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CHAPTER 1 INTRODUCTION

The best proximity point evolves as a generalization of the idea of the best

approximation. The best approximation results provide an approximate solution to

the fixed point equation Tx = x, when the non-self-mapping T has no fixed point.

In respective, a well-known best approximation theorem, due to Fan [1], insists the

fact that if K is a nonempty compact convex subset of a Hausdorff locally convex

topological vector space E and T : K → E is a continuous mapping, then there

exists an element x satisfying the condition d(x, Tx) = inf{d(y, Ty) : y ∈ K}, where

d is a metric on E. The best approximation theorem assures the existence of an

approximate solution; the best proximity point theorem is considered for solving

the problem to find an approximate solution which is optimal. Given nonempty

closed subsets A and B of E, when a non-self-mapping T : A → B has not a fixed

point, it is quite natural to find an element x∗ such that d(x∗, Tx∗) is minimum.

The best proximity point theorems assure the existence of an element x∗ such that

d(x∗, Tx∗) = d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}; this element is called the best

proximity point of T . Moreover, if the mapping under discussion is a self-mapping,

the best proximity point theorem becomes to a fixed point result. Some of interesting

results regarding best proximity points can be found in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16]

In Chapter 1,we review the background of this thesis for best proximity point

theorems.

In Chapter 2, we give the necessary notations, definitions, some useful lemmas

which will be used in the later chapter.

In Chapter 3, we prove the existence of best proximity point theorems which is

a generalized contraction for non-self mapping and also give some examples.

Finally, in Chapter 4, we give the summary of all the results and the conclusion

of this dissertation.



CHAPTER 2 PRELIMINARIES

In this chapter, we give some basic concepts including with definitions, notations

and some useful lemmas which are all necessary to the later chapters. Throughout

this dissertation, let R and N stand for the set of all real numbers and the set of all

natural numbers, respectively.

2.1 Some Definitions

Definition 2.1.1. Let X be a nonempty set. A metric on X is a real function

d : X ×X → R satisfying the following conditions:

(1) d(x, y) ≥ 0 for all x, y ∈ X;

(2) d(x, y) = 0 ⇐⇒ x = y for all x, y ∈ X;

(3) d(x, y) = d(y, x) for all x, y ∈ X;

(4) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

A set X with a metric d is called a metric space. The elements of X are called

the points of the metric space (X, d).

Definition 2.1.2. A sequence {xn} is a metric space (X, d) is said to converge to

x ∈ X if, for every ϵ > 0, there exist N ∈ N such that

d(xn, x) < ϵ,

for n ≥ N. In such case, we write xn → x or limn→∞ xn = x and x is called the limit

of a sequence {xn}. If limn→∞ xn = x for some x ∈ X, the sequence {xn} is called

convergent ; otherwise it is called divergent.

Definition 2.1.3. A sequence {xn} in a metric space (X, d) is called Cauchy se-

quence if for every ϵ > 0 there is N ∈ N such that d(xn, xm) < ϵ for all n,m ≥ N .

Definition 2.1.4. A metric space (X, d) is said to be complete if every Cauchy

sequence in X converges.
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Definition 2.1.5. A subset M of metric space (X, d) is closed if every sequence

{xn} in M such that limn→∞ xn = x implies x ∈M .

Definition 2.1.6. Let (X, d) be a metric space, a ∈ X and B ⊆ X. The distance

from a point a to B ⊆ X is given by

d(a,B) = inf{d(a, b) : b ∈ B}.

2.2 Best Proximity Point

Let A and B be nonempty subsets of a metric space (X, d), we recall the following

notations and notions that will be used in what follows:

d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B},

A0 := {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},

B0 := {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

If A ∩ B ̸= ∅, then A0 and B0 are non-empty. Further, it is interesting to notice

that A0 and B0 are contained in the boundaries of A and B respectively, provided

A and B are closed subsets of a normed linear space such that d(A,B) > 0 [17].

Definition 2.2.1. A point x in A is said to be a best proximity point of the mapping

S : A→ B if it satisfies the condition that

d(x, Sx) = d(A,B).

It can be observed that a best proximity reduces to a fixed point if the underlying

mapping is a self-mapping.

Definition 2.2.2. [18] A mapping T : A → B is called a proximal contraction of

the first kind if there exists k ∈ [0, 1) such that

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 =⇒ d(u, v) = kd(x, y),

for all x, y, u, v ∈ A.

It is easy to see that a self-mapping that is a proximal contraction of the first

kind is precisely a contraction. However, a non-self-proximal contraction is not

necessarily a contraction.
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Definition 2.2.3. [18] A mapping T : A → B is called a proximal contraction of

the second kind if there exists k ∈ [0, 1) such that

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 =⇒ d(Tu, Tv) = kd(Tx, Ty),

for all x, y, u, v ∈ A.

Definition 2.2.4. [19] A mapping S : A → B is called a generalized proximal

ψ−contraction of the first kind if for all x, y, u, v ∈ A satisfies

d(u, Sx) = d(A,B)

d(v, Sy) = d(A,B)

 =⇒ d(u, v) = ψd(x, y),

where ψ : [0,∞) → [0,∞) is an upper semicontinuous function from the right such

that ψ(t) < t for all t > 0.

Definition 2.2.5. [19] A mapping S : A → B is called a generalized proximal

ψ−contraction of the second kind if for all x, y, u, v ∈ A satisfies

d(u, Sx) = d(A,B)

d(v, Sy) = d(A,B)

 =⇒ d(Su, Sv) = ψd(Sx, Sy),

where ψ : [0,∞) → [0,∞) is an upper semicontinuous function from the right such

that ψ(t) < t for all t > 0.

It is easy to see that if we take ψ(t) = α(t), where α ∈ [0, 1), then a generalized

proximal ψ−contraction of the first kind and generalized proximal ψ−contraction

of the second kind reduce to a proximal contraction of the first kind and a proximal

contraction of the second kind, respectively. Moreover, it is easy to see that a self-

mapping generalized proximal ψ−contraction of the first kind and the second kind

reduces to the condition of Boy and Wong’ s fixed point theorem [20].

Definition 2.2.6. Let S : A → B and T : B → A be mappings. The pair (S, T ) is

called a proximal cyclic contraction pair if there exists k ∈ [0, 1) such that

d(a, Sx) = d(A,B)

d(b, Ty) = d(A,B)

 =⇒ d(a, b) ≤ kd(x, y) + (1− k)d(A,B),

for all a, x ∈ A and b, y ∈ B.
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Definition 2.2.7. Leting S : A→ B and g : A→ A be an isometry. The mapping

S is said to preserve isometric distance with respect to g if

d(Sgx, Sgy) = d(Sx, Sy),

for all x, y in A.

Definition 2.2.8. A is said to be approximatively compact with respect to B if every

sequence xn in A satisfies the condition that d(y, xn) → d(y, A) for some y in B has

a convergent subsequence.

Definition 2.2.9. [21] Let (A,B) be a pair of nonempty subsets of X with A0 ̸= ∅.

Then the pair (A,B) is said to have the P -property if and only if

d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)

 =⇒ d(x1, x2) = (y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

It is easy to see that, for any nonempty subset A of X, the pair (A,A) has the

P-property.

Definition 2.2.10. [22] Let (A,B) be a pair of nonempty subsets of a metric space

(X, d) with A0 ̸= ∅. Then the pair (A,B) is said to have the weak P -property if and

only if

d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)

 =⇒ d(x1, x2) ≤ d(y1, y2),

for all x1, x2 ∈ A and y1, y2 ∈ B

Definition 2.2.11. [23] A self mapping T : X → X is said to be α-admissible,

where α : X ×X → [0,∞), if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

Definition 2.2.12. [24] Let T : A→ B and α : A× A→ [0,∞). We say that T is

α− proximal admissible, if

α(x1, x2) ≥ 1

d(u1, Tx1) = d(A,B)

d(u2, Tx2) = d(A,B)

 =⇒ α(u1, u2) ≥ 1,

for all x1, x2, u1, u2 ∈ A.
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Clearly, for self-mapping, T is α-proximal admissible implies T is α-admissible.

Definition 2.2.13. We say the function φ : [0,∞) → [0,∞) is a (c)-comparison

function if and only if the following conditions hold:

(Φ1) φ is a nondecreasing function,

(Φ2) for any t > 0,
∑∞

n=1 φ
n(t) is a convergent series.

We denote the set of (c)-comparison function by Ψ.

It is easily proved that if φ is a (c)-comparison function, then φ(t) < t for all

t > 0.

Definition 2.2.14. [25] Let θ : [0,∞)4 → [0,∞) satisfies the following conditions:

(1) θ is continuous,

(2) θ(a, b, c, d) = 0 if and only if the product abcd = 0.

We denote the class of function θ by Θ.

Definition 2.2.15. A set P is partially ordered by a relation ≼ on P (we call ≼ a

partial order) provided the following are true:

(1) (≼ is reflexive) for each x ∈ P, x ≼ x,

(2) (≼ is transitive) if x ≼ y and y ≼ z, then x ≼ z,

(3) (≼ is antisymmetric) if x ≼ y and y ≼ x, then x = y.

Definition 2.2.16. [26] Let (X,≼) be a partially ordered set. The mapping F :

X × X → X is said to have the mixed monotone property if F (x, y) is monotone

nondecreasing in x and monotone nonincreasing in y; that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ≼ x2, implies, F (x1, y) ≼ F (x2, y),

y1, y2 ∈ X, y1 ≼ y2, implies, F (x, y1) ≽ F (x, y2).

Definition 2.2.17. Let (X, d,≼) be a ordered metric space and A,B are nonempty

subset of X. A mapping F : A × A → B is said to be proximal mixed monotone

property if F (x, y) is proximally nondecreasing in x and is proximally non-increasing

in y, that is, for all x, y ∈ A.

x1 ≼ x2

d(u1, F (x1, y)) = d(A,B)

d(u2, F (x2, y)) = d(A,B)

 =⇒ u1 ≼ u2



7

and

y1 ≼ y2

d(u3, F (x, y1)) = d(A,B)

d(u4, F (x, y2)) = d(A,B)

 =⇒ u4 ≼ u3,

where x1, x2, y1, y2, u1, u2, u3, u4 ∈ A.

One can see that, if A = B in the above definition, the notion of proximal mixed

monotone property reduces to that of mixed monotone property.

Lemma 2.2.18. [26] Let (X, d,≤) be an ordered metric space and A,B are nonempty

subset of X. Assume A0 is nonempty. A mapping F : A × A → B has proximal

mixed monotone property with F (A0 × A0) ⊆ B0 then for any x0, x1, x2, y0 and y1

are elements in A0

x0 ≤ x1 and y0 ≥ y1

d(x1, F (x0, y0)) = d(A,B)

d(x2, F (x1, y1)) = d(A,B)

 =⇒ x1 ≤ x2.

Lemma 2.2.19. [26] Let (X, d,≤) be an ordered metric space and A,B are nonempty

subset of X. Assume A0 is nonempty. A mapping F : A × A → B has proximal

mixed monotone property with F (A0 × A0) ⊆ B0 then for any x0, x1, y0, y1 and y2

are elements in A0

x0 ≤ x1 and y0 ≥ y1

d(y1, F (y0, x0)) = d(A,B)

d(y2, F (y1, x1)) = d(A,B)

 =⇒ y1 ≥ y2.

Definition 2.2.20. Let (X, d,≤) be an ordered metric space and A, B are nonempty

subset of X. A mapping F : A × A → B is said to be proximally coupled weak

contraction if it satisfies the following condition:

x1 ≤ x2and y1 ≥ y2

d(u1, F (x1, y1)) = d(A,B)

d(u2, F (x2, y2)) = d(A,B)


=⇒ ψ(d(u1, u2)) ≤ ψ(max(d(x1, x2), d(y1, y2)))

−ϕ(max(d(x1, x2), d(y1, y2)))

for all x1, x2, y1, y2, u1, u2 ∈ A, where ψ is altering distance function, ϕ is nonde-

creasing function also ϕ(t) = 0 iff t = 0.
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One can see that, if A = B in the above definition, the notion of proximally

coupled weak contraction reduces to that coupled weak contraction



CHAPTER 3 BEST PROXIMITY POINT THEOREMS

The aim of this chapter is to introduce new mappings which is generalize con-

traction in non-self mapping and and prove best proximity point in metric spaces

for these class.

3.1 Generalized Proximal α-ψ-Contraction Mappings and

Best Proximity Points

In this section, we introduce the new class of generalized proximal α−ψ−contraction

mappings and prove best proximity theorems for this class and also give some ex-

amples to illustrate our main Theorem.

Definition 3.1.1. A mapping S : A → B is said to be a generalized proximal

α− ψ−contraction of the first kind, if satisfies

d(u, Sx) = d(v, Sy) = d(A,B) ⇒ α(x, y)d(u, v) ≤ ψ(d(x, y)),

for all u, v, x, y in A, where ψ : [0,∞) → [0,∞) is an upper semicontinuous function

from the right such that ψ(t) < t for all t > 0 and α : A× A −→ [0,+∞).

