag) C By, there exists a point v; € Ay such that

d(Ul, T’Uo) = d(A, B)

By similar argument as above, we can conclude that a(z,v;) > 1. One can proceed

further in a similar fashion to find v, in Ay with v, 1 € Ay such that
d(vpy1, Tv,) =d(A,B) and o(z,v,) > 1, (3.2.18)

for all n € N. By (3.2.18), the pair (A, B) has P— property and property of mapping
T, we get
d(z,vp11) = d(Tx, Tvy,). (3.2.19)
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Using the property of mapping T, we get

d(z,v,11) = d(Tz,Tv,)

< alz,v,)d(Tz, Tvy,)

< p(M(z,vn))
+0(d(vy,, Tx) — d(A, B),d(z, Tv,) — d(A, B),
d(z,Tz) — d(A, B),d(v,, Tv,) — d(A, B))

= (M (z,0,))
+0(d(v,, Tx) — d(A, B),d(z, Tv,) — d(A, B),
0, d(vy, Tv,) — d(A, B))

= p(M(z,v,))

and since

M(z,v,) = max{d(z,v,),d(z,Tz)—d(A, B),d(v,, Tv,) — d(A, B),
sld(z, Tv,) + d(v,, Tz)] — d(A, B)}
max{d(z, v,),0,0, :[d(z, Tv,) + d(v,, Tx)] — d(A, B)}
max{d(z, vy), 3[d(z, vpi1) + d(Vns1, Tvn) + d(vy, ) + d(z, Tz)]
~d(4, B)}
max{d(z, vy), 5[d(2, vpi1) + d(vy, )]}
= max{d(x,v,),d(z,v,11)}

IN

Thus
d(2, vn41) < @(M(z,0,)) < p(max{d(z, v,), d(x, vn41)})-

If vy =z, for some N € N. By (3.2.19), we get
d(z,vns1) = d(Tz,Toy) =0

which implies that vy.1 = x. Moreover, we obtain v, = x for all n > N and thus
v, — x as n — 0o. Suppose that v, # x for all n € N, then d(v,,z) > 0 for all n.
If max{d(z,v,),d(x,vn+1)} = d(z,vn41), by the property o(t) <t for allt >0 , we
get

d(, vnt1) < (M (z,v0)) = @(d(@, vp41)) < d(@, Vnt1)

which is a contradiction and hence max{d(z,v,), d(x,v,41)} = d(z,v,). That is

d(x,vp41) < (M (x,v,)) = (d(z,v,)) (3.2.20)
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for all n > N. By induction of (3.2.20), we have

d(ZE, Un-i-l) < (pn(d(aj, Ul))'

Taking n — oo, we obtain that v,, — x as n — oo. So, in all cases, we have v,, — =
as n — oo. Similarly, we can prove that v, — x* as n — oo. By the uniqueness of

limit, we conclude that x = x* and this completes the proof. O

Theorem 3.2.6. Adding condition (o, d)—reqular of T to the hypotheses of Theorem
3.2.3, then we obtain the uniqueness of the best proximity point of T

Proof. Combine the proofs of Theorem 3.2.5 and Theorem 3.2.3. [

If we take p(t) = kt, where 0 < k < 1 and 0(tq,t9,t3,t4) = Lmin{ty,to,t3,t4},

then Theorem 3.2.1 and Theorem 3.2.4, we get the following.

Theorem 3.2.7. Let A and B be nonempty closed subsets of a complete metric
space X such that Ay is nonempty and the pair (A, B) has the P— property. Let
T : A — B satisfy the following conditions:

(a) T is a-prozimal admissible and

alx,y)d(Tz, Ty) < kM(z,y)+ Lmin{d(z,Ty) — d(A, B),d(y, Tz) — d(A, B)
d(z,Tx) —d(A, B),d(y,Ty) — d(A, B)}

for all x,y € A.

(b) T is continuous (or A satisfies condition (H) );

(c) there ezist element xo and xy in Ay such that d(xy,Tx¢) = d(A,B) and
al(xg,z1)) > 1;

(d) T(Ao) C Bo.

Then there exists an element x € A such that
d(x,Tx) =d(A, B).
Moreover, for any fized xo € Ay, the sequence {x,}, defined by
d(xpi1, Txy,) = d(A, B),

converges to the element x.
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If we add the condition that 7" is (o, d)—regular in Theorem 3.2.7, therefore we
can obtain the uniqueness of the best proximity point.

If we take a(z,y) = 1, for all z,y € A in Theorem 3.2.2 and Theorem 3.2.3, we
get the following Theorems.

Theorem 3.2.8. Let A and B be nonempty closed subsets of a complete metric
space X such that Ay is nonempty and the pair (A, B)has the P— property. Let
T : A — B satisfy the following conditions:

(a)
d(z,Tx) — d(A, B),d(y, Ty) — d(A, B))

for all x,y € A.
(b) T is continuous (or A satisfies condition (H) );
(C) T(Ao) Q BQ.

Then there exists an element x € A such that
d(xz,Tz) = d(A, B).
Moreover, for any fized xo € Ay, the sequence {x,}, defined by
d(xpy1, Tz,) = d(A, B),
converges to the element x.

If M(z,y)=d(z,y), then Theorem 3.2.8, include the following.

Theorem 3.2.9. Let A and B be nonempty closed subsets of a complete metric
space X such that Ay is nonempty and the pair (A, B)has the P— property. Let
T : A — B satisfy the following conditions:

(a)
d(Tz,Ty) < ¢(d(z,y)) +0(d(z, Ty) — d(A, B),d(y, Tx) — d(A, B)
d(xz,Tx) — d(A, B),d(y,Ty) — d(A, B))
forall z,y € A.

(b) T is continuous (or A satisfies condition (H) );
(C) T(Ao) Q Bo.
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Then there exists an element x € A such that
d(xz,Tx) =d(A, B).
Moreover, for any fized xo € Ao, the sequence {x,}, defined by
d(xps1, Tz,) = d(A, B),
converges to the element x.

If we take @(t) = kt and 0(ty,ta,t3,t4) = Lmin{ty,to, t3,t4}, for all z,y € A in

Theorem 3.2.9, we obtain the following theorem.

Theorem 3.2.10. Let A and B be nonempty closed subsets of a complete metric
space X such that Ay is nonempty and the pair (A, B)has the P— property. Let
T : A — B satisfy the following conditions:

(a)

d(Tx,Ty) < kM(xz,y)+ Lmin{d(z,Ty) — d(A, B),d(y,Tx) — d(A, B)
d(x,Tz) — d(A, B),d(y, Ty) —d(A, B)}

forall z,y € A.
(b) T is continuous (or A satisfies condition (H) );
(C) T(Ao) Q Bo.

Then there exists an element x € A such that
d(z,Tx) =d(A, B).
Moreover, for any fized xo € Ao, the sequence {x,}, defined by
d(zp41, Txn) = d(A, B),
converges to the element x.