Example. Consider the complete metric space R2 with metric defined by

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|,

for all (x1, y1), (x2, y2) ∈ R2. Let

A = {(x, 0) : 0 ≤ x ≤ 1},

B = {(x, 1) : 0 ≤ x ≤ 1}.

Then d(A,B) = 1. Define the mappings S : A→ B as follows:

S((x, 0)) =

(
x

2
− x2

4
, 1

)
.

First, we show that S is generalized proximal α− ψ−contraction of the first kind.
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Consider a function ψ : [0,∞) → [0,∞) defined by

ψ(t) =

 t− t2

2
; 0 ≤ t ≤ 1

t− 1; t ≥ 1.

We define the mapping α : A× A→ [0,+∞) by

α(x, y) =

 2, ∀x, y ∈ A

0, otherwise.

Let (x1, 0), (x2, 0), (a1, 0) and (a2, 0) be elements in A satisfying

d((x1, 0), S(a1, 0)) = d(A,B) = 1 and d((x2, 0), S(a2, 0)) = d(A,B) = 1.

It follows that

xi =
ai
2
− a2i

4
for i = 1, 2.

Since α is commutative, we may assume that a1 − a2 > 0, so we have

α((a1, 0), (a2, 0))d((x1, 0), (x2, 0)) = 2d((x1, 0), (x2, 0))

= 2d

((
a1
2

− a21
4
, 0

)
,

(
a2
2

− a22
4
, 0

))
= 2

∣∣∣∣ (a12 − a21
4

)
−
(
a2
2

− a22
4

) ∣∣∣∣
= 2

{(a1
2

− a2
2

)
−
(
a21
4

− a22
4

)}
= 2

{
1

2
(a1 − a2)−

1

4

(
a21 − a22

)}
≤ (a1 − a2)−

1

2
(a1 − a2)

2

= ψ (d ((a1, 0) , (a2, 0))) .

Thus, S is a generalized proximal α−ψ−contraction of the first kind. Next, we show

that S is not a ψ−proximal contraction of the first kind. Suppose S is ψ−proximal

contraction of the first kind then for each (x, 0), (y, 0), (a, 0), (b, 0) ∈ A satisfying

d((x, 0), S(a, 0)) = d(A,B) = 1 and d((y, 0), S(b, 0)) = d(A,B) = 1.

The function ψ : [0,∞) → [0,∞) defined by

ψ(t) =

 t− t2

2
; 0 ≤ t ≤ 1,

t− 1; t > 1.
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It follows that

x =
a

2
− a2

4
, y =

b

2
− b2

4
.

So, we have

d((x, 0), (y, 0)) ̸= ψ (d ((a, 0) , (b, 0))) .

Therefore, S is not a ψ−proximal contraction of the first kind.

Definition 3.1.2. A mapping S : A → B is said to be a generalized proximal

α− ψ−contraction of the second kind, if satisfies

d(u, Sx) = d(v, Sy) = d(A,B) ⇒ α(x, y)d(Su, Sv) ≤ ψ(d(Sx, Sy)),

for all u, v, x, y in A, where ψ : [0,∞) → [0,∞) is an upper semicontinuous from

the right such that ψ(t) < t for all t > 0 and α : A× A −→ [0,+∞).

Definition 3.1.3. Let (X, d) be a metric space. A subset A of X satisfies property

⋆ , if {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 and xn → x ∈ A for all

n ∈ N, then α(x, xn) ≥ 1 for all n ∈ N.

Definition 3.1.4. Let A and B be two subsets of metric space (X, d). Let T : A→

B and g : A ∪ B → A ∪ B. A mapping T satisfies condition �T , if ∀x, y ∈ A such

that d(gx, Tx) = d(A,B) and d(gy, Ty) = d(A,B), we have α(x, y) ≥ 1.

Theorem 3.1.5. Let (X, d) be a complete metric space and let A and B be non-

empty, closed subsets of X such that A0 and B0 are nonempty and A and B satisfies

property ⋆. Let S : A→ B, T : B → A and g : A∪B → A∪B satisfy the following

conditions:

(a) S and T are generalized proximal α − ψ−contraction of the first kind with

α−proximal admissible;

(b) g is an isometry;

(c) S(A0) ⊆ B0, T (B0) ⊆ A0;

(d) A0 ⊆ g(A0) and B0 ⊆ g(B0);

(e) There exist elements x0 and x1 in A0 such that d(gx1, Sx0) = d(A,B) and

α(x0, x1) ≥ 1.

(f) S and T satisfies property �T .

Then, there exists a unique point x in A and there exists a unique point y ∈ B such
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that

d(gx, Sx) = d(gy, Ty) = d(x, y) = d(A,B).

Moreover, for any fixed x0 in A0, the sequence {xn}, defined by

d(gxn+1, Sxn) = d(A,B),

converges to the element x. For any fixed y0 in B0, the sequence {yn}, defined by

d(gyn+1, T yn) = d(A,B),

converges to the element y. On the other hand, a sequence {un} in A converges to

x with α(xn, un) ≥ 1, if there is a sequence of positive numbers {ϵn} such that

lim
n→∞

ϵn = 0 and d(un+1, zn+1) ≤ ϵn,

where zn+1 in A satisfies the condition that d(gzn+1, Sun) = d(A,B).

Proof. From condition (g), there exist elements x0 and x1 in A0 such that

d(gx1, Sx0) = d(A,B), and α(x0, x1) ≥ 1. (3.1.1)

Again, since S(A0) ⊆ B0 and A0 ⊆ g(A0), there exists an element x2 in A0 such

that

d(gx2, Sx1) = d(A,B). (3.1.2)

By (3.1.1), (3.1.2) and the α-proximal admissible, we get

α(x1, x2) ≥ 1.

Since S(A0) ⊆ B0 and A0 ⊆ g(A0), there exists an element x3 in A0 such that

d(gx3, Sx2) = d(A,B). (3.1.3)

Again, By (3.1.2), (3.1.3) and the α-proximal admissible, we get

α(x2, x3) ≥ 1.

By similar fashion, we can find xn in A0. Having chosen xn, one can determine an

element xn+1 in A0 such that

d(gxn+1, Sxn) = d(A,B), (3.1.4)
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and

α(xn, xn+1) ≥ 1. (3.1.5)

Because of the facts that S(A0) ⊆ B0 and A0 ⊆ g(A0), by a generalized proximal

α − ψ−contraction of the first kind of S, g is an isometry and property of ψ, for

each n in N, we have

d(xn+1, xn) ≤ α(xn−1, xn)d(xn+1, xn)

= α(xn−1, xn)d(gxn+1, gxn)

≤ ψ(d(xn−1, xn))

≤ d(xn−1, xn).

Hence, that the sequence {d(xn+1, xn)} is non-decreasing and bounded bolow.

Hence, then exists r ≥ 0 such that

lim
n→∞

d(xn+1, xn) = r.

We claim that r = 0.

If r > 0, then

r = lim
n→∞

d(xn+1, xn)

≤ lim
n→∞

ψ(d(xn, xn−1))

= ψ(r)

< r,

which is a contradiction and hence r = 0. That is,

lim
n→∞

d(xn+1, xn) = 0. (3.1.6)

Next we show that {xn} is a Cauchy sequence. Suppose the contrary, then there

exists ε > 0 and subsequence {xmk
}, {xnk

} of {xn} such that nk > mk ≥ k with

rk := d(xmk
, xnk

) ≥ ε and d(xmk
, xnk−1) < ε,

for k ∈ {1, 2, 3, . . .}. Putting βn = d(xn+1, xn),

ε ≤ rk ≤ d(xmk
, xnk−1) + d(xnk−1, xnk

)

< ε+ βnk−1,
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it follows from, that

lim
k→∞

rk = ε. (3.1.7)

On the other hand, by constructing the sequence {xn}, we have

d(gxmk+1, Sxmk
) = d(A,B) and d(gxnk+1, Sxnk

) = d(A,B).

By the transitive of α, we get α(xmk
, xnk

) ≥ 1. Since S is a generalized proximal

α− ψ−contraction of the first kind and g is an isometry, we have

d(xmk+1, xnk+1) = d(gxmk+1, gxnk+1)

≤ α(xmk
, xnk

)d(gxmk+1, gxnk+1)

= α(xmk
, xnk

)d(xmk
, xnk

)

≤ ψ(d(xmk
, xnk

)),

and we also have

ε ≤ rk ≤ d(xmk
, xmk+1) + d(xnk+1, xnk

) + d(xmk+1, xnk+1)

= βmk
+ βnk

+ d(xmk+1, xnk+1)

= βmk
+ βnk

+ d(gxmk+1, gxnk+1)

≤ βmk
+ βnk

+ α(xmk
, xnk

)d(gxmk+1, gxnk+1)

≤ βmk
+ βnk

+ ψ(d(xmk
, xnk

)).

Taking k → ∞ in above inequality, by (3.1.6), (3.1.7) and property of ψ, we get

ε ≤ ψ(ε) < ε, which is a contradiction, ε = 0. Thus {xn} is Cauchy sequence in A.

Since A is subset of complete metric spaceX. Then the sequence {xn} is converges to

some element x in A. Similarly, in view of the fact that T (B0) ⊆ A0 and A0 ⊆ g(A0),

we can conclude that there is a sequence {yn} such that d(gyn+1, T yn) = d(A,B)

and converge to some element y ∈ B.

By g is an isometry, we have

d(xn+1, yn+1) = d(gxn+1, gyn+1)

it follows that

d(x, y) = d(A,B),
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so, we concluded that x ∈ A0 and y ∈ B0. Since S(A0) ⊆ B0 and T (B0) ⊆ A0, there

is u ∈ A and v ∈ B such that

d(u, Sx) = d(A,B), (3.1.8)

d(v, Ty) = d(A,B).

Since A satisfies property ⋆ and, we get α(x, xn) ≥ 1 for all n ∈ N.

From (3.1.4), (3.1.5) and (3.1.8), and the notion of generalized proximal α−ψ−

contraction of first kind of S, we get

d(u, gxn+1) ≤ α(x, xn)d(u, gxn+1) ≤ ψ(d(x, xn)).

Letting n→ ∞,we get d(u, gx) ≤ ψ(0) = 0 and thus u = gx.

Therefore, we get

d(gx, Sx) = d(A,B). (3.1.9)

Similarly, we can show that v = gy and then

d(gy, Ty) = d(A,B). (3.1.10)

From (3.1.9) and (3.1.10), we get

d(x, y) = d(gx, Sx) = d(gy, Ty) = d(A,B).

Next, to prove the uniqueness, let us suppose that there exist x∗ ∈ A and y∗ ∈ B

with x ̸= x∗, y ̸= y∗ such that

d(gx∗, Sx∗) = d(A,B)

and

d(gy∗, T y∗) = d(A,B).

Since g is an isometry, S and T are generalized proximal α − ψ−contration of the

first kind and from the (h); it follows that

d(x, x⋆) = d(gx, gx⋆) ≤ α(x, x⋆)d(gx, gx⋆) ≤ ψ(d(x, x⋆)) < d(x, x⋆),

d(y, y⋆) = d(gy, gy⋆) ≤ α(y, y⋆)d(gy, gy⋆) ≤ ψ(d(y, y⋆)) < d(y, y⋆).

which is a contradiction, so we have x = x∗ and y = y∗. On the other hand, let

{un} be a sequence in A and {ϵn} a sequence of positive real numbers such that

lim
n→∞

ϵn = 0 and d(un+1, zn+1) ≤ ϵn,
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where zn+1 ∈ A satisfies the condition that d(gzn+1, Sun) = d(A,B) and α(xn, un) ≥

1. Since S is a generalized proximal α− ψ−contraction of first kind, we have

d(xn+1, zn+1) ≤ α(xn, un)d(xn, zn)

≤ ψ(d(xn, un)).

Given ϵ > 0, we choose a positive integer N such that ϵn ≤ ϵ for all n ≥ N , we

obtain that

d(un+1, x) ≤ d(un+1, xn+1) + d(xn+1, x)

≤ d(un+1, zn+1) + d(zn+1, xn+1) + d(xn+1, x)

≤ ψ(d(xn, un)) + ϵn + d(xn+1, x).

This claim that d(un, x) → 0 as n → ∞, suppose the contrary, by a inequality

(3.1.10) and property of ψ, we get

lim
n→∞

d(un+1, x) ≤ lim
n→∞

(d(un+1, xn+1) + d(xn+1, x))

≤ lim
n→∞

(ψ(d(xn, un)) + ϵn + d(xn+1, x))

< lim
n→∞

d(xn, un)

≤ lim
n→∞

(d(xn, x) + d(x, un))

= lim
n→∞

d(x, un).

Which is a contradiction, so we have {un} is convergent and it converges to x. This

completes the proof of the theorem.

Example. Consider the complete metric space R2 with Euclidean metric. Let

A = {(0, y) : y ∈ R}

and

B = {(1, y) : y ∈ R}.

Define two mappings S : A→ B, T : B → A and g : A ∪B → A ∪B as follows:

S((0, y)) =
(
1,
y

8

)
,

T ((1, y)) =
(
0,
y

8

)
,
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g((x, y)) = (x,−y).

We define the mapping α : A× A→ [0,+∞) by

α(x, y) =

 2, ∀x, y ∈ A,

0, otherwise.

Then it is easy to see that d(A,B) = 1, A0 = A, B0 = B and the mapping g is an

isometry.

Next, we claim that S and T are generalized proximal α−ψ−contractions of the

first kind.

Consider a function ψ : [0,∞) → [0,∞) defined by ψ(t) = t/2 for all t ≥ 0.

If (0, y1), (0, y2) ∈ A such that

α((0, y1), (0, y2) ≥ 1,

d(gu, S(0, y1)) = d(A,B) = 1,

d(gv, S(0, y2)) = d(A,B) = 1,

for all u, v ∈ A, then we have

gu =

(
0,
y1

8

)
, gv =

(
0,
y2

8

)
.

We have,

α((0, y1), (0, y2))d(gu, gv) = 2d(gu, gv)

= 2d

((
0,
y1

8

)
,

(
0,
y2

8

))

= 2

∣∣∣∣y18 −
y2

8

∣∣∣∣
= 2

(
1

8
|y1 − y2|

)
=

1

4
|y1 − y2|

≤ 1

4
d((0, y1), (0, y2))

= ψd((0, y1), (0, y2)).

Hence S is a generalized proximal α− ψ−contraction of the first kind.
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If (1, y1), (1, y2) ∈ A such that

α((1, y1), (1, y2) ≥ 1,

d(ga, T (1, y1)) = d(A,B) = 1,

d(gb, T (1, y2)) = d(A,B) = 1.

for all a, b ∈ A, then, we get

ga =

(
1,
y1

8

)
, gb =

(
1,
y2

8

)
.

In the same way, we can see that T is a generalized proximal α− ψ−contraction of

the first kind.

Further, it is easy to see that the unique element (0, 0) ∈ A and (1, 0) ∈ B such

that

d(g(0, 0), S(0, 0)) = d(g(1, 0), T (1, 0)) = d((0, 0), (1, 0)) = d(A,B).

Theorem 3.1.6. Let (X, d) be a complete metric space and A and B be nonempty,

closed subsets of X. Further, suppose that A0 and B0 are nonempty and A and B

satisfies property ⋆. Let S : A→ B and g : A→ A satisfy the following conditions:

(a) S is a generalized proximal α−ψ−contractions of first and second kinds with

α−proximal admissible;

(b) g is an isometry;

(c) S preserves isometric distance with respect to g;

(d) S(A0) ⊆ B0;

(e) A0 ⊆ g(A0).

(f) There exist elements x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(g) S and T satisfies property �T .

Then, there exists a unique point x in A such that

d(gx, Sx) = d(A,B).

Moreover, for any fixed x0 in A0, the sequence {xn}, defined by

d(gxn+1, Sxn) = d(A,B),
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converges to the element x.

On the other hand, a sequence {un} in A converges to x with α(xn, un) ≥ 1, if

there is a sequence of positive numbers {ϵn} such that

lim
n→∞

ϵn = 0 and d(un+1, zn+1) ≤ ϵn,

where zn+1 in A satisfies the condition that d(gzn+1, Sun) = d(A,B).

Proof. Since S(A0) ⊆ B0 and A0 ⊆ g(A0), similarly in the proof of Theorem(3.1.5),

we can construct the sequence {xn} of element in A0 such that

d(gxn+1, Sxn) = d(A,B), and α(xn, xn+1) ≥ 1, (3.1.11)

for all non-negative number n. It follows from g is an isometry and the virtue of a

generalized proximal α− ψ−contraction of the first kind of S, we see that

d(xn, xn+1) = d(gxn, gxn+1) ≤ ψ(d(xn, xn−1)),

for all n ∈ N. Similarly to the proof of Theorem(3.1.5), we can conclude that the

sequence {xn} is a Cauchy sequence and converges to some x in A. Since S is a

generalized proximal α− ψ−contraction of the second kind and preserves isometric

distance with respect to g that

d(Sxn, Sxn+1) ≤ α(xn−1, xn)d(Sxn+1, Sxn)

= α(xn−1, xn)d(Sgxn+1, Sgxn)

≤ ψ(d(Sxn−1, Sxn))

≤ d(Sxn−1, Sxn).

Hence, that the sequence {d(Sxn+1, Sxn)} is non-decreasing and bounded below.

Hence, there exists r ≥ 0 such that

lim
n→∞

d(Sxn+1, Sxn) = r.

We claim that r = 0. If r > 0 then by (3.1.12) and (3.1.12), we get

r = lim
n→∞

d(Sxn+1, Sxn)

≤ lim
n→∞

ψ(d(Sxn−1, Sxn))

= ψ(r)

< r,
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which is a contradiction and hence

lim
n→∞

d(Sxn+1, Sxn) = 0. (3.1.12)

Next, we show that {Sxn} is a Cauchy sequence. Suppose the contrary.

There exists ε > 0 and subsequence {Sxmk
}, {Sxnk

} of {Sxn} such that nk > mk ≥ k

with

rk := d(Sxmk
, Sxnk

) ≥ ε and d(Sxmk
, Sxnk−1) < ε,

for k ∈ {1, 2, 3, . . .}. Putting γn = d(Sxn+1, Sxn), then

ε ≤ rk ≤ d(Sxmk
, Sxnk−1) + d(Sxnk−1, Sxnk

)

< ε+ γnk−1,

it follows from (3.1.12), that

lim
k→∞

rk = ε. (3.1.13)

On the other hand, by constructing the sequence {xn}, we have

d(gxmk+1, Sxmk
) = d(A,B) and d(gxnk+1, Sxnk

) = d(A,B).

Using the transitive of α, we get α(xmk
, xnk

) ≥ 1. Since S is a generalized proximal

α− ψ−contraction of the second kind and g is an isometry, we have

d(Sxmk+1, Sxnk+1) = d(Sgxmk+1, Sgxnk+1)

≤ α(xmk
, xnk

)d(Sgxmk+1, Sgxnk+1)

= α(xmk
, xnk

)d(Sxmk+1, Sxnk+1)

≤ ψ(d(Sxmk
, Sxnk

)).

Notice also that

ε ≤ rk ≤ d(Sxmk
, Sxmk+1) + d(Sxnk+1, Sxnk

) + d(Sxmk+1, Sxnk+1)

= γmk
+ γnk

+ d(Sxmk+1, Sxnk+1)

≤ γmk
+ γnk

+ ψ(d(Sxmk
, Sxnk

)).

Taking k → ∞ in above inequality, by (3.1.12), (3.1.13) and property of ψ, we get

ε ≤ ψ(ε) < ϵ, which is a contradiction ε = 0. So we obtain the claim and then it

converges to some y in B. Therefore, we can conclude that

d(gx, y) = lim
n→∞

d(gxn+1, Sxn) = d(A,B),
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that is gx in A0. Since A0 ⊆ g(A0), we have gx = gz for some z in A0 and thus

d(gx, gz) = 0. By the fact that g is an isometry, we have d(x, z) = d(gx, gz) = 0.

Hence x = z and so x becomes to a point in A0. As S(A0) ⊆ B0 that

d(u, Sx) = d(A,B) (3.1.14)

for some u in A. It follows from (3.1.11), (3.1.14), condition (c) and S is a generalized

proximal α− ψ−contraction of the first kind that

d(u, gxn+1) ≤ α(xn, x)d(u, gxn+1)

≤ ψ(d(xn, x))

≤ d(xn, x),

for all n in N. Taking limit as n → ∞, we get the sequence {gxn} converges to a

point u. By the fact that xn converges to x and g is continuous, we have

gxn → gx as n→ ∞.

By the uniqueness of limit of the sequence, we conclude that u = gx. Therefore,

it results that d(gx, Sx) = d(u, Sx) = d(A,B). The uniqueness and the remaining

part of the proof follows as in Theorem(3.1.5). This completes the proof of the

theorem.

3.2 Existence and Uniqueness of Best Proximity Points for

Generalized Almost Contractions

In this section, we introduce the new class of generalized almost contraction

mappings in metric spaces by using the α−proximal admissible of Jleli et al. [24]

and prove best proximity theorems for this class and also give some illustrative

examples and applications to support our main results.

Definition 3.2.1. Let A and B be nonempty subsets of metric space X. A mapping

T : A→ B is said to be a generalized almost (φ, θ)α contraction, if and only if

α(x, y)d(Tx, Ty) ≤ φ
(
M(x, y)) + θ(d(y, Tx)− d(A,B), d(x, Ty)− d(A,B),

d(x, Tx)− d(A,B), d(y, Ty)− d(A,B)
)
,
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for all x, y ∈ A, where α : A× A→ [0,∞), φ ∈ Ψ, θ ∈ Θ and

M(x, y) = max{d(x, y), d(x, Tx)− d(A,B), d(y, Ty)− d(A,B),

1
2
[d(x, Ty) + d(y, Tx)]− d(A,B)}.

Clearly, if we take α(x, y) = 1 for all x, y ∈ A and M(x, y) = d(x, y), the

generalized almost (φ, θ)α contraction reduce to almost (φ, θ) contraction.

3.2.1 Existence of Best Proximity Points for Generalized Almost Con-

tractions

Theorem 3.2.2. Let A and B be nonempty closed subsets of a complete metric

space X such that A0 is nonempty and the pair (A,B) has the P− property. Let

T : A→ B satisfy the following conditions:

(a) T are α-proximal admissible and generalized almost (φ, θ)α−contraction;

(b) T is continuous;

(c) there exist element x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(d) T (A0) ⊆ B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.

Proof. By the hypothesis (c), there exist x0 and x1 in A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1. (3.2.1)

From the fact that T (A0) ⊆ B0, there exists an element x2 ∈ A0 such that

d(x2, Tx1) = d(A,B). (3.2.2)

By (3.2.1), (3.2.2) and the α-proximal admissible, we get

α(x1, x2) ≥ 1.
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Since T (A0) ⊆ B0, we can find an element x3 ∈ A0 such that

d(x3, Tx2) = d(A,B). (3.2.3)

Again, by (3.2.2), (3.2.3) and the α-proximal admissible, we have

α(x2, x3) ≥ 1.

By similar fashion, we can find xn in A0. Having chosen xn, one can determine

an element xn+1 ∈ A0 such that

d(xn+1, Txn) = d(A,B) and α(xn, xn+1) ≥ 1. (3.2.4)

In view the facts that, the pair (A,B) has P− property and generalized almost

(φ, θ)α−contraction of T , we have

d(x1, x2) = d(Tx0, Tx1)

≤ α(x0, x1)d(Tx0, Tx1)

≤ φ(M(x0, x1))

+θ(d(x1, Tx0)− d(A,B), d(x0, Tx1)− d(A,B),

d(x0, Tx0)− d(A,B), d(x1, Tx1)− d(A,B))

= φ(M(x0, x1))

+θ(0, d(x0, Tx1)− d(A,B), d(x0, Tx0)− d(A,B),

d(x1, Tx1)− d(A,B))

= φ(M(x0, x1)).

(3.2.5)

Since

M(x0, x1) = max{d(x0, x1), d(x0, Tx0)− d(A,B), d(x1, Tx1)− d(A,B),

1
2
[d(x0, Tx1) + d(x1, Tx0)]− d(A,B)}

≤ max{d(x0, x1), d(x0, x1) + d(x1, Tx0)− d(A,B), d(x1, x2)

+d(x2, Tx1)− d(A,B)1
2
[d(x0, x1) + d(x1, x2) + d(x2, Tx1)

+d(A,B)]− d(A,B)}

= max{d(x0, x1), d(x1, x2), 12 [d(x0, x1) + d(x1, x2) + d(A,B)

+d(A,B)]− d(A,B)}

= max{d(x0, x1), d(x1, x2), 12 [d(x0, x1) + d(x1, x2)]}

= max{d(x0, x1), d(x1, x2)}.
(3.2.6)
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By (3.2.5) and (3.2.6), we get

d(x1, x2) ≤ φ(max{d(x0, x1), d(x1, x2)}).