If M(z,y) = d(z,y) and putting L = 0 in Theorem 3.2.10, we obtain the follow-
ing.
Theorem 3.2.11. Let A and B be nonempty closed subsets of a complete metric

space X such that Ay is nonempty and the pair (A, B)has the P— property. Let
T : A — B satisfy the following conditions:



35
(a)
d(Tz, Ty) < kd(z,y)

for all x,y € A.
(b) T is continuous (or A satisfies condition (H) );
(c) there exist element xo and z1 in Ay such that d(xy,Txy) = d(A, B);
(d) T(Ao) C By.

Then there exists an element x € A such that
d(x,Tz) = d(A, B).
Moreover, for any fized xo € Ay, the sequence {x,}, defined by
d(xpi1,Tx,) = d(A, B),

converges to the element x.

k
If M(z,y) = E[d(:v,Ty) + d(y,Tx)] — d(A, B) and putting L = 0 in Theorem
3.2.10, we obtain the following theorem:

Theorem 3.2.12. Let A and B be nonempty closed subsets of a complete metric
space X such that Ag is nonempty and the pair (A, B)has the P— property. Let
T : A — B satisfy the following conditions:

(a)
k
forall z,y € A.
(b) T is continuous(or A satisfies condition (H) );
(c) there exist element xy and x1 in Ay such that d(xzq,Txzo) = d(A, B);

(d) T(Ao) C By.

Then there exists an element x € A such that
d(xz,Tz) = d(A, B).
Moreover, for any fized xo € Ay, the sequence {x,}, defined by
d(xpi1, Txy,) = d(A, B),

converges to the element x.
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It is easy to observe that for self-mappings, our results includes the following:

Theorem 3.2.13. Let A be nonempty closed subsets of a complete metric space X

and T : A — A such that

d(Tz, Ty) < @o(M(x,y))+0{d(x,Ty),d(y,Tz),d(x, Tx),d(y, Ty)}),

for all x,y € A, where p € ¥ 0 € ©. Then T has a unique fized point x € A.
Moreover, for any fized o € A, the sequence {x,} defined by x,11 = Tx,, converges

to the element x.

Theorem 3.2.14. Let A be nonempty closed subsets of a complete metric space X

and T : A — A such that
d(Tz,Ty) < kM(z,y)+ Lmin{d(z,Ty),d(y,Tz),d(z, Tx),d(y, Ty)}.

Then T has a unique fized point x € A. Moreover, for any fixed xq € A, the sequence

{z,} defined by x,.1 = Tx,, converges to the element x.

Theorem 3.2.15. Let A be nonempty closed subsets of a complete metric space X

and T : A — A such that
d(Tz,Ty) < kd(z,y)+ Lmin{d(z,Ty),d(y, Tx),d(z,Tx),d(y, Ty)}

forall x,y € A. Then T has a unique fized point x € A.
Moreover, for any fired xo € A, the sequence {x,} defined by x,+1 = Tx,,

converges to the element x.

We recall some preliminaries from (see, [24] also) as follows:

Let (X, d) be a metric space and R be a binary relation over X. Denote
S=RUR™!
this is the symmetric relation attached to R. Clearly,
x,y € X, 28y <= xRy or yRux.

Definition 3.2.16. [24] A mapping T : A — B is said to be prozimal comparative
if and only if

11879
d(uy, Tzy) (A, B) = wuSus.

—d
d(UQ,Tl’Q) = d(A B)
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Corollary 3.2.17. Let (X,d) be a complete metric space, R be a binary relation
over X, and A and B be two non-empty, closed subsets of X such that Ag are non-
empty and the pair (A, B) has the P— property. Let T : A — B such that the
following conditions holds:

(a) T is a continuous proximal comparative mapping;

(b) there ezist element xo and xy in Ay such that d(xy,Txz¢) = d(A, B) and
oS T1;

(c) there exist p € U and 0 € © such that x,y € A, xSy implies that

d(Tz,Ty) < o(M(z,y)) +0(d(y,Tz) — d(A, B),d(z,Ty) — d(A, B),d(z,Tx)
—d(A, B),d(y,Ty) — d(A, B));
(d) T(Ap) C By.

Then there exists an element x € A such that
d(z,Tx) = d(A, B).
Proof. Define the mapping a: A x A — [0, 00) by

1 28y,
alz,y) = ey (3.2.21)

0 ; otherwise.

Since T' is proximal comparative, we have

xSy
d(u,Tx) = d(A, B) p = uSv,
d(v,Ty) = d(A, B)

for all u,v,x,y € A. Using the definition of a;, we get

alz,y) > 1,

d(u,Tx) = d(A,B), ¢ = a(u,v) > 1,

d(v,Ty) = d(A, B)
for all u,v,z,y € A and hence T is a-proximal admissible. By the condition (b)
implies that d(x1,Tz¢) = d(A, B) and «a(xg,x1) > 1. By the condition (c¢), we get

alx,y)d(Tz, Ty) < w(M(x, y)) +0(d(y, Tz) — d(A, B),d(z, Ty) — d(A, B),
d(x,Tz) — d(A, B),d(y, Ty) — d(A, B)),

that is, 7" is, generalized almost (p, 0),—contraction. Therefore, all hypothesisses of

Theorem 3.2.1 are satisfied, and the desired result follows immediately. O]
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Next, below we give an example to illustrate the main result Theorem 3.2.1.

Example. Consider X = R* with the metric defined by

d((z1, w2, 23, 24), (Y1, Y2, Y3, Y4)) = |71 — yu| + |22 — vo| + |23 — y3| + |74 — y4

for all (z1, s, 23, 24), (Y1, Y2, y3,v4) € R Let A, B C X defined by

A= {(0,0, % _71) } U {(0,0,0,0)},
B.— {(1,_1,%, %1) } U{(1,~1,0,0)}.

Then A and B are nonempty closed subsets of X and d(A, B) = 2.
Moreover, Ay = A and By = B. Suppose

d((07 0,.T1, x2)7 (17 _173/1, 92)) = d(A> B) =2

and

d((0707I/17x/2>7 (17 _17y£7yé>> = d(A7 B) = 27

then we get x1 = y1, 1o = Y2 and x| = y}, x5 = yb. Hence, the pair (A, B) has the
P-property. Let T': A — B be a mapping defined as

Ty
T - ry
(0707%1/) <0707272>
for all (O, 0, x, y) € A. We define the mapping a: A x A — [0, 00) by
alz,y) =1 for allz,y € A.

We can see that T' is generalized almost (¢, 6),—contraction with ¢ € ¥ is given
by ¢(t) =t/2 for all t > 0 and for all § € ©. Furthermore, (0,0,0,0) € A is a best
proximity point of mapping 7.

3.3 Kannan a—Admissible Weak ¢—Contraction

In this section, we introduce the existence of the best proximity points for Kan-

nan a—admissible weak ¢—contraction mapping in metric spaces.

Definition 3.3.1. A mapping T : A — B is said to be a Kannan a—admissible

weak ¢— contraction, if T satisfies

Oé(ZE, y)d(TI,Ty) < u<$’y) - ¢(u(x7 y>>7
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for all z,y in A, where u(z,y) = 3[d(z,Tz) + d(y, Ty)], ¢ : [0,00) — [0,00) is a
continuous and nondecreasing function such that ¢(¢) = 0 if and only if £ = 0 and

a:AxA—[0,+00).