If there exist n0 ∈ N ∪ {0} such that xn0+1 = xn0 , by (3.2.4) we obtain the best

proximity point. Suppose that xn+1 ̸= xn for all n ∈ N ∪ {0}, then d(xn, xn+1) > 0

for all n ∈ N∪{0}. If max{d(x0, x1), d(x1, x2)} = d(x1, x2), by the property φ(t) < t

for all t > 0 , we get

d(x1, x2) ≤ φ(max{d(x0, x1), d(x1, x2)}) < d(x1, x2),

which is a contradiction and hence max{d(x0, x1), d(x1, x2)} = d(x0, x1). That is,

d(x1, x2) ≤ φ(d(x0, x1)). (3.2.7)

Again, since the pair (A,B) has P− property, α-proximal admissible and gener-

alized almost (φ, θ)α−contraction of T , we have

d(x2, x3) = d(Tx1, Tx2)

≤ α(x1, x2)d(Tx1, Tx2)

≤ φ(M(x1, x2))

+θ(d(x2, Tx1)− d(A,B), d(x1, Tx2)− d(A,B),

d(x1, Tx1)− d(A,B), d(x2, Tx2)− d(A,B))

= φ(M(x1, x2))

+θ(0, d(x1, Tx2)− d(A,B), d(x1, Tx1)− d(A,B),

d(x2, Tx2)− d(A,B))

= φ(M(x1, x2))

and since

M(x1, x2) = max{d(x1, x2), d(x1, Tx1)− d(A,B), d(x2, Tx2)− d(A,B),

1
2
[d(x1, Tx2) + d(x2, Tx1)]− d(A,B)}

≤ max{d(x1, x2), d(x1, x2) + d(x2, Tx1)− d(A,B), d(x2, x3)

+d(x3, Tx2)− d(A,B)1
2
[d(x1, x2) + d(x2, x3) + d(x3, Tx2)

+d(A,B)]− d(A,B)}

= max{d(x1, x2), d(x2, x3),
1
2
[d(x1, x2) + d(x2, x3) + d(A,B) + d(A,B)]− d(A,B)}

= max{d(x1, x2), d(x2, x3), 12 [d(x1, x2) + d(x2, x3)]}

= max{d(x1, x2), d(x2, x3)}.
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By (3.2.5) and (3.2.6), we get

d(x2, x3) ≤ φ(max{d(x1, x2), d(x2, x3)}). (3.2.8)

By similar argument as above, we can conclude that, max{d(x1, x2), d(x2, x3)} =

d(x1, x2) and thus

d(x2, x3) ≤ φ(d(x1, x2)). (3.2.9)

Using (3.2.7) and (3.2.9) and the nondecreasing of φ, we get

d(x2, x3) ≤ φ2(d(x0, x1)).

Continuing this process, by induction, we have

d(xn, xn+1) ≤ φn(d(x0, x1)), (3.2.10)

for all n ∈ N ∪ {0}. Fix ε > 0 and let h = h(ε) be a positive integer such that∑
n≥h

φn(d(x0, x1)) < ε. (3.2.11)

Let m > n > h, using the triangular inequality, (3.2.10) and (3.2.11), we obtain

that

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=n

φk(d(x0, x1)) ≤
∑
n≥h

φn(d(x0, x1)) < ε.

This show that {xn} is a Cauchy sequence. Since A is a closed subset of complete

metric spaces X, then there exists x ∈ A such that

lim
n→∞

d(xn, x) = 0.

By (3.2.4), (3.2.12) and the continuity of T , we get

d(x, Tx) = lim
n→∞

d(xn+1, Txn) = d(A,B)

and the proof is completes.

Next, we remove condition T is continuous in Theorem 3.2.2, by assuming the

following condition which was defined by Jleli et al. [24] for proving the new best

proximity point theorem.

(H) : If {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n and xn → x

for some x ∈ A as n→ ∞, then there exists a subsequence {xnk
} of {xn} such that

α(xnk
, x) ≥ 1 for all k.
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Theorem 3.2.3. Let A and B be nonempty closed subsets of a complete metric

space X such that A0 is nonempty and the pair (A,B) has the P− property. Let

T : A→ B satisfy the following conditions:

(a) T are α-proximal admissible and generalized almost (φ, θ)α−contraction;

(b) A satisfies condition (H);

(c) there exist element x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α((x0, x1)) ≥ 1;

(d) T (A0) ⊆ B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.

Proof. As in the proof of Theorem 3.2.2, we have

d(xn+1, Txn) = d(A,B)

for all n ≥ 0 . Moreover, {xn} is a Cauchy sequence and converges to some point

x ∈ A. By the P− property and (3.2.10), we have

d(Txn−1, Txn) = d(xn, xn+1) ≤ φn(d(x0, x1)) (3.2.12)

for all n ∈ N ∪ {0}. That is limn→∞ d(Txn−1, Txn) = 0 and by the same argument

as proof of Theorem 3.2.2, we obtain that {Txn} is a Cauchy sequence. Since B is

a closed subset of the complete metric space (X, d), there exists x⋆ ∈ B such that

Txn converges to x⋆. Therefore,

d(x, x⋆) = lim
n→∞

d(xn+1, Txn) = d(A,B).

On the other hand, from the condition (H) of T , then there exists a subsequence

{xnk
} of {xn} such that α(xnk

, x) ≥ 1 for all k. The pair (A,B) has P− property
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and property of mapping T , we get

d(xnk+1, x) = d(Txnk
, Tx)

≤ α(xnk
, x)d(Txnk

, Tx)

≤ φ(M(xnk
, x))

+θ(d(xnk
, Tx)− d(A,B), d(x, Txnk

)− d(A,B),

d(x, Tx)− d(A,B), d(xnk
, Txnk

)− d(A,B)).

Indeed,

M(xnk
, x) = max{d(xnk

, x), d(xnk
, Txnk

)− d(A,B), d(x, Tx)− d(A,B),

1
2
[d(xnk

, Tx) + d(x, Txnk
)]− d(A,B)}

≤ max{d(xnk
, x), d(xnk

, xnk+1) + d(xnk+1, Txnk
)− d(A,B),

d(x, Tx)− d(A,B), 1
2
[d(xnk

, x) + d(x, Tx)

+d(x, xnk+1) + d(xnk+1, Txnk
)]− d(A,B)}

≤ max{d(xnk
, x), d(xnk

, xnk+1), d(x, Tx)− d(A,B),

1
2
[d(xnk

, x) + d(x, Tx) + d(x, xnk+1) + d(A,B)]− d(A,B)}

:= M(xnk
, x).

From the definition of M(xnk
, x), we get

limk→∞M(xnk
, x) = d(x, Tx)− d(A,B). (3.2.13)

Since

d(x, Tx) ≤ d(x, xnk+1) + d(xnk+1, Txnk
) + d(Txnk

, Tx)

≤ d(x, xnk+1) + d(A,B) + d(Txnk
, Tx),

it follows that

d(x, Tx)− d(x, xnk+1)− d(A,B) ≤ d(Txnk
, Tx)

≤ α(xnk
, x)d(Txnk

, Tx)

≤ φ(M(xnk
, x))

+θ(d(xnk
, Tx)− d(A,B), d(x, Txnk

)

−d(A,B), d(x, Tx)− d(A,B), d(xnk
, Txnk

)

−d(A,B))

≤ φ(M(xnk
, x))

+θ(d(xnk
, Tx)− d(A,B), d(x, Txnk

)

−d(A,B), d(x, Tx)− d(A,B), d(xnk
, Txnk

)

−d(A,B)).
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Suppose that

d(x, Tx)− d(A,B) > 0,

then for k large enough, we have M(xnk
, x) > 0. Using the property φ(t) < t for all

t > 0, we get

d(x, Tx)− d(x, xnk+1)− d(A,B) < M(xnk
, x)

+θ(d(xnk
, Tx)− d(A,B), d(x, Txnk

)

−d(A,B), d(x, Tx)− d(A,B), d(xnk
, Txnk

)

−d(A,B)).

(3.2.14)

Combining (3.2.13), (3.2.13) with (3.2.14) and the proprety of θ, we obtain that

d(x, Tx)− d(A,B) = limk→∞ d(x, Tx)− d(x, xnk+1)− d(A,B)

< limk→∞ M(xnk
, x)

+ limk→∞ θ(d(xnk
, Tx)− d(A,B), d(x, Txnk

)− d(A,B),

d(x, Tx)− d(A,B), d(xnk
, Txnk

)− d(A,B))

= limk→∞ M(xnk
, x)

= d(x, Tx)− d(A,B),

which is a contradiction and thus d(x, Tx)−d(A,B) = 0. Hence, d(x, Tx) = d(A,B)

and the proof is complete.

3.2.2 The Uniqueness of Best Proximity Points for Generalized Almost

Contractions

Next, we present an example where it can be appreciated that hypotheses in

Theorems 3.2.2 and 3.2.3 do not guarantee uniqueness of the best proximity point.

Example. LetX = R2 with the Euclidean metric. Consider A := {(2, 0), (0, 2)} and

B := {(−2, 0), (0,−2)}. Obviously, (A,B) satisfies the P -property and d(A,B) =

2
√
2, furthermore A0 = A and B0 = B. Define T : A→ B by T (x, y) = (−y

2
, −x

2
) for

all x, y ∈ A, clearly T is continuous. Let α : A× A→ [0,∞) defined by

α(x, y) =

 2 ; x = y,

1
2

; x ̸= y.

We can show that T are α-proximal admissible and generalized almost

(φ, θ)α−contraction with φ(t) = t/2 for all t ≥ 0 and for all θ ∈ Θ. Furthermore,

d((2, 0), T (2, 0)) = d((2, 0), (0,−2)) = d((0, 2), (−2, 0)) = d((0, 2), T (0, 2)) = d(A,B).
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Therefore, (2, 0) and (0, 2) are a best proximity point of mapping T .

Now, we need a sufficient condition for give uniqueness of the best proximity

point as follows:

Definition 3.2.4. [24] Let T : A → B be a non-self mapping and α : A × A →

[0,∞). We say that T is (α, d)−regular if for all (x, y) ∈ α−1([0, 1)), there exists

z ∈ A0 such that

α((x, z)) ≥ 1 and α(y, z) ≥ 1.

Theorem 3.2.5. Adding condition (α, d)−regular of T to the hypotheses of Theorem

3.2.2, then we obtain the uniqueness of the best proximity point of T .

Proof. We shall only proof the part of uniqueness. Suppose that there exist x and

x∗ in A which are distinct best proximity points, that is

d(x, Tx) = d(A,B) and d(x∗, Tx∗) = d(A,B).

Using the pair (A,B) has P− property, we have

d(x, x∗) = d(Tx, Tx∗). (3.2.15)

Case I If α(x, x∗) ≥ 1. By (3.2.15) and generalized almost (φ, θ)α−contraction of

T , we have

d(x, x∗) = d(Tx, Tx∗)

≤ α(x, x∗)d(Tx, Tx∗)

≤ φ(M(x, x∗))

+θ(d(x∗, Tx)− d(A,B), d(x, Tx∗)− d(A,B),

d(x, Tx)− d(A,B), d(x∗, Tx∗)− d(A,B))

= φ(M(x, x∗))

+θ(d(x∗, Tx)− d(A,B), d(x, Tx∗)− d(A,B), 0, 0)

= φ(M(x, x∗)),

(3.2.16)
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and since

M(x, x∗) = max{d(x, x∗), d(x, Tx)− d(A,B), d(x∗, Tx∗)− d(A,B),

1
2
[d(x, Tx∗) + d(x∗, Tx)]− d(A,B)}

= max{d(x, x∗), 0, 0, 1
2
[d(x, Tx∗) + d(x∗, Tx)]− d(A,B)}

≤ max{d(x, x∗), 1
2
[d(x, x∗) + d(x∗, Tx∗) + d(x∗, x) + d(x, Tx)]

−d(A,B)}

= max{d(x, x∗), 1
2
[d(x, x∗) + d(x∗, x)]}

= d(x, x∗).

(3.2.17)

Combining (3.2.16) with (3.2.17) and using the property φ(t) < t for all t > 0 , we

get

d(x, x∗) ≤ φ(M(x, x∗)) = φ(d(x, x∗)) < d(x, x∗),

which is a contradiction and hence x = x∗.

Case II If α(x, x∗) < 1. By the (α, d)−regular of T , there exists z ∈ A0 such that

α((x, z)) ≥ 1 and α(x∗, z) ≥ 1.

Since T (A0) ⊆ B0, there exists a point v0 ∈ A0 such that

d(v0, T z) = d(A,B).

From α((x, z)) ≥ 1, d(x, Tx) = d(A,B) and d(v0, T z) = d(A,B) and by the α-

proximal admissible, we have

α(x, v0) ≥ 1.

Since T (A0) ⊆ B0, there exists a point v1 ∈ A0 such that

d(v1, T v0) = d(A,B).

By similar argument as above, we can conclude that α(x, v1) ≥ 1. One can proceed

further in a similar fashion to find vn in A0 with vn+1 ∈ A0 such that

d(vn+1, T vn) = d(A,B) and α(x, vn) ≥ 1, (3.2.18)

for all n ∈ N. By (3.2.18), the pair (A,B) has P− property and property of mapping

T , we get

d(x, vn+1) = d(Tx, Tvn). (3.2.19)
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Using the property of mapping T , we get

d(x, vn+1) = d(Tx, Tvn)

≤ α(x, vn)d(Tx, Tvn)

≤ φ(M(x, vn))

+θ(d(vn, Tx)− d(A,B), d(x, Tvn)− d(A,B),

d(x, Tx)− d(A,B), d(vn, T vn)− d(A,B))

= φ(M(x, vn))

+θ(d(vn, Tx)− d(A,B), d(x, Tvn)− d(A,B),

0, d(vn, T vn)− d(A,B))

= φ(M(x, vn))

and since

M(x, vn) = max{d(x, vn), d(x, Tx)− d(A,B), d(vn, T vn)− d(A,B),

1
2
[d(x, Tvn) + d(vn, Tx)]− d(A,B)}

= max{d(x, vn), 0, 0, 12 [d(x, Tvn) + d(vn, Tx)]− d(A,B)}

≤ max{d(x, vn), 12 [d(x, vn+1) + d(vn+1, T vn) + d(vn, x) + d(x, Tx)]

−d(A,B)}

= max{d(x, vn), 12 [d(x, vn+1) + d(vn, x)]}

= max{d(x, vn), d(x, vn+1)}.

Thus

d(x, vn+1) ≤ φ(M(x, vn)) ≤ φ(max{d(x, vn), d(x, vn+1)}).

If vN = x, for some N ∈ N. By (3.2.19), we get

d(x, vN+1) = d(Tx, TvN) = 0

which implies that vN+1 = x. Moreover, we obtain vn = x for all n ≥ N and thus

vn → x as n → ∞. Suppose that vn ̸= x for all n ∈ N, then d(vn, x) > 0 for all n.

If max{d(x, vn), d(x, vn+1)} = d(x, vn+1), by the property φ(t) < t for all t > 0 , we

get

d(x, vn+1) ≤ φ(M(x, vn)) = φ(d(x, vn+1)) < d(x, vn+1)

which is a contradiction and hence max{d(x, vn), d(x, vn+1)} = d(x, vn). That is

d(x, vn+1) ≤ φ(M(x, vn)) = φ(d(x, vn)) (3.2.20)
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for all n ≥ N . By induction of (3.2.20), we have

d(x, vn+1) ≤ φn(d(x, v1)).

Taking n→ ∞, we obtain that vn → x as n→ ∞. So, in all cases, we have vn → x

as n → ∞. Similarly, we can prove that vn → x∗ as n → ∞. By the uniqueness of

limit, we conclude that x = x∗ and this completes the proof.

Theorem 3.2.6. Adding condition (α, d)−regular of T to the hypotheses of Theorem

3.2.3, then we obtain the uniqueness of the best proximity point of T .

Proof. Combine the proofs of Theorem 3.2.5 and Theorem 3.2.3.

If we take φ(t) = kt, where 0 ≤ k < 1 and θ(t1, t2, t3, t4) = Lmin{t1, t2, t3, t4},

then Theorem 3.2.1 and Theorem 3.2.4, we get the following.

Theorem 3.2.7. Let A and B be nonempty closed subsets of a complete metric

space X such that A0 is nonempty and the pair (A,B) has the P− property. Let

T : A→ B satisfy the following conditions:

(a) T is α-proximal admissible and

α(x, y)d(Tx, Ty) ≤ kM(x, y) + Lmin{d(x, Ty)− d(A,B), d(y, Tx)− d(A,B)

d(x, Tx)− d(A,B), d(y, Ty)− d(A,B)}

for all x, y ∈ A.

(b) T is continuous (or A satisfies condition (H) );

(c) there exist element x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α((x0, x1)) ≥ 1;

(d) T (A0) ⊆ B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.
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If we add the condition that T is (α, d)−regular in Theorem 3.2.7, therefore we

can obtain the uniqueness of the best proximity point.

If we take α(x, y) = 1, for all x, y ∈ A in Theorem 3.2.2 and Theorem 3.2.3, we

get the following Theorems.

Theorem 3.2.8. Let A and B be nonempty closed subsets of a complete metric

space X such that A0 is nonempty and the pair (A,B)has the P− property. Let

T : A→ B satisfy the following conditions:

(a)

d(Tx, Ty) ≤ φ(M(x, y)) + θ(d(x, Ty)− d(A,B), d(y, Tx)− d(A,B)

d(x, Tx)− d(A,B), d(y, Ty)− d(A,B))

for all x, y ∈ A.

(b) T is continuous (or A satisfies condition (H) );

(c) T (A0) ⊆ B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.

If M(x, y) = d(x, y), then Theorem 3.2.8, include the following.

Theorem 3.2.9. Let A and B be nonempty closed subsets of a complete metric

space X such that A0 is nonempty and the pair (A,B)has the P− property. Let

T : A→ B satisfy the following conditions:

(a)

d(Tx, Ty) ≤ φ(d(x, y)) + θ(d(x, Ty)− d(A,B), d(y, Tx)− d(A,B)

d(x, Tx)− d(A,B), d(y, Ty)− d(A,B))

for all x, y ∈ A.

(b) T is continuous (or A satisfies condition (H) );

(c) T (A0) ⊆ B0.
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Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.

If we take φ(t) = kt and θ(t1, t2, t3, t4) = Lmin{t1, t2, t3, t4}, for all x, y ∈ A in

Theorem 3.2.9, we obtain the following theorem.

Theorem 3.2.10. Let A and B be nonempty closed subsets of a complete metric

space X such that A0 is nonempty and the pair (A,B)has the P− property. Let

T : A→ B satisfy the following conditions:

(a)

d(Tx, Ty) ≤ kM(x, y) + Lmin{d(x, Ty)− d(A,B), d(y, Tx)− d(A,B)

d(x, Tx)− d(A,B), d(y, Ty)− d(A,B)}

for all x, y ∈ A.

(b) T is continuous (or A satisfies condition (H) );

(c) T (A0) ⊆ B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.

If M(x, y) = d(x, y) and putting L = 0 in Theorem 3.2.10, we obtain the follow-

ing.

Theorem 3.2.11. Let A and B be nonempty closed subsets of a complete metric

space X such that A0 is nonempty and the pair (A,B)has the P− property. Let

T : A→ B satisfy the following conditions:
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(a)

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ A.

(b) T is continuous (or A satisfies condition (H) );

(c) there exist element x0 and x1 in A0 such that d(x1, Tx0) = d(A,B);

(d) T (A0) ⊆ B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.

If M(x, y) =
k

2
[d(x, Ty) + d(y, Tx)] − d(A,B) and putting L = 0 in Theorem

3.2.10, we obtain the following theorem:

Theorem 3.2.12. Let A and B be nonempty closed subsets of a complete metric

space X such that A0 is nonempty and the pair (A,B)has the P− property. Let

T : A→ B satisfy the following conditions:

(a)

d(Tx, Ty) ≤
k

2
[d(x, Ty) + d(y, Tx)]− d(A,B)

for all x, y ∈ A.

(b) T is continuous(or A satisfies condition (H) );

(c) there exist element x0 and x1 in A0 such that d(x1, Tx0) = d(A,B);

(d) T (A0) ⊆ B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.



36

It is easy to observe that for self-mappings, our results includes the following:

Theorem 3.2.13. Let A be nonempty closed subsets of a complete metric space X

and T : A→ A such that

d(Tx, Ty) ≤ φ(M(x, y)) + θ({d(x, Ty), d(y, Tx), d(x, Tx), d(y, Ty)}),

for all x, y ∈ A, where φ ∈ Ψ θ ∈ Θ. Then T has a unique fixed point x ∈ A.

Moreover, for any fixed x0 ∈ A, the sequence {xn} defined by xn+1 = Txn, converges

to the element x.

Theorem 3.2.14. Let A be nonempty closed subsets of a complete metric space X

and T : A→ A such that

d(Tx, Ty) ≤ kM(x, y) + Lmin{d(x, Ty), d(y, Tx), d(x, Tx), d(y, Ty)}.

Then T has a unique fixed point x ∈ A. Moreover, for any fixed x0 ∈ A, the sequence

{xn} defined by xn+1 = Txn, converges to the element x.

Theorem 3.2.15. Let A be nonempty closed subsets of a complete metric space X

and T : A→ A such that

d(Tx, Ty) ≤ kd(x, y) + Lmin{d(x, Ty), d(y, Tx), d(x, Tx), d(y, Ty)}

for all x, y ∈ A. Then T has a unique fixed point x ∈ A.

Moreover, for any fixed x0 ∈ A, the sequence {xn} defined by xn+1 = Txn,

converges to the element x.

We recall some preliminaries from (see, [24] also) as follows:

Let (X, d) be a metric space and R be a binary relation over X. Denote

S = R∪R−1

this is the symmetric relation attached to R. Clearly,

x, y ∈ X, xSy ⇐⇒ xRy or yRx.

Definition 3.2.16. [24] A mapping T : A → B is said to be proximal comparative

if and only if

x1Sx2
d(u1, Tx1) = d(A,B)

d(u2, Tx2) = d(A,B)

 =⇒ u1Su2.
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Corollary 3.2.17. Let (X, d) be a complete metric space, R be a binary relation

over X, and A and B be two non-empty, closed subsets of X such that A0 are non-

empty and the pair (A,B) has the P− property. Let T : A → B such that the

following conditions holds:

(a) T is a continuous proximal comparative mapping;

(b) there exist element x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

x0Sx1;

(c) there exist φ ∈ Ψ and θ ∈ Θ such that x, y ∈ A, xSy implies that

d(Tx, Ty) ≤ φ
(
M(x, y)) + θ(d(y, Tx)− d(A,B), d(x, Ty)− d(A,B), d(x, Tx)

−d(A,B), d(y, Ty)− d(A,B)
)
;

(d) T (A0) ⊆ B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Proof. Define the mapping α : A× A→ [0,∞) by

α(x, y) =

 1 ; xSy,

0 ; otherwise.
(3.2.21)

Since T is proximal comparative, we have

xSy

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 =⇒ uSv,

for all u, v, x, y ∈ A. Using the definition of α, we get

α(x, y) ≥ 1,

d(u, Tx) = d(A,B),

d(v, Ty) = d(A,B)

 =⇒ α(u, v) ≥ 1,

for all u, v, x, y ∈ A and hence T is α-proximal admissible. By the condition (b)

implies that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1. By the condition (c), we get

α(x, y)d(Tx, Ty) ≤ φ
(
M(x, y)) + θ(d(y, Tx)− d(A,B), d(x, Ty)− d(A,B),

d(x, Tx)− d(A,B), d(y, Ty)− d(A,B)
)
,

that is, T is, generalized almost (φ, θ)α−contraction. Therefore, all hypothesisses of

Theorem 3.2.1 are satisfied, and the desired result follows immediately.
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Next, below we give an example to illustrate the main result Theorem 3.2.1.

Example. Consider X = R4 with the metric defined by

d((x1, x2, x3, x4), (y1, y2, y3, y4)) = |x1 − y1|+ |x2 − y2|+ |x3 − y3|+ |x4 − y4|

for all (x1, x2, x3, x4), (y1, y2, y3, y4) ∈ R4. Let A,B ⊂ X defined by

A :=

{(
0, 0,

1

n
,
−1

n

)}
∪ {(0, 0, 0, 0)},

B :=

{(
1,−1,

1

n
,
−1

n

)}
∪ {(1,−1, 0, 0)}.

Then A and B are nonempty closed subsets of X and d(A,B) = 2.

Moreover, A0 = A and B0 = B. Suppose

d((0, 0, x1, x2), (1,−1, y1, y2)) = d(A,B) = 2

and

d((0, 0, x′1, x
′
2), (1,−1, y′1, y

′
2)) = d(A,B) = 2,

then we get x1 = y1, x2 = y2 and x′1 = y′1, x
′
2 = y′2. Hence, the pair (A,B) has the

P -property. Let T : A→ B be a mapping defined as

T
(
0, 0, x, y

)
=

(
0, 0,

x

2
,
y

2

)
for all

(
0, 0, x, y

)
∈ A. We define the mapping α : A× A→ [0,∞) by

α(x, y) = 1 for allx, y ∈ A.

We can see that T is generalized almost (φ, θ)α−contraction with φ ∈ Ψ is given

by φ(t) = t/2 for all t ≥ 0 and for all θ ∈ Θ. Furthermore, (0, 0, 0, 0) ∈ A is a best

proximity point of mapping T .

3.3 Kannan α−Admissible Weak ϕ−Contraction

In this section, we introduce the existence of the best proximity points for Kan-

nan α−admissible weak ϕ−contraction mapping in metric spaces.

Definition 3.3.1. A mapping T : A → B is said to be a Kannan α−admissible

weak ϕ−contraction, if T satisfies

α(x, y)d(Tx, Ty) ≤ u(x, y)− ϕ(u(x, y)),



39

for all x, y in A, where u(x, y) = 1
2
[d(x, Tx) + d(y, Ty)], ϕ : [0,∞) → [0,∞) is a

continuous and nondecreasing function such that ϕ(t) = 0 if and only if t = 0 and

α : A× A −→ [0,+∞).

Theorem 3.3.2. Let(X, d) be a complete metric space and let A and B be nonempty,

closed subsets of X such that A0 and B0 are non-empty. Let α : A×A −→ [0,+∞)

satisfy the following conditions:

(a) T (A0) ⊆ B0 and (A,B) satisfies the weak P-property;

(b) T is α-proximal admissible;

(c) There exist elements x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(d) T is a continuous Kannan α−admissible weak ϕ−contraction.

Then, there exists an element x⋆ ∈ A0 such that

d(x⋆, Tx⋆) = d(A,B).