Theorem 3.3.2. Let(X, d) be a complete metric space and let A and B be nonempty,
closed subsets of X such that Ay and By are non-empty. Let av: A X A — [0, +00)
satisfy the following conditions:

(a) T(Aop) C By and (A, B) satisfies the weak P-property;

(b) T is a-proximal admissible;

(c) There exist elements xo and x1 in Ay such that d(zq1,Tzo) = d(A, B) and
azg,x1) > 1;

(d) T is a continuous Kannan a—admissible weak ¢— contraction.

Then, there exists an element x* € Ay such that
d(x*,Tz*) = d(A, B).
Proof. From condition (c), there exist elements xy and x; in Ay such that
d(x1,Txg) = d(A, B) and «(zg,z1) > 1.
Since T'(Ap) C By, there exists x5 € Ay such that
d(xe,Txy) = d(A, B).
Now, we have

axg, z1) > 1,
d(x1,Txo) = d(A, B),
d(l’g, T[El) = d(A, B)
Since T is a—proximal admissible, this implies that a(z,x9) > 1.

Thus, we have

d(xze,Tz1) = d(A,B) and a(zy,z9) > 1.

Again, Since T'(Ag) C By, there exists x3 € Ay such that

d(l’g, Tl'g) = d(A, B)
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Now, we have
OZ(ZBl,fEQ) Z 17

d([L‘Q,Tl’l) = d(A7 B),
d(LU3, TJIQ) = d(A, B)

Since T is a—proximal admissible, this implies that a(xs, z3) > 1
Thus, we have

d(xzg,Tzy) = d(A,B) and a(zy,x3) > 1.

Continuing this process, by induction, we can construct a sequence {z,} C Ay such

that
d(zpy1, Tx,) =d(A,B) and a(x,,z,41) > 1, Vn e NU{0}. (3.3.1)
Since (A, B) satisfies the weak P—property, we conclude from (3.3.1) that
d(xp, Tpy1) < d(Txp_1,Tx,), ¥Yn €N, (3.3.2)

From condition (d), that is, 7" is a Kannan a—admissible weak ¢—contraction, for

all Vn € N, we have
Oé(xn—la xn>d<Txn—1> Txn) < U(In—la xn) - ¢(U(£L’n_1, xn)) .

On the other hand, from (3.3.1), we have a(z,_1,2,) > 1 Vn € N, which implies

with the above inequality that
d(Tx,_1,Tx,) < u(rp_1,T,) — qb(u(xn_l,a:n)), Vn € N. (3.3.3)
Combining (3.3.2) with (3.3.3) yields the following:

d(mn: anrl) S u(xnfh xn) - (ﬁ(U(iL‘n,l, xn))a

1
= 3 {d(azn_l, Tz, 1)+ d(z,, Txn)}

T

E {d(mnl, 20) + d(, xnﬂ)}

IN

2
—¢ {%[d(mnl, Tn) + d(x,, xnﬂ)]} , (3.3.4)
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and so it follows that d(z,, x,+1) < d(zp-1,x,), that is , the sequence {d(x,, z,+1)}

is a nonnegative nonincreasing sequence. Then there exists » > 0 such that

lim d(z,41,2,) =7
n—oo

Taking n — oo in (3.3.4), and using the continuity of ¢
1 1
r < 5(27") — ¢(§(2T))
and consequently, ¢(5(2r)) = 0. This gives us that

lim d(x,41,2,) = 0. (3.3.5)

n—o0

Next, we show that {z,} is a Cauchy sequence. Suppose on the contrary, that
{z,} is not a Cauchy sequence. Then there exists ¢ > 0 for which we can find

subsequences {z,,, } and {z,, } of {z,} such that n; is smallest index for which
myg > ng >k, d(zm,,T,,) > €

This means that

d(Zp,_,, Tp,) < €

Then we have

[
IN

d(xmka x"k)

IN

d(xmlw xmk—l) + d($mk—1 ) xnk)

IN

d(ImIN Cka—1) te
Letting £ — oo and using (3.3.6) we can conclude that
kh_)rgo d(zpm,,, Tn,) = €.
Since « is forward transitive and ny > my, we can conclude that

ATy, Tpy_,) > 1 (3.3.6)

Using the fact that 7" is Kannan a—admissible weak ¢—contraction and (3.3.6), we
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have

d(Tmy, Tny) = ATy, T2n, )

IN

a(mmk_17 xnk—l )d(Txmk—l’ T‘Tnk—l)

u(xmkfl ? x”k*l) - ¢ (u(xmk17 xnk1>

IN

1
= 2 |:d(xmk—l7Txmk—1) + d(xnk—17Txnk—l):|

_Cb {% |:d(xmk—1 ) T‘/Emk—1> + d($”k—1’ Tx"’“—l):| }

1
) |:d($mk—17xmk) + d(xnk_17xnk):|

IN

2
¢ {% [d(xm“ o) + d(xnkl,a:nk)] }

Letting k — oo and by using (3.3.5), and the continuity of ¢, we have

e < 5(0) - ng(%(O)) _o.

Which is a contradiction. Thus, {z,} is a Cauchy sequence in the metric space
(X,d). Since A is a closed subset of the complete metric space X, there exists
X € A such that

lim z,) = z. (3.3.7)

n—oo

Letting n — oo in (3.3.1), (3.3.7) and the continuity of 7', we get
d(xz,Tz) = d(A, B)
and the proof is completes. O]

In the next result, we remove the continuity hypothesis, assuming the following
condition in A: (H) If {x,} is a sequence in A such that a(z,,z,1) > 1 for all
n € Nand z,, - € A as n — oo, then there exists a subsequence {z,, } of x, such

that a(z,,,z) > 1 for all k£ € N.

Theorem 3.3.3. Let A and B be nonempty closed subsets of a complete metric
space (X, d) such that Ay is nonempty. Let o : A x A — [0,00). Suppose that
T : A — B is a non-self-mapping satisfying the following conditions:

(a) T(Ap) C By and (A, B) satisfies the weak P—property;

(b) T is a—prozimal admissible;
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(c) There exist elements xoy and x1 in Ay such that
d(z1,Tzo) = d(A, B) and a(xg,x1) > 1;

(d) (H) holds and T is a Kannan a—admissible weak ¢— contraction.

Then, there exists an element x € Ag such that

d(z,Tz) = d(A, B).

Proof. As in the proof of theorem (3.3.2), we have
d(xpi1,Tx,) = d(A, B).

for all n > 0 . Moreover, {z,} is a Cauchy sequence and converges to some point
x € A. By the weak P— property and (3.3.4), we have

d(Txn—lyTIn) = d<wn7xn+1)

1

< é[d(xn—lv Tn) + d(Tp, Tny1)] — gb{%[d(mn—lv Tn) + d(Tn, Tny1)]}

for all n € NU {0}. That is lim, o d(T'z,,_1,Tx,) = 0 and by the same argument
as proof of Theorem 3.1.5, we obtain that {T'x,} is a Cauchy sequence. Since B is
a closed subset of the complete metric space (X, d), there exists x, € B such that

Tx, converges to x,. Therefore
d(z,z,) = lim d(x,41,Tx,) = d(A, B) (3.3.8)
n—oo

On the other hand, from the condition (H) of T, then there exists a subsequence
{zn, } of {z,} such that a(x,,,z) > 1 for all k. The pair (A, B) has weak P—
property and property of mapping T', we get

d(xn,,,,x) = d(Tzy,, Tx)
< a(xp,,r)d(Tz,,, Tx)
< (@, ) = (u(@n,, 1))
= ;[d(xnk,Txnk)—l—dx Tx} (ﬁ{%[ (@, Ty, ) + d(z, Ta:)}}
< %[d(wnk,mnkﬂ)—l—daﬁx} {%{ T s Trge sy —l—d(m,x)}}.
Since

d(z,Tx) < d(z,zn+1)+ d(@p,41,Txp,) + d(T2,,,TT)

< d(z,xp,+1) + d(A,B) + d(Tz,,, Tx)
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it follows that

d(z,Tx) — d(x,xp,41) —d(A,B) < d(Tz,,,Tx)

E {d(;@nk, Toy,) + d(z, x)]

2
—¢ {% {d(%k,xnw) + d(:v,a:)] } .