Proof. From condition (c), there exist elements x0 and x1 in A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1.

Since T (A0) ⊆ B0, there exists x2 ∈ A0 such that

d(x2, Tx1) = d(A,B).

Now, we have

α(x0, x1) ≥ 1,

d(x1, Tx0) = d(A,B),

d(x2, Tx1) = d(A,B).

Since T is α−proximal admissible, this implies that α(x1, x2) ≥ 1.

Thus, we have

d(x2, Tx1) = d(A,B) and α(x1, x2) ≥ 1.

Again, Since T (A0) ⊆ B0, there exists x3 ∈ A0 such that

d(x3, Tx2) = d(A,B).
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Now, we have

α(x1, x2) ≥ 1,

d(x2, Tx1) = d(A,B),

d(x3, Tx2) = d(A,B).

Since T is α−proximal admissible, this implies that α(x2, x3) ≥ 1.

Thus, we have

d(x3, Tx2) = d(A,B) and α(x2, x3) ≥ 1.

Continuing this process, by induction, we can construct a sequence {xn} ⊂ A0 such

that

d(xn+1, Txn) = d(A,B) and α(xn, xn+1) ≥ 1, ∀n ∈ N ∪ {0}. (3.3.1)

Since (A,B) satisfies the weak P−property, we conclude from (3.3.1) that

d(xn, xn+1) ≤ d(Txn−1, Txn), ∀n ∈ N. (3.3.2)

From condition (d), that is, T is a Kannan α−admissible weak ϕ−contraction, for

all ∀n ∈ N, we have

α(xn−1, xn)d(Txn−1, Txn) ≤ u(xn−1, xn)− ϕ
(
u(xn−1, xn)

)
.

On the other hand, from (3.3.1), we have α(xn−1, xn) ≥ 1 ∀n ∈ N, which implies

with the above inequality that

d(Txn−1, Txn) ≤ u(xn−1, xn)− ϕ
(
u(xn−1, xn)

)
, ∀n ∈ N. (3.3.3)

Combining (3.3.2) with (3.3.3) yields the following:

d(xn, xn+1) ≤ u(xn−1, xn)− ϕ
(
u(xn−1, xn)

)
,

=
1

2

[
d(xn−1, Txn−1) + d(xn, Txn)

]
−ϕ

{
1

2

[
d(xn−1, Txn−1) + d(xn, Txn)

]}
≤ 1

2

[
d(xn−1, xn) + d(xn, xn+1)

]
−ϕ

{
1

2
[d(xn−1, xn) + d(xn, xn+1)]

}
, (3.3.4)
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and so it follows that d(xn, xn+1) ≤ d(xn−1, xn), that is , the sequence {d(xn, xn+1)}

is a nonnegative nonincreasing sequence. Then there exists r ≥ 0 such that

lim
n→∞

d(xn+1, xn) = r.

Taking n→ ∞ in (3.3.4), and using the continuity of ϕ

r ≤ 1

2
(2r)− ϕ

(
1

2
(2r)

)
and consequently, ϕ

(
1
2
(2r)

)
= 0. This gives us that

lim
n→∞

d(xn+1, xn) = 0. (3.3.5)

Next, we show that {xn} is a Cauchy sequence. Suppose on the contrary, that

{xn} is not a Cauchy sequence. Then there exists ϵ > 0 for which we can find

subsequences {xmk
} and {xnk

} of {xn} such that nk is smallest index for which

mk > nk > k, d(xmk
, xnk

) ≥ ϵ.

This means that

d(xmk−1
, xnk

) < ϵ.

Then we have

ϵ ≤ d(xmk
, xnk

)

≤ d(xmk
, xmk−1

) + d(xmk−1
, xnk

)

≤ d(xmk
, xmk−1

) + ϵ.

Letting k → ∞ and using (3.3.6) we can conclude that

lim
k→∞

d(xmk
, xnk

) = ϵ.

Since α is forward transitive and nk > mk, we can conclude that

α(xmk−1
, xnk−1

) ≥ 1. (3.3.6)

Using the fact that T is Kannan α−admissible weak ϕ−contraction and (3.3.6), we
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have

d(xmk
, xnk

) = d(Txmk−1
, Txnk−1

)

≤ α(xmk−1
, xnk−1

)d(Txmk−1
, Txnk−1

)

≤ u(xmk−1
, xnk−1

)− ϕ

(
u(xmk−1

, xnk−1

)
=

1

2

[
d(xmk−1

, Txmk−1
) + d(xnk−1

, Txnk−1
)

]
−ϕ

{
1

2

[
d(xmk−1

, Txmk−1
) + d(xnk−1

, Txnk−1
)

]}
≤ 1

2

[
d(xmk−1

, xmk
) + d(xnk−1

, xnk
)

]
−ϕ

{
1

2

[
d(xmk−1

, xmk
) + d(xnk−1

, xnk
)

]}
Letting k → ∞ and by using (3.3.5), and the continuity of ϕ, we have

ϵ ≤ 1

2
(0)− ϕ

(
1

2
(0)

)
= 0.

Which is a contradiction. Thus, {xn} is a Cauchy sequence in the metric space

(X, d). Since A is a closed subset of the complete metric space X, there exists

X ∈ A such that

lim
n→∞

xn) = x. (3.3.7)

Letting n→ ∞ in (3.3.1), (3.3.7) and the continuity of T , we get

d(x, Tx) = d(A,B)

and the proof is completes.

In the next result, we remove the continuity hypothesis, assuming the following

condition in A: (H) If {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all

n ∈ N and xn → x ∈ A as n→ ∞, then there exists a subsequence {xnk
} of xn such

that α(xnk
, x) ≥ 1 for all k ∈ N.

Theorem 3.3.3. Let A and B be nonempty closed subsets of a complete metric

space (X, d) such that A0 is nonempty. Let α : A × A → [0,∞). Suppose that

T : A→ B is a non-self-mapping satisfying the following conditions:

(a) T (A0) ⊆ B0 and (A,B) satisfies the weak P−property;

(b) T is α−proximal admissible;
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(c) There exist elements x0 and x1 in A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1;

(d) (H) holds and T is a Kannan α−admissible weak ϕ−contraction.

Then, there exists an element x ∈ A0 such that

d(x, Tx) = d(A,B).

Proof. As in the proof of theorem (3.3.2), we have

d(xn+1, Txn) = d(A,B).

for all n ≥ 0 . Moreover, {xn} is a Cauchy sequence and converges to some point

x ∈ A. By the weak P− property and (3.3.4), we have

d(Txn−1, Txn) = d(xn, xn+1)

≤ 1

2
[d(xn−1, xn) + d(xn, xn+1)]− ϕ{1

2
[d(xn−1, xn) + d(xn, xn+1)]}

for all n ∈ N ∪ {0}. That is limn→∞ d(Txn−1, Txn) = 0 and by the same argument

as proof of Theorem 3.1.5, we obtain that {Txn} is a Cauchy sequence. Since B is

a closed subset of the complete metric space (X, d), there exists x⋆ ∈ B such that

Txn converges to x⋆. Therefore

d(x, x⋆) = lim
n→∞

d(xn+1, Txn) = d(A,B) (3.3.8)

On the other hand, from the condition (H) of T , then there exists a subsequence

{xnk
} of {xn} such that α(xnk

, x) ≥ 1 for all k. The pair (A,B) has weak P−

property and property of mapping T , we get

d(xnk+1
, x) = d(Txnk

, Tx)

≤ α(xnk
, x)d(Txnk

, Tx)

≤ u(xnk
, x)− ϕ(u(xnk

, x))

=
1

2

[
d(xnk

, Txnk
) + d(x, Tx)

]
− ϕ

{
1

2

[
d(xnk

, Txnk
) + d(x, Tx)

]}
≤ 1

2

[
d(xnk

, xnk+1
) + d(x, x)

]
− ϕ

{
1

2

[
d(xnk

, xnk+1
) + d(x, x)

]}
.

Since

d(x, Tx) ≤ d(x, xnk+1) + d(xnk+1, Txnk
) + d(Txnk

, Tx)

≤ d(x, xnk+1) + d(A,B) + d(Txnk
, Tx)
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it follows that

d(x, Tx)− d(x, xnk+1)− d(A,B) ≤ d(Txnk
, Tx)

≤ 1

2

[
d(xnk

, xnk+1
) + d(x, x)

]
−ϕ

{
1

2

[
d(xnk

, xnk+1
) + d(x, x)

]}
.

Letting k → ∞, we get

d(x, Tx)− d(A,B) = 0.

Hence, d(x, Tx) = d(A,B) and the proof is complete.

Definition 3.3.4. Let T : A → B be non-self-mapping and α : A × A → [0,∞).

We say that T is (α, d)-regular if for all (x, y) ∈ α−1([0, 1[), there exists z ∈ A0 such

that

α(x, z) ≥ 1 and α(y, z) ≥ 1.

Theorem 3.3.5. In addition to the hypotheses of the theorem (3.3.2)

(resp. Theorem(3.3.3)), suppose that T is (α, d)−regular. Then T has a unique best

proximity point.

Proof. We shall only proof the part of uniqueness. Suppose that there exist x and

x∗ in A which are distinct best proximity points, that is

d(x, Tx) = d(A,B) and d(x∗, Tx∗) = d(A,B).

Using the weak P−property and (3.3.9), we get that

d(x, x∗) = d(Tx, Tx∗). (3.3.9)

We distinguish two cases. Case 1. If α(x, x∗) ≥ 1.

Since T is a Kannan α−admissible weak ϕ−contraction, using (3.3.9), we obtain

that

d(x, x∗) = d(Tx, Tx∗)

≤ α(x, x∗)d(Tx, Tx∗)

≤ u(x, x∗)− ϕ(u(x, x∗))

=
1

2

[
d(x, Tx) + d(x∗, Tx∗)

]
− ϕ

{
1

2

[
d(x, Tx) + d(x∗, Tx∗)

]}
.



45

Since ϕ(t) < t for all t > 0, the above inequality holds only if d(x, x∗) = 0, that is

x = x∗.

Case 2. If α(x, x∗) < 1.

By hypothesis, there exists z ∈ A0 such that α(x, z) ≥ 1 and α(x∗, z) ≥ 1. Since

T (A0) ⊆ B0, there exists v0 ∈ A0 such that

d(v0, T z) = d(A,B).

Now,we have

α(x, z) ≥ 1,

d(x, Tx) = d(A,B),

d(v0, T z) = d(A,B).

Since T is α−proximal admissible, we get that α(x, v0) ≥ 1.

Since T (A0) ⊆ B0, there exists v1 ∈ A0 such that

d(v1, T v0) = d(A,B).

By similar argument as above, we can conclude that α(x, v1) ≥ 1. One can proceed

further in a similar fashion to find vn in A0 with vn+1 ∈ A0 such that

d(vn+1, T vn) = d(A,B) and α(x, vn) ≥ 1 ∀n ∈ N. (3.3.10)

Using the weak P−property and (3.3.10), we get that

d(x, vn+1) = d(Txn, T vn).

Since T is α−proximal admissible, we have

d(x, vn+1) = d(Tx, Tvn)

≤ α(x, vn)d(Tx, Tvn)

≤ u(x, vn)− ϕ(u(x, vn))

=
1

2
[d(x, Tx) + d(vn, T vn)]

−ϕ
{
1

2
[d(x, Tx) + d(vn, T vn)]

}
. (3.3.11)

If vN = x, for some N ∈ N. By (3.3.11), we get

d(x, vN+1) = d(Tx, TvN) = 0
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which implies that vN+1 = x. Moreover, we obtain vn = x for all n ≥ N and thus

vn → x as n → ∞. By the uniqueness of limit, we conclude that x = x∗ and this

completes the proof.

3.4 Existence and Uniqueness of Coupled Best Proximity

Point in Ordered Metric Spaces

In this section, we introduce the existence and uniqueness of coupled best proxim-

ity point for mappings satisfying proximally coupled weak contraction in a complete

ordered metric space.

Let (X, d,≼) be a partially ordered complete metric space. Further, we endow

the product space X ×X with the following partial order:

for (x, y), (u, v) ∈ X ×X, (u, v) ≼ (x, y) ⇔ x ≼ u, y ≽ v.

Theorem 3.4.1. Let (X,≼, d) be a partially ordered complete metric space. Let A

and B be nonempty closed subsets of the metric space (X, d) such that A0 ̸= ∅. Let

F : A× A→ B satisfy the following conditions.

(i) F is continuous having the proximal mixed monotone property and proximally

coupled weak contraction on A such that F (A0 × A0) ⊆ B0.

(ii) There exist elements (x0, y0) and (x1, y1) in A0 × A0 such that

d(x1, F (x0, y0)) = d(A,B) with x0 ≼ x1 and

d(y1, F (y0, x0)) = d(A,B) with y0 ≼ y1.

Then there exist (x, y) ∈ A×A such that d(x, F (x, y)) = d(A,B) and d(y, F (y, x)) =

d(A,B).