IN

Letting k£ — oo, we get
d(z,Tx) —d(A, B) = 0.

Hence, d(z, Tz) = d(A, B) and the proof is complete. O

Definition 3.3.4. Let T': A — B be non-self-mapping and « : A x A — [0, 00).
We say that T is (a, d)-regular if for all (z,y) € a~([0, 1]), there exists z € Ay such
that

alz,z) >1 and a(y,z) > 1.

Theorem 3.3.5. In addition to the hypotheses of the theorem (3.3.2)
(resp. Theorem(3.5.3)), suppose that T is (o, d)—regular. Then T has a unique best

prozimity point.

Proof. We shall only proof the part of uniqueness. Suppose that there exist x and

x* in A which are distinct best proximity points, that is
d(z,Tx) =d(A,B) and d(z*,Tz")=d(A,B).
Using the weak P—property and (3.3.9), we get that
d(z,z*) = d(Tx,Tz"). (3.3.9)

We distinguish two cases. Case 1. If a(z, 2*) > 1.
Since T' is a Kannan a—admissible weak ¢—contraction, using (3.3.9), we obtain

that

d(z,z") = d(Tx,Tx")

IN

a(z,x")d(Tx, Tz")
u<x7x*) - gb(u(x,x*))
%[d(m, Tx) + d(z*, Tz*)] — ¢ {% [d(z, Tz) + d(z*, Tx")] } :

IA
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Since ¢(t) < t for all £ > 0, the above inequality holds only if d(x,z*) = 0, that is
T ="

Case 2. If a(z,2*) < 1.

By hypothesis, there exists z € Aj such that a(z,2) > 1 and a(z*,z) > 1. Since
T(Ag) C By, there exists vy € Ay such that

d(vo, Tz) = d(A, B).
Now,we have

alz,z) > 1,
d(z,Tx) = d(A, B),
d(vo, Tz) = d(A, B).

Since T is a—proximal admissible, we get that a(x,vg) > 1.

Since T'(Ag) C By, there exists v; € Ay such that
d(Ul, TU()) = d(A, B)

By similar argument as above, we can conclude that a(x,v;) > 1. One can proceed

further in a similar fashion to find v, in Ay with v, € Ay such that
d(vps1,Tv,) = d(A,B) and a(z,v,) >1 Vn €N. (3.3.10)
Using the weak P—property and (3.3.10), we get that
d(z,vp41) = d(Tx,, Tvy,).
Since T' is a—proximal admissible, we have

d(z,vp41) = d(Tz,Tvy,)

IN

a(z,v,)d(Tx, Tvy,)
(

T, v,) — d(u(x,v,))
[d(x, Tz) + d(vy, Tvy,)]

IN
g

N[ —

1
—¢ {§[d(:c,Tx) + d(vn,Tvn)]} : (3.3.11)
If vy =z, for some N € N. By (3.3.11), we get

d(z,vns1) =d(Tx,Toy) =0
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which implies that vy.1 = x. Moreover, we obtain v, = x for all n > N and thus
v, — x as n — 00. By the uniqueness of limit, we conclude that x = x* and this

completes the proof. O]

3.4 Existence and Uniqueness of Coupled Best Proximity
Point in Ordered Metric Spaces

In this section, we introduce the existence and uniqueness of coupled best proxim-
ity point for mappings satisfying proximally coupled weak contraction in a complete
ordered metric space.

Let (X, d, <) be a partially ordered complete metric space. Further, we endow

the product space X x X with the following partial order:
for (z,y), (u,v) € X X X, (u,v) 2 (2,9) &z 2u,y = v.

Theorem 3.4.1. Let (X, =,d) be a partially ordered complete metric space. Let A
and B be nonempty closed subsets of the metric space (X, d) such that Ag # (. Let
F: A x A— B satisfy the following conditions.

(i) F is continuous having the proximal mized monotone property and proximally

coupled weak contraction on A such that F(Ay X Ag) C By.
(ii) There exist elements (xg,yo) and (x1,y1) in Ag X Ao such that
d(x1, F(x0,90)) = d(A, B) with xo < z1 and
d(y1, F(yo, x0)) = d(A, B) with yo = y1.

Then there exist (z,y) € Ax A such that d(z, F(z,y)) = d(A, B) and d(y, F(y,x)) =
d(A, B).
Proof. By hypothesis there exist elements (zg, o) and (z1,4;) in Ag X Ap such that

d(x1, F(x0,90)) = d(A, B) with £y < 1 and

d(y1, F(yo, x0)) = d(A, B) with yo = ;.

Because of the fact that F'(Agx Ag) C By, there exists an element (xq, y2) in Ag x Ay
such that
d(xq, F(x1,11) = d(A, B) and
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d(y2, F(y1, 71) = d(A, B).

Hence from Lemma 2.2.18 and Lemma 2.2.19, we obtain 1 < x5 and y; = ¥s.

Continuing this process, we can construct the sequences (z,) and (y,) in Ay such

that
d(xps1, F(Tn,yn)) = d(A, B), Vn € N (3.4.1)
with v <21 229 <--- 22, ST,y 1--- and
Ad(Yns1, F(Yn,xn)) = d(A, B), Vn € N (3.4.2)

withyo =1 =Yoo = = Y = Yng1 -+ -

Since d(zp, F(Tn-1,Yn-1)) = d(A, B), d(zps1, F (2, yn)) = d(A, B) and also we have
Tpno1 =X TnyYn1 = Yn, V1 € N. Now using F' is proximally coupled weak contraction

on A we get,

P(d(wn, Tni1)) < P(max(d(zn-1, 2n), d(Yn-1,yn))) —G(max(d(zn-1, Tn), d(Yn-1,Yn)))-

(3.4.3)
As ¢ >0,
¢(d(xn7 xn-i-l)) < 7vZ)(HlaX(d(xn—h J/’n)a d(yn—l’ yn)))
and, using the fact that ¢ is nondecreasing, we have
d(QErm xn—l—l) S maX(d(an_l, mn)a d(yn—la yn)) (344>

Similarly, since z,_1 <z, Yn_1 > Ypn, We get

U(d(Yn, Ynt1)) < Y(max(d(Yn—1,Yn), d(Tn-1,2n))) — ¢(max(d(Yn-1, Yn), d(Tn-1,22))),
(3.4.5)

< Y(max(d(yn—_1,Yn), d(Tn_1,2,)))

and consequently,

d(ym yn—i-l) < max(d(yn—h yn)7 d(xn—la xn)) (3‘4‘6>

By (3.4.4) and (3.4.6), we get

max(d(xn, xn—l—l)a d(ynv yn+1)) S maX(d(wn—la xn)a d(yn—h yn));
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and, thus, the sequence {max(d(x,,ni1),d(Yn,Yns1))} is nonnegative decreasing.

This implies that there exists » > 0 such that

lim max(d(z,, Tni1), d(Yn, Ynt1)) = 7. (3.4.7)

n—oo

One can see that if ¢ : [0, 00] — [0, 0] is nondecreasing,

¢(max(a, b)) = max(¢(a), (b))

for a,b € [0, 00]. Taking into account this and (3.4.3) and (3.4.5), we get

max(Y(d(@n, Tn11)), O(d(Yns Yn11))) = P(max(d(@n, ni1), d(Yn, Yoi1)))
< Y(max(d(zp_1, ), dYn_1,Yn)))
— p(max(d(zn—1,22), d(Yn-1,Yn)))
< P(max(d(zp—1,Tn), d(Yn-1,Yn)))-

Letting n — oo and taking into account (3.4.7), we get

P(r) < ¢(r) = lim p(max(d(wn-1,2n), d(Yn-1,9n))) < P(r)

n—oo
and this implies

lim ¢(max(d(xp—1,2n), d(Yn-1,Yn))) = 0. (3.4.8)

n—oo

But, as 0 < r < max(d(x,_1, ), d(Yn—1,Yn)) and ¢ is nondecreasing function,

0 < ¢(r) < p(max(d(zy—1,%n), d(Yn—1,Yn)))s

and this gives us lim,,_,o, ¢(max(d(z,_1,Zn), d(Yn—1,Yn))) = ¢(r) > 0 which contra-
dicts to (3.4.8). Hence,

lim max(d(x,, Tni1), d(Yns Ynt1)) = 0. (3.4.9)

n—oo
Now to prove that {z,} and {y,} are Cauchy sequence. Assume that at least
one of the sequences {x,} or {y,} is not a Cauchy sequence. This implies that

limy, ;oo d(Zn, ) = 0 Or My, 1500 A(Yn, Ym) = 0, and, consequently,

lim max(d(x,, m), d(Yn, Ym)) = 0.

,Mm—00
Then there exists € > 0 for which we can find subsequences {Z,)} and {z,x)} of

{z,,} such that n(k) is smallest index for which n(k) > m(k) > k,

max(d(Tmky, Tn(k))s A Yk Ynk))) = €. (3.4.10)
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This means that
max(d(Zm(k), Tn(k)-1), AYm(k), Yn(k)-1)) < €. (3.4.11)

Since Tpk)—1 = Tmk)—1 ad Ynk)—1 < Ym(k)—1, using the proximally coupled weak

contraction, we obtain
Y(A(Tn() Tmry)) < (max(d(Tn)—1, Tmk)—1) A Yne)—15 Ymk)-1)))
— P(max(d(Tn()-1, Tm(k)-1)s AYn(k)-1: Ym(r)-1)))  (3.4.12)
and
V(A(Yn(ry, Ymry)) < Y(max(d(@nie)—1, Tm(k)-1), AYn(k)—1: Ym(r)-1)))
— P(max(d(Tn(r)—1, Tm(k)-1)s AYnk) -1, Ym(r)-1)))-  (3.4.13)
By (3.4.12) and (3.4.13), we get
maX(¢(d($n(k), xm(k)), ¢(d(yn(k), Ym))) < ¥( max(d(xn(k)—h xm(k)—l)a
d(yn(k)—bym(k)—l)))
— ¢(max(d(Ln(m)—1, Tm(r)-1),
d(yn(k)fhym(k)fl)))'
On the other hand, the triangular inequality and (3.4.11) give us
A(Zngkys Tmk)) < A(Tngrys Tu)—1) T A o)1, Tmk)) < ATy, Tngy—1) + € (3.4.14)
and
AWYn (k) Ymk)) < AYn@k)> Yn(k)—1) + AYnk)—15 Ym)) < AWn(k) Yn(y—1) + €. (3.4.15)
From (3.4.10),(3.4.14) and (3.4.15), we get
e < max(d(Tn(k), Tm(k))» AYn(k)s Ymr))) < max(d(Tngky, Tnk)-1)s AYn(k)s Ynky-1)) + €
Letting k — oo in the last inequality and using (3.4.9), we have
k:lggo max(d(xn(k), xm(k)), d(yn(k), ym(k))) = €. (3.4.16)

Again, the triangular inequality and (3.4.11) give us

A(Znky—1, Ty 1) < ATn)—15 Tm(k)) + ATy, Tmry—1) < € + A Tmhy, Tm(ry-1)
(3.4.17)
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and

d(?Jn(k:)—la ym(k)—l) < d(yn(k)—la ym(k:)) + d(ym(k), ym(k)—l) <€+ d(ym(k)u ym(kz)—l)'

(3.4.18)
By (3.4.17) and (3.4.18), we get
maX(d(fﬂn(k)q, $m(k)71)a d(yn(k)q, ym(k)fl))
< max(d(xm(k), :Em(k)_l), d(ym(k), ym(k)—l)) + €. (3419)

Using the triangular inequality we have

A(Zn(k), Tmk)) < ATy, Tng)—1) + ATne)—1, Tmk)-1) + A(Tm)—1, Tm(k))

and

A Yn(kys Ymk)) < AWn(k) Yniky—1) + AYnk) -1 Ymk)-1) + AYmk)—15 Ym(k))
and by the two last inequalities and (3.4.10) we get
e < max(d(Tn(ky, Tmr)), A(Yn(k), Ym(k)))

< max(d(Tngys Tnk)=1), AYn (k) Yn(i)—1)) + max(d(Tpx)—1, Tmk)-1),

d(yn(k’)—l; ym(k)_l)) + maX(d<xm(k‘)—17 xm(k))u d(ym(k;)—ly ym(k;))) (3420)
By (3.4.19) and (3.4.20), we get
€— max(d(xn(k)a xn(k)fl)v d(yn(k)a yn(k)q)) - maX(d(me(k)q, ﬂfm(k))’ d(ym(k)q, ym(k)))

< maX(d(%(k)—l, xm(k)—l)a d(yn(k)—b ym(k)—l))

< HlaX(d(;L’m(k), xm(k)—l)? d(ym(k)a ym(k)—l)) + e

Letting £ — oo in the last inequality and using (3.4.9), we have

lim max(d(@n(k)—1; Tm(k)—1)s A Yn(k)—15 Ym(k)—1)) = €. (3.4.21)

k—o00

Finally, letting k& — oo in (3.4.18) and using (3.4.16),(3.4.21) and the continuity

of Y, we get
w(e) < W(e) — lim Gmax(d(T ()1, Tmr)-1), AYni)-1; Ymr)-1))) < P(e)
and this implies
lim ¢ (max(d(@n (k) -1, Tmk)-1), AYn(k) -1, Ym(r)-1))) = 0. (3.4.22)

k—o0
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But, from limy_,oo max(d(zyk)—1, Tmk)-1), AYnk)—1; Ym)—1)) = €, we can find ko €

N such that for any k > ky

< maX(d(%(k)q, $m(k)71), d(yn(k)q, ym(k)fl))

DO | ™

and consequently,

€
0< <Z5(§) < ¢(max(d(Tn(k)—1, Tmk)=1), A(Yn(k) =1, Ymx)-1))) for k& > ko.