Proof. By hypothesis there exist elements (x0, y0) and (x1, y1) in A0 ×A0 such that

d(x1, F (x0, y0)) = d(A,B) with x0 ≼ x1 and

d(y1, F (y0, x0)) = d(A,B) with y0 ≽ y1.

Because of the fact that F (A0×A0) ⊆ B0, there exists an element (x2, y2) in A0×A0

such that

d(x2, F (x1, y1) = d(A,B) and
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d(y2, F (y1, x1) = d(A,B).

Hence from Lemma 2.2.18 and Lemma 2.2.19, we obtain x1 ≼ x2 and y1 ≽ y2.

Continuing this process, we can construct the sequences (xn) and (yn) in A0 such

that

d(xn+1, F (xn, yn)) = d(A,B), ∀n ∈ N (3.4.1)

with x0 ≼ x1 ≼ x2 ≼ · · · ≼ xn ≼ xn+1 · · · and

d(yn+1, F (yn, xn)) = d(A,B), ∀n ∈ N (3.4.2)

with y0 ≽ y1 ≽ y2 ≽ · · · ≽ yn ≽ yn+1 · · · .

Since d(xn, F (xn−1, yn−1)) = d(A,B), d(xn+1, F (xn, yn)) = d(A,B) and also we have

xn−1 ≼ xn, yn−1 ≽ yn, ∀ n ∈ N. Now using F is proximally coupled weak contraction

on A we get,

ψ(d(xn, xn+1)) ≤ ψ(max(d(xn−1, xn), d(yn−1, yn)))−ϕ(max(d(xn−1, xn), d(yn−1, yn))).

(3.4.3)

As ϕ ≥ 0,

ψ(d(xn, xn+1)) ≤ ψ(max(d(xn−1, xn), d(yn−1, yn)))

and, using the fact that ϕ is nondecreasing, we have

d(xn, xn+1) ≤ max(d(xn−1, xn), d(yn−1, yn)). (3.4.4)

Similarly, since xn−1 ≤ xn, yn−1 ≥ yn, we get

ψ(d(yn, yn+1)) ≤ ψ(max(d(yn−1, yn), d(xn−1, xn)))− ϕ(max(d(yn−1, yn), d(xn−1, xn))),

(3.4.5)

≤ ψ(max(d(yn−1, yn), d(xn−1, xn)))

and consequently,

d(yn, yn+1) ≤ max(d(yn−1, yn), d(xn−1, xn)). (3.4.6)

By (3.4.4) and (3.4.6), we get

max(d(xn, xn+1), d(yn, yn+1)) ≤ max(d(xn−1, xn), d(yn−1, yn)),
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and, thus, the sequence {max(d(xn, xn+1), d(yn, yn+1))} is nonnegative decreasing.

This implies that there exists r ≥ 0 such that

lim
n→∞

max(d(xn, xn+1), d(yn, yn+1)) = r. (3.4.7)

One can see that if ψ : [0,∞] → [0,∞] is nondecreasing,

ψ(max(a, b)) = max(ψ(a), ψ(b))

for a, b ∈ [0,∞]. Taking into account this and (3.4.3) and (3.4.5), we get

max(ψ(d(xn, xn+1)), ψ(d(yn, yn+1))) = ψ(max(d(xn, xn+1), d(yn, yn+1)))

≤ ψ(max(d(xn−1, xn), d(yn−1, yn)))

− ϕ(max(d(xn−1, xn), d(yn−1, yn)))

≤ ψ(max(d(xn−1, xn), d(yn−1, yn))).

Letting n→ ∞ and taking into account (3.4.7), we get

ψ(r) ≤ ψ(r)− lim
n→∞

ϕ(max(d(xn−1, xn), d(yn−1, yn))) ≤ ψ(r)

and this implies

lim
n→∞

ϕ(max(d(xn−1, xn), d(yn−1, yn))) = 0. (3.4.8)

But, as 0 < r ≤ max(d(xn−1, xn), d(yn−1, yn)) and ϕ is nondecreasing function,

0 < ϕ(r) ≤ ϕ(max(d(xn−1, xn), d(yn−1, yn))),

and this gives us limn→∞ ϕ(max(d(xn−1, xn), d(yn−1, yn))) ≥ ϕ(r) > 0 which contra-

dicts to (3.4.8). Hence,

lim
n→∞

max(d(xn, xn+1), d(yn, yn+1)) = 0. (3.4.9)

Now to prove that {xn} and {yn} are Cauchy sequence. Assume that at least

one of the sequences {xn} or {yn} is not a Cauchy sequence. This implies that

limn,m→∞ d(xn, xm) 9 0 or limn,m→∞ d(yn, ym) 9 0, and, consequently,

lim
n,m→∞

max(d(xn, xm), d(yn, ym)) 9 0.

Then there exists ϵ > 0 for which we can find subsequences {xm(k)} and {xn(k)} of

{xn} such that n(k) is smallest index for which n(k) > m(k) > k,

max(d(xm(k), xn(k)), d(ym(k), yn(k))) ≥ ϵ. (3.4.10)
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This means that

max(d(xm(k), xn(k)−1), d(ym(k), yn(k)−1)) < ϵ. (3.4.11)

Since xn(k)−1 ≥ xm(k)−1 and yn(k)−1 ≤ ym(k)−1, using the proximally coupled weak

contraction, we obtain

ψ(d(xn(k), xm(k))) ≤ ψ(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)))

− ϕ(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))) (3.4.12)

and

ψ(d(yn(k), ym(k))) ≤ ψ(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)))

− ϕ(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))). (3.4.13)

By (3.4.12) and (3.4.13), we get

max(ψ(d(xn(k), xm(k)), ψ(d(yn(k), ym(k))) ≤ ψ(max(d(xn(k)−1, xm(k)−1),

d(yn(k)−1, ym(k)−1)))

− ϕ(max(d(xn(k)−1, xm(k)−1),

d(yn(k)−1, ym(k)−1))).

On the other hand, the triangular inequality and (3.4.11) give us

d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)) < d(xn(k), xn(k)−1) + ϵ (3.4.14)

and

d(yn(k), ym(k)) ≤ d(yn(k), yn(k)−1) + d(yn(k)−1, ym(k)) < d(yn(k), yn(k)−1) + ϵ. (3.4.15)

From (3.4.10),(3.4.14) and (3.4.15), we get

ϵ ≤ max(d(xn(k), xm(k)), d(yn(k), ym(k))) ≤ max(d(xn(k), xn(k)−1), d(yn(k), yn(k)−1)) + ϵ.

Letting k → ∞ in the last inequality and using (3.4.9), we have

lim
k→∞

max(d(xn(k), xm(k)), d(yn(k), ym(k))) = ϵ. (3.4.16)

Again, the triangular inequality and (3.4.11) give us

d(xn(k)−1, xm(k)−1) ≤ d(xn(k)−1, xm(k)) + d(xm(k), xm(k)−1) < ϵ+ d(xm(k), xm(k)−1)

(3.4.17)
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and

d(yn(k)−1, ym(k)−1) ≤ d(yn(k)−1, ym(k)) + d(ym(k), ym(k)−1) < ϵ+ d(ym(k), ym(k)−1).

(3.4.18)

By (3.4.17) and (3.4.18), we get

max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))

< max(d(xm(k), xm(k)−1), d(ym(k), ym(k)−1)) + ϵ. (3.4.19)

Using the triangular inequality we have

d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)−1) + d(xm(k)−1, xm(k))

and

d(yn(k), ym(k)) ≤ d(yn(k), yn(k)−1) + d(yn(k)−1, ym(k)−1) + d(ym(k)−1, ym(k))

and by the two last inequalities and (3.4.10) we get

ϵ ≤ max(d(xn(k), xm(k)), d(yn(k), ym(k)))

≤ max(d(xn(k), xn(k)−1), d(yn(k), yn(k)−1)) + max(d(xn(k)−1, xm(k)−1),

d(yn(k)−1, ym(k)−1)) + max(d(xm(k)−1, xm(k)), d(ym(k)−1, ym(k))). (3.4.20)

By (3.4.19) and (3.4.20), we get

ϵ−max(d(xn(k), xn(k)−1), d(yn(k), yn(k)−1))−max(d(xm(k)−1, xm(k)), d(ym(k)−1, ym(k)))

≤ max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))

< max(d(xm(k), xm(k)−1), d(ym(k), ym(k)−1)) + ϵ.

Letting k → ∞ in the last inequality and using (3.4.9), we have

lim
k→∞

max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)) = ϵ. (3.4.21)

Finally, letting k → ∞ in (3.4.18) and using (3.4.16),(3.4.21) and the continuity

of ψ, we get

ψ(ϵ) ≤ ψ(ϵ)− lim
k→∞

ϕ(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))) ≤ ψ(ϵ)

and this implies

lim
k→∞

ϕ(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))) = 0. (3.4.22)
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But, from limk→∞ max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)) = ϵ, we can find k0 ∈

N such that for any k ≥ k0

ϵ

2
≤ max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))

and consequently,

0 < ϕ(
ϵ

2
) ≤ ϕ(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))) for k ≥ k0.

Therefore, 0 < ϕ( ϵ
2
) ≤ ϕ(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))) and this con-

tradicts (3.4.22). Therefore, the sequences {xn} and {yn} are Cauchy.

Since A is closed subset of a complete metric space X, these sequences have

limits. Thus, there exists x, y ∈ A such that xn → x and yn → y. Therefore

(xn, yn) → (x, y) in A × A. Since F is continuous, we have F (xn, yn) → F (x, y)

and F (yn, xn) → F (y, x). Hence the continuity of the metric function d implies that

d(xn+1, F (xn, yn)) → d(x, F (x, y)) and d(yn+1, F (yn, xn)) → d(y, F (y, x)).

But from equations (3.4.1) and (3.4.2) we get, the sequences d(xn+1, F (xn, yn))

and d(yn+1, F (yn, xn)) are constant sequences with the value d(A,B). Therefore,

d(x, F (x, y)) = d(A,B) and d(y, F (y, x) = d(A,B). This completes the proof of the

theorem.

Corollary 3.4.2. Let (X,≼, d) be a partially ordered complete metric space. Let A

be nonempty closed subsets of the metric space (X, d) . Let F : A × A → A satisfy

the following conditions.

(i) F is continuous having the proximal mixed monotone property and proximally

coupled weak contraction on A.

(ii) There exist (x0, y0) and (x1, y1) in A × A such that x1 = F (x0, y0) with x0 ≼

x1 and y1 = F (y0, x0) with y0 ≽ y1.

Then there exist (x, y) ∈ A× A such that d(x, F (x, y)) = 0 and d(y, F (y, x)) = 0.

In what follows we prove that Theorem 3.4.1 is still valid for F not necessarily

continuous, assuming the following hypothesis in A. A has the property that

•(xn) is a non-decreasing sequence in A such that xn → x, then xn ≼ x. (3.4.23)

•(yn) is a non-increasing sequence in A such that yn → y, then y ≼ yn. (3.4.24)
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Theorem 3.4.3. Assume the condition (3.4.23),(3.4.24) and A0 is closed in X

instead of continuity of F in the Theorem 3.4.1.

Proof. Following the proof of Theorem 3.4.1, there exists sequences {xn} and {yn}

in A satisfying the following condition

d(xn+1, F (xn, yn)) = d(A,B) with xn ≼ xn+1,∀n ∈ N (3.4.25)

and

d(yn+1, F (yn, xn)) = d(A,B) with yn ≽ yn+1, ∀n ∈ N. (3.4.26)

Also, xn converges to x and yn converges to y in A. From (3.4.23) and (3.4.24), we

get xn ≤ x and yn ≥ y. Note that the sequences {xn} and {yn} are in A0 and A0

is closed. Therefore, (x, y) ∈ A0 × A0. Since F (A0 × A0) ⊆ B0, we get F (x, y) and

F (y, x) are in B0. Therefore, there exists (x∗, y∗) ∈ A0 × A0 such that

d(x∗, F (x, y)) = d(A,B) (3.4.27)

and

d(y∗, F (y, x)) = d(A,B). (3.4.28)

Since xn ≼ x and yn ≽ y. By using F is proximally coupled weak contraction for

(3.4.25) and (3.4.27), we get

ψ(d(xn+1, x
∗)) ≤ ψ(max(d(xn, x), d(yn, y)))

− ϕ(max(d(xn, x), d(yn, y))). (3.4.29)

Letting n→ ∞ in (3.4.29) and using continuity of ψ, we get

ψ(d(x, x∗)) ≤ 0− lim
n→∞

ϕ(max(d(y, yn), d(x, xn))) ≤ 0.

Using ψ(t) = 0 iff t = 0, we get d(x, x∗) = 0, consequently, x = x∗. Similarly it can

be proved that y = y ∗ . Using these to (3.4.27) and (3.4.28),

we get d(x, F (x, y)) = d(A,B) and d(y, F (y, x)) = d(A,B).

Corollary 3.4.4. Assume the condition (3.4.23) and (3.4.24) instead of continuity

of F in the Corollary 3.4.2.