Therefore, 0 < ¢(5) < p(max(d(Tnr)—1, Tmk)—1)» A(Ynk)—15 Ymk)—1))) and this con-
tradicts (3.4.22). Therefore, the sequences {z,} and {y,} are Cauchy.

Since A is closed subset of a complete metric space X, these sequences have
limits. Thus, there exists x,y € A such that z, — x and y, — y. Therefore
(Tn,Yn) — (z,y) in A x A. Since F' is continuous, we have F(x,,y,) — F(z,y)
and F(y,,x,) — F(y,z). Hence the continuity of the metric function d implies that
d(@ng1, F(@n, yn)) = d(z, F(2,y)) and d(yni1, F(yn, 20)) = d(y, F(y, x)).

But from equations (3.4.1) and (3.4.2) we get, the sequences d(x,41, F(Tn, Yn))
and d(yns1, F'(yYn, x,)) are constant sequences with the value d(A, B). Therefore,
d(xz, F(x,y)) = d(A, B) and d(y, F(y,x) = d(A, B). This completes the proof of the

theorem. O

Corollary 3.4.2. Let (X, =,d) be a partially ordered complete metric space. Let A
be nonempty closed subsets of the metric space (X,d) . Let F': A x A — A satisfy

the following conditions.

(i) F is continuous having the proximal mized monotone property and proximally

coupled weak contraction on A.

(ii) There exist (xg,yo) and (x1,y1) in A X A such that x1 = F(xo,y0) with o <
x1 and y; = F(yo, xo) with yo = y1.

Then there ezist (x,y) € A X A such that d(x, F(z,y)) = 0 and d(y, F(y,x)) = 0.

In what follows we prove that Theorem 3.4.1 is still valid for F' not necessarily

continuous, assuming the following hypothesis in A. A has the property that
o(z,) is a non-decreasing sequence in A such that x,, — x, then z,, < z. (3.4.23)

o(y,) is a non-increasing sequence in A such that y,, — y, then y < y,. (3.4.24)
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Theorem 3.4.3. Assume the condition (3.4.23),(3.4.24) and Aq is closed in X
instead of continuity of F' in the Theorem 3.4.1.

Proof. Following the proof of Theorem 3.4.1, there exists sequences {z,} and {y,}

in A satisfying the following condition
d(zpi1, F(xn,yn)) = d(A, B) with 2, < 2,,1,Vn € N (3.4.25)

and

d(yn-i-la F(ynaxn)) = d(Aa B) with Yn t yn—l—lavn €N (3426)

Also, x,, converges to = and y, converges to y in A. From (3.4.23) and (3.4.24), we
get z,, < x and y, > y. Note that the sequences {z,} and {y,} are in Ay and A
is closed. Therefore, (x,y) € Ay X Ag. Since F(Ag x Ag) C By, we get F(x,y) and
F(y,x) are in By. Therefore, there exists (z*,y*) € Ay x A such that

d(z*, F(z,y)) = d(A, B) (3.4.27)
and
d(y*, F(y,z)) = d(A, B). (3.4.28)

Since z,, = x and y, > y. By using F' is proximally coupled weak contraction for

(3.4.25) and (3.4.27), we get

w(d<xn+la :L'*)) < 1/1( max(d(xm :L'), d(yna y)))
— ¢p(max(d(zn, ), d(Yn,y)))- (3.4.29)

Letting n — oo in (3.4.29) and using continuity of ¢, we get

P(d(z,x2%)) <0 — lim ¢p(max(d(y, yn),d(x,x,))) <O0.

n—oo
Using ¢(t) = 0 iff t = 0, we get d(x,z*) = 0, consequently, x = x*. Similarly it can
be proved that y = y x . Using these to (3.4.27) and (3.4.28),
we get d(z, P(z,y)) = d(A, B) and d(y, P(y, 2)) = d(A, B). .

Corollary 3.4.4. Assume the condition (3.4.23) and (3.4.24) instead of continuity

of F' in the Corollary 3.4.2.

Now, we present an example where it can be appreciated that hypotheses in
Theorem 3.4.1 and Theorem 3.4.3 do not guarantee uniqueness of the coupled best

proximity point.
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Example. Let X = {(0,1),(1,0),(—1,0),(0,—1)} C R?* and consider the usual
order (z,y) 2 (z,t) &z <zand y <t

Thus, (X, <) is a partially ordered set. Besides, (X, ds) is a complete metric space
when dy is the Euclidean metric. Let A = {(0,1),(1,0)} and B = {(0,—1),(-1,0)}
be a closed subset of X. Then, d(A, B) = v2,A= Agand B = By. Let F: Ax A —
B be defined by F((z1,x2), (y1,¥2)) = (—x2,—x1). Then, it can be seen that F' is
continuous such that F'(Agx Ag) C By. The only comparable pairs of points in A are
x =Xz for x € A, hence proximal mixed monotone property is satisfied trivially and
also proximally coupled weak contraction is fulfilled for arbitrary control functions.

It can be shown that the other hypotheses of the theorem are also satisfied.

However, F' has three coupled best proximity points ((0,1), (0,1)),((0,1),(1,0)) and
((1,0),(1,0)).

One can prove that the coupled best proximity point is in fact unique, provided
that the product space A x A endowed with the partial order mentioned earlier has

the following property:
Every pair of elements has either a lower bound or an upper bound.

It is known that this condition is equivalent to :
For every pair of (z,y), (z*,y*) € A x A, there exists a (z1,2) in A x A, that is
comparable to (z,y) and (z*,y*).

Theorem 3.4.5. In addition to the hypothesis of Theorem 3.4.1(resp. Theorem
3.4.3), suppose that for every (z,y) and (x*,y*) in Ay X Ay there exists (z1,22) €
Ag X Aq that is comparable to (x,y) and (x*,y*) then F has a unique coupled best
proximity point of F.

Proof. From Theorem 3.4.1(resp. Theorem 3.4.3), the set of coupled best proximity
points of F' is non-empty. Suppose that there exist (z,y) and (z*,y*) in A which

are coupled best proximity points. That is,
d(xz, F(x,y)) = d(A, B),d(y, F(y,z) = d(A, B)

and

d(z*, F(z*,y*)) = d(A, B),d(y", F(y*,x*) = d(A, B).
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We distinguish two cases:

Case:1 If (z,y) is comparable to (z*,y*) with respect to the ordering in A x A.
Using F' is proximally coupled weak contraction to d(z, F'(z,y)) = d(A, B) and
d(z*, F(z*,y*)) = d(A, B), we get

$(d(z,2") < d(max(d(e,2), d(y,y"))) — d(max(d(e,2*), d(y,y")). (3430

Similarly, one can prove that

P(d(y,y*)) < (max(d(y, y"), d(z, 2"))) — p(max(d(y, y"), d(x, 27))).  (3.4.31)

From (3.4.30) and (3.4.31), we get

max ((d(z, %)), ¥(d(y, y")) < Y(max(d(y,y"), d(x,2%))) — p(max(d(y,y"), d(z, 27))).

Using ¢ (max(a, b)) = max(¢(a), (b)) for a,b € [0, 0], we get

Y(max(d(z, z%), d(y, y"))) < Y(max(d(y,y*), d(z,z%))) — p(max(d(y,y"), d(z, z7)))

this implies that ¢(max(d(y,y*),d(z,z*))) < 0, using the property of ¢, we get
max(d(y,y*),d(z,z*)) = 0. Hence, v = z* and y = y * .

Case:2 If (z,y) is not comparable to (z*,y*), then there exists (uy,v1) € Ag X Ag
which is comparable to (z,y) and (z*,y*).

Since F(AgxAp) C By, there exists (ug, v2) € Agx Ay such that d(us, F(uy,v1)) =
d(A, B) and d(ve, F(v1,u1)) = d(A, B). With out loss of generality assume that
(ur,v1) < (z,y)( i.e.,, z > uy and y < v;.) Note that (uy,v;) < (x,y) implies that

(y,x) < (v1,uq). From Lemma 2.2.18 and Lemma 2.2.19, we get

\

up < xand vy >y
d('Ll,g7 F(ul, 'Ul)) = d(A, B) — Uy < x
d(z, F(z,y)) = d(A, B)

and
\

uy <z and vy >y

d(?}Q,F(Ul,U,l)) = d(A, B) = Vg = Y.

d(y, F(y,x)) = d(A, B) |
From the above to inequalities, we obtain (ug,v) < (z,y). Continuing this pro-

cess, we get sequences {u,} and {v,} such that d(u,.1, F(u,,v,)) = d(A, B) and
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d(Vng1, F(vn,uy)) = d(A, B) with (up,v,) < (x,y) Vn € N. Using F' is proximally

coupled weak contraction, we get

u, < x and v, >y
- ¢(d(un>$)) S w(max(d(un—bx)v d(vn—la y)))

_¢(max(d(un—1; JZ), d(vn—ly y)))

d(tp, F(tp_1,v,-1)) = d(A, B)

(3.4.32)

Similarly, we can prove that

y <wv, and x > u,
= P(d(y,vn)) < P(max(d(y, vo—1), d(z, up-1)))

—¢(max(d(y, vn-1), (@, un-1)))-

d(y, F(y,z)) = d(A, B)
d(vn, F(vp_1,un_1)) = d(A, B)

From(3.4.32) and (3.4.33), we obtain

max(y(d(un, ), Y (d(y, vy))) < (max(d(up—1, ), d(ve-1,9)))
- (b(max(d(un,l, l’), d(vnfla y)))

But, ¢ (max(a, b)) = max(i(a), (b)) for a,b € [0, 0c], hence

Y (max(d(un, ), d(y, v,))) < p(max(d(up—1, ), d(vn-1,)))
— ¢(max(d(up_1,2),d(Vn-1,9)))
< Y(max(d(t,_1, ), d(vVp_1,Y))). (3.4.33)

By using 1 is nondecreasing function, we get the sequence {max(d(u,, ), d(y,v,))}
is nonnegative decreasing and bounded.
This implies that there exists » > 0 such that

lim max(d(up,x),d(y,v,)) =1 > 0.

n—oo

Suppose lim,, o max(d(u,, x),d(y,v,)) =r > 0.

Letting n — oo in (3.4.33) and using the continuity of ¢, we get

P(r) < (r) — lim ¢p(max(d(u,—1,2),d(vn-1,vy))) < ®(r).

n—oo

This implies that
lim ¢(max(d(un 1,2), (v 1,3))) = 0. (3.4.34)

n—oo
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But 0 < r < max(d(un, x),d(y,v,)) and ¢ is nondecreasing function, hence

0 < o(r) < ¢p(max(d(un, x), d(y, vn)))

and this gives us lim, o ¢(max(d(u,—1,2),d(vn-1,y))) = ¢(r) > 0 which contra-
dicts (3.4.34).
Hence,

lim max(d(uy,x),d(y,v,)) = 0.

n—o0
That is u, — x and v,, — y. Analogously, one can prove that u,, — z* and v,, — y*.
But the limit of the sequence is unique in metric space. Therefore, + = z* and

y = y*. Hence the proof. 0

The following result, due to Harjani et.al in [12], is a corollary from the Theorem

3.4.5 by taking A = B.

Corollary 3.4.6. In addition to the hypothesis of Corollary 3.4.2(resp. Corollary
3.4.4), suppose that for any two elements (x,y) and (z*,y*) in A x A, there exists
(21,22) € A X A such that (z1, z2) is comparable to (x,y) and (z*,y*) then F has a

unique coupled fized point.



CHAPTER 4 CONCLUSIONS

In this chapter, we conclude all the theorems obtained in this dissertation as
follows:

(1) Let (X, d) be a complete metric space and let A and B be nonempty, closed
subsets of X such that Ay and B, are non-empty and A and B satisfies property *.
Let S:A— B, T:B— Aand g: AUB — AU B satisfy the following conditions:

(a) S and T are generalized proximal o — 1)—contraction of the first kind with
a—proximal admissible;

(b) g is an isometry;

(c) S(Ap) C By, T(By) C Ap;

(d) Ay € g(Ao) and By C g(By);

(e) There exist elements zy and 7 in Ay such that d(gz1, Szo) = d(A, B) and
azg, 1) > 1.

(f) S and T satisfies property Crp.

Then, there exists a unique point z in A and there exists a unique point y € B such
that
d(gz, Sz) = d(gy, Ty) = d(z,y) = d(A, B).

Moreover, for any fixed z( in Ay, the sequence {z,}, defined by
d(gxn41, Sz,) = d(A, B),

converges to the element x. For any fixed yo in By, the sequence {y,}, defined by

d(gyn+17 Tyn) - d(A7 B)7

converges to the element y. On the other hand, a sequence {u,} in A converges to

x with a(z,, u,) > 1, if there is a sequence of positive numbers {¢,} such that

lime, =0 and d(upi1, 2ns1) < €n,
n—ro0

where z,,; in A satisfies the condition that d(gz,+1, Su,) = d(A, B).
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(2) Let (X,d) be a complete metric space and A and B be nonempty, closed
subsets of X. Further, suppose that Ag and By are non-empty and A and B satisfies
property . Let S: A — B and g : A — A satisfy the following conditions:

(a) S is a generalized proximal oo — 1 —contractions of first and second kinds with
a—proximal admissible;

(b) g is an isometry;

(c) S preserves isometric distance with respect to g;

(d) 5(Ao) C By

(e) Ao € g(Ao).

(f) There exist elements xy and z; in Ay such that d(zq,Tzg) = d(A, B) and
azg, x1) > 1;

(g) S and T satisfies property Or.

Then, there exists a unique point z in A such that
d(gz, Sz) = d(A, B).
Moreover, for any fixed zq in Ay, the sequence {x,}, defined by
d(g i1, Sea) = d(A, B),

converges to the element x. On the other hand, a sequence {u,} in A converges to

x with a(z,,u,) > 1,, if there is a sequence of positive numbers {¢,} such that

lime, =0 and d(u,11, 2nt1) < €,
n—oo

where 2,1 in A satisfies the condition that d(gz,+1,Su,) = d(A, B).

(3) Let A and B be nonempty closed subsets of a complete metric space X such
that Ap is nonempty and the pair (A, B) has the P— property. Let T : A — B
satisfy the following conditions:

(a) T are a-proximal admissible and generalized almost (¢, 0),—contraction;

(b) T is continuous;

(c) there exist element xy and z7 in Ay such that d(zq1,Tz9) = d(A, B) and
alxg, z1) > 1;

(d) T(Ao) € Bo.

Then there exists an element 2 € A such that

d(xz,Tz) = d(A, B).
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Moreover, for any fixed z¢ € Ay, the sequence {x,}, defined by
d(xpi1,Tx,) = d(A, B),

converges to the element x.

(4) Let A and B be nonempty closed subsets of a complete metric space X such
that Ay is nonempty and the pair (A, B) has the P— property. Let T': A — B
satisfy the following conditions:

(a) T are a-proximal admissible and generalized almost (¢, #),—contraction;

(b) If {x,} is a sequence in A such that a(x,,2,,1) > 1 for all n and =, — =
for some = € A as n — oo, then there exists a subsequence {x,, } of {x,} such that
a(xp,,x) > 1 for all k;

(c) there exist element xy and z; in Ay such that d(zq1,Tzo) = d(A, B) and
azg, x1) > 1;

(d) T(Ao) C By.

Then there exists an element z € A such that
d(x,Tx) =d(A, B).
Moreover, for any fixed xy € Ay, the sequence {z,}, defined by
d(xpi1,Tx,) = d(A, B),

converges to the element x.

(5) Let A and B be nonempty closed subsets of a complete metric space X such
that Ag is nonempty and the pair (A, B) has the P— property. Let T': A — B
satisfy the following conditions:

(a) T are a-proximal admissible and generalized almost (¢, #),—contraction;

(b) T is continuous;

(c) there exist element xy and z; in Ay such that d(zy,Tz) = d(A, B) and
axg,z1) > 1,

(d) T(Ap) C Bo.

(e) T is («, d)—regular.

Then there exists an element z € A such that

d(xz,Tz) = d(A, B).
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Moreover, for any fixed z¢ € Ay, the sequence {x,}, defined by
d(xpi1, Tx,) = d(A, B),

converges to the element .

(6) Let A and B be nonempty closed subsets of a complete metric space X such
that Ap is nonempty and the pair (A, B) has the P— property. Let T : A — B
satisfy the following conditions:

(a) T are a-proximal admissible and generalized almost (¢, 0),—contraction;

(b) If {x,} is a sequence in A such that a(x,,z,+1) > 1 for all n and z,, — =
for some = € A as n — oo, then there exists a subsequence {xz,, } of {x,} such that
a(xy,,z) > 1 for all k;

(c) there exist element xy and z; in Ay such that d(zy,Tz) = d(A, B) and
axg,z1) > 1,

(d) T(40) € By,

(e) T is (o, d)—regular.

Then there exists an element x € A such that
d(z,Tz) = d(A, B).
Moreover, for any fixed xy € Ag, the sequence {z,}, defined by
d(xpi1, Txy,) = d(A, B),

converges to the element x.

(7) Let (X, d) be a complete metric space and let A and B be nonempty, closed
subsets of X such that Ay and By are non-empty. Let oo : A x A — [0, +00) satisfy
the following conditions:

(a) T(Ap) C By and (A, B) satisfies the weak P-property;

(b) T is a-proximal admissible;

(c) There exist elements zy and x; in Ay such that d(x1,Tz¢) = d(A, B) and
alxg, z1) > 1;

(d) T is a continuous Kannan weak o — ¢—contraction.

Then, there exists an element x* € Ay such that

d(z*,Tz*) = d(A, B)
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(8) Let (X, d) be a complete metric space and let A and B be nonempty, closed
subsets of X such that Ay and By are non-empty. Let oo : A x A — [0, +00) satisfy
the following conditions:

(a) T(Ap) C By and (A, B) satisfies the weak P-property;

(b) T is a-proximal admissible;

(c) There exist elements zy and x; in Ay such that d(x1,Tz¢) = d(A, B) and
alxg, z1) > 1;

(d) T is a Kannan weak a — ¢—contraction;

(e) If {x,} is a sequence in A such that a(z,, z,41) > 1 forallnand x, — 2z € A
as n — oo, then there exists a subsequence {z,, } of z, such that a(z,,,z) > 1 for
all k.

Then, there exists an element x* € Ay such that
d(z*,Tz*) = d(A, B)

(9) Let (X, d) be a complete metric space and let A and B be nonempty, closed
subsets of X such that Ag and By are non-empty. Let oo : A x A — [0, +00) satisfy
the following conditions:

(a) T'(Ag) C By and (A, B) satisfies the weak P-property;

(b) T is a-proximal admissible;

(c¢) There exist elements zy and x; in Ay such that d(x1,Tzo) = d(A, B) and
a(xg,z1) > 1,

(d) T is a Kannan weak o — ¢—contraction;

(e) T is (o, d)—regular;

(f) If {x,,} is a sequence in A such that a(z,,x,41) > 1forallnand z,, >z € A
as n — oo, then there exists a subsequence {z,, } of z,, such that a(xz,,,z) > 1 for
all k.

Then, there exists an element x* € Aj such that
d(z*,Tx*) = d(A, B)

(10) Let (X, <,d) be a partially ordered complete metric space. Let A and
B be nonempty closed subsets of the metric space (X,d) such that Ay # (). Let
F: A x A — B satisfy the following conditions.
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(i) F is continuous having the proximal mixed monotone property and proximally

coupled weak contraction on A such that F(Ay x Ag) C By.
(ii) There exist elements (xg,yo) and (x1,y;) in Ag X Ap such that
d(l’l, F(.’L’o, y(])) = d(A, B) with Zo < 1

and

d(y1, F(yo, ) = d(A, B) with yo > 4.

Then there exist (z,y) € Ax A such that d(z, F(z,y)) = d(A, B) and d(y, F(y,x)) =
d(A, B).

(11) Let (X, <,d) be a partially ordered complete metric space. Let A and
B be nonempty closed subsets of the metric space (X, d) such that Ay # 0. Let
F : A x A — B satisfy the following conditions.

(i) F' is continuous having the proximal mixed monotone property and proximally

coupled weak contraction on A such that F'(Ay x Ay) C By.
(ii) There exist elements (xg,yo) and (x1, ;) in Ag X Ag such that
d(zy, F(z0,%0)) = d(A, B) with zy < x;

and

d(yh F(y07$0)) = d(Aa B) with Yo Z Y.

(iii) (z,) is a non-decreasing sequence in A such that z,, — x, then z,, < z.

(yn) is a non-increasing sequence in A such that y, — y, then y < y,,.

Then, there exist (z,y) € AxAsuch that d(z, F(z,y)) = d(A, B) and d(y, F(y,x)) =
d(A, B).
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