Now, we present an example where it can be appreciated that hypotheses in

Theorem 3.4.1 and Theorem 3.4.3 do not guarantee uniqueness of the coupled best

proximity point.



53

Example. Let X = {(0, 1), (1, 0), (−1, 0), (0,−1)} ⊂ R2 and consider the usual

order (x, y) ≼ (z, t) ⇔ x ≤ z and y ≤ t.

Thus, (X,≼) is a partially ordered set. Besides, (X, d2) is a complete metric space

when d2 is the Euclidean metric. Let A = {(0, 1), (1, 0)} and B = {(0,−1), (−1, 0)}

be a closed subset of X. Then, d(A,B) =
√
2, A = A0 and B = B0. Let F : A×A→

B be defined by F ((x1, x2), (y1, y2)) = (−x2,−x1). Then, it can be seen that F is

continuous such that F (A0×A0) ⊆ B0. The only comparable pairs of points in A are

x ≼ x for x ∈ A, hence proximal mixed monotone property is satisfied trivially and

also proximally coupled weak contraction is fulfilled for arbitrary control functions.

It can be shown that the other hypotheses of the theorem are also satisfied.

However, F has three coupled best proximity points ((0, 1), (0, 1)), ((0, 1), (1, 0)) and

((1, 0), (1, 0)).

One can prove that the coupled best proximity point is in fact unique, provided

that the product space A×A endowed with the partial order mentioned earlier has

the following property:

Every pair of elements has either a lower bound or an upper bound.

It is known that this condition is equivalent to :

For every pair of (x, y), (x∗, y∗) ∈ A × A, there exists a (z1, z2) in A × A, that is

comparable to (x, y) and (x∗, y∗).

Theorem 3.4.5. In addition to the hypothesis of Theorem 3.4.1(resp. Theorem

3.4.3), suppose that for every (x, y) and (x∗, y∗) in A0 × A0 there exists (z1, z2) ∈

A0 × A0 that is comparable to (x, y) and (x∗, y∗) then F has a unique coupled best

proximity point of F.

Proof. From Theorem 3.4.1(resp. Theorem 3.4.3), the set of coupled best proximity

points of F is non-empty. Suppose that there exist (x, y) and (x∗, y∗) in A which

are coupled best proximity points. That is,

d(x, F (x, y)) = d(A,B), d(y, F (y, x) = d(A,B)

and

d(x∗, F (x∗, y∗)) = d(A,B), d(y∗, F (y∗, x∗) = d(A,B).
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We distinguish two cases:

Case:1 If (x, y) is comparable to (x∗, y∗) with respect to the ordering in A × A.

Using F is proximally coupled weak contraction to d(x, F (x, y)) = d(A,B) and

d(x∗, F (x∗, y∗)) = d(A,B), we get

ψ(d(x, x∗)) ≤ ψ(max(d(x, x∗), d(y, y∗)))− ϕ(max(d(x, x∗), d(y, y∗))). (3.4.30)

Similarly, one can prove that

ψ(d(y, y∗)) ≤ ψ(max(d(y, y∗), d(x, x∗)))− ϕ(max(d(y, y∗), d(x, x∗))). (3.4.31)

From (3.4.30) and (3.4.31), we get

max(ψ(d(x, x∗)), ψ(d(y, y∗)) ≤ ψ(max(d(y, y∗), d(x, x∗)))− ϕ(max(d(y, y∗), d(x, x∗))).

Using ψ(max(a, b)) = max(ψ(a), ψ(b)) for a, b ∈ [0,∞], we get

ψ(max(d(x, x∗), d(y, y∗))) ≤ ψ(max(d(y, y∗), d(x, x∗)))− ϕ(max(d(y, y∗), d(x, x∗)))

this implies that ϕ(max(d(y, y∗), d(x, x∗))) ≤ 0, using the property of ϕ, we get

max(d(y, y∗), d(x, x∗)) = 0. Hence, x = x∗ and y = y ∗ .

Case:2 If (x, y) is not comparable to (x∗, y∗), then there exists (u1, v1) ∈ A0×A0

which is comparable to (x, y) and (x∗, y∗).

Since F (A0×A0) ⊆ B0, there exists (u2, v2) ∈ A0×A0 such that d(u2, F (u1, v1)) =

d(A,B) and d(v2, F (v1, u1)) = d(A,B). With out loss of generality assume that

(u1, v1) ≤ (x, y)( i.e., x ≥ u1 and y ≤ v1.) Note that (u1, v1) ≤ (x, y) implies that

(y, x) ≤ (v1, u1). From Lemma 2.2.18 and Lemma 2.2.19, we get

u1 ≤ x and v1 ≥ y

d(u2, F (u1, v1)) = d(A,B)

d(x, F (x, y)) = d(A,B)

 =⇒ u2 ≤ x

and

u1 ≤ x and v1 ≥ y

d(v2, F (v1, u1)) = d(A,B)

d(y, F (y, x)) = d(A,B)

 =⇒ v2 ≥ y.

From the above to inequalities, we obtain (u2, v2) ≤ (x, y). Continuing this pro-

cess, we get sequences {un} and {vn} such that d(un+1, F (un, vn)) = d(A,B) and
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d(vn+1, F (vn, un)) = d(A,B) with (un, vn) ≤ (x, y) ∀n ∈ N. Using F is proximally

coupled weak contraction, we get

un ≤ x and vn ≥ y

d(un, F (un−1, vn−1)) = d(A,B)

d(x, F (x, y)) = d(A,B)


=⇒ ψ(d(un, x)) ≤ ψ(max(d(un−1, x), d(vn−1, y)))

−ϕ(max(d(un−1, x), d(vn−1, y))).

(3.4.32)

Similarly, we can prove that

y ≤ vn and x ≥ un

d(y, F (y, x)) = d(A,B)

d(vn, F (vn−1, un−1)) = d(A,B)


=⇒ ψ(d(y, vn)) ≤ ψ(max(d(y, vn−1), d(x, un−1)))

−ϕ(max(d(y, vn−1), d(x, un−1))).

From(3.4.32) and (3.4.33), we obtain

max(ψ(d(un, x)), ψ(d(y, vn))) ≤ ψ(max(d(un−1, x), d(vn−1, y)))

− ϕ(max(d(un−1, x), d(vn−1, y))).

But, ψ(max(a, b)) = max(ψ(a), ψ(b)) for a, b ∈ [0,∞], hence

ψ(max(d(un, x), d(y, vn))) ≤ ψ(max(d(un−1, x), d(vn−1, y)))

− ϕ(max(d(un−1, x), d(vn−1, y)))

≤ ψ(max(d(un−1, x), d(vn−1, y))). (3.4.33)

By using ψ is nondecreasing function, we get the sequence {max(d(un, x), d(y, vn))}

is nonnegative decreasing and bounded.

This implies that there exists r ≥ 0 such that

lim
n→∞

max(d(un, x), d(y, vn)) = r ≥ 0.

Suppose limn→∞ max(d(un, x), d(y, vn)) = r > 0.

Letting n→ ∞ in (3.4.33) and using the continuity of ψ, we get

ψ(r) ≤ ψ(r)− lim
n→∞

ϕ(max(d(un−1, x), d(vn−1, y))) ≤ ψ(r).

This implies that

lim
n→∞

ϕ(max(d(un−1, x), d(vn−1, y))) = 0. (3.4.34)
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But 0 < r ≤ max(d(un, x), d(y, vn)) and ϕ is nondecreasing function, hence

0 < ϕ(r) ≤ ϕ(max(d(un, x), d(y, vn)))

and this gives us limn→∞ ϕ(max(d(un−1, x), d(vn−1, y))) ≥ ϕ(r) > 0 which contra-

dicts (3.4.34).

Hence,

lim
n→∞

max(d(un, x), d(y, vn)) = 0.

That is un → x and vn → y. Analogously, one can prove that un → x∗ and vn → y∗.

But the limit of the sequence is unique in metric space. Therefore, x = x∗ and

y = y∗. Hence the proof.

The following result, due to Harjani et.al in [12], is a corollary from the Theorem

3.4.5 by taking A = B.

Corollary 3.4.6. In addition to the hypothesis of Corollary 3.4.2(resp. Corollary

3.4.4), suppose that for any two elements (x, y) and (x∗, y∗) in A × A, there exists

(z1, z2) ∈ A× A such that (z1, z2) is comparable to (x, y) and (x∗, y∗) then F has a

unique coupled fixed point.



CHAPTER 4 CONCLUSIONS

In this chapter, we conclude all the theorems obtained in this dissertation as

follows:

(1) Let (X, d) be a complete metric space and let A and B be nonempty, closed

subsets of X such that A0 and B0 are non-empty and A and B satisfies property ⋆.

Let S : A→ B, T : B → A and g : A∪B → A∪B satisfy the following conditions:

(a) S and T are generalized proximal α − ψ−contraction of the first kind with

α−proximal admissible;

(b) g is an isometry;

(c) S(A0) ⊆ B0, T (B0) ⊆ A0;

(d) A0 ⊆ g(A0) and B0 ⊆ g(B0);

(e) There exist elements x0 and x1 in A0 such that d(gx1, Sx0) = d(A,B) and

α(x0, x1) ≥ 1.

(f) S and T satisfies property �T .

Then, there exists a unique point x in A and there exists a unique point y ∈ B such

that

d(gx, Sx) = d(gy, Ty) = d(x, y) = d(A,B).

Moreover, for any fixed x0 in A0, the sequence {xn}, defined by

d(gxn+1, Sxn) = d(A,B),

converges to the element x. For any fixed y0 in B0, the sequence {yn}, defined by

d(gyn+1, T yn) = d(A,B),

converges to the element y. On the other hand, a sequence {un} in A converges to

x with α(xn, un) ≥ 1, if there is a sequence of positive numbers {ϵn} such that

lim
n→∞

ϵn = 0 and d(un+1, zn+1) ≤ ϵn,

where zn+1 in A satisfies the condition that d(gzn+1, Sun) = d(A,B).
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(2) Let (X, d) be a complete metric space and A and B be nonempty, closed

subsets of X. Further, suppose that A0 and B0 are non-empty and A and B satisfies

property ⋆. Let S : A→ B and g : A→ A satisfy the following conditions:

(a) S is a generalized proximal α−ψ−contractions of first and second kinds with

α−proximal admissible;

(b) g is an isometry;

(c) S preserves isometric distance with respect to g;

(d) S(A0) ⊆ B0;

(e) A0 ⊆ g(A0).

(f) There exist elements x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(g) S and T satisfies property �T .

Then, there exists a unique point x in A such that

d(gx, Sx) = d(A,B).

Moreover, for any fixed x0 in A0, the sequence {xn}, defined by

d(gxn+1, Sxn) = d(A,B),

converges to the element x. On the other hand, a sequence {un} in A converges to

x with α(xn, un) ≥ 1,, if there is a sequence of positive numbers {ϵn} such that

lim
n→∞

ϵn = 0 and d(un+1, zn+1) ≤ ϵn,

where zn+1 in A satisfies the condition that d(gzn+1, Sun) = d(A,B).

(3) Let A and B be nonempty closed subsets of a complete metric space X such

that A0 is nonempty and the pair (A,B) has the P− property. Let T : A → B

satisfy the following conditions:

(a) T are α-proximal admissible and generalized almost (φ, θ)α−contraction;

(b) T is continuous;

(c) there exist element x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(d) T (A0) ⊆ B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).
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Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.

(4) Let A and B be nonempty closed subsets of a complete metric space X such

that A0 is nonempty and the pair (A,B) has the P− property. Let T : A → B

satisfy the following conditions:

(a) T are α-proximal admissible and generalized almost (φ, θ)α−contraction;

(b) If {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n and xn → x

for some x ∈ A as n→ ∞, then there exists a subsequence {xnk
} of {xn} such that

α(xnk
, x) ≥ 1 for all k;

(c) there exist element x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(d) T (A0) ⊆ B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.

(5) Let A and B be nonempty closed subsets of a complete metric space X such

that A0 is nonempty and the pair (A,B) has the P− property. Let T : A → B

satisfy the following conditions:

(a) T are α-proximal admissible and generalized almost (φ, θ)α−contraction;

(b) T is continuous;

(c) there exist element x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(d) T (A0) ⊆ B0.

(e) T is (α, d)−regular.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).
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Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.

(6) Let A and B be nonempty closed subsets of a complete metric space X such

that A0 is nonempty and the pair (A,B) has the P− property. Let T : A → B

satisfy the following conditions:

(a) T are α-proximal admissible and generalized almost (φ, θ)α−contraction;

(b) If {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n and xn → x

for some x ∈ A as n→ ∞, then there exists a subsequence {xnk
} of {xn} such that

α(xnk
, x) ≥ 1 for all k;

(c) there exist element x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(d) T (A0) ⊆ B0,

(e) T is (α, d)−regular.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B),

converges to the element x.

(7) Let (X, d) be a complete metric space and let A and B be nonempty, closed

subsets of X such that A0 and B0 are non-empty. Let α : A×A −→ [0,+∞) satisfy

the following conditions:

(a) T (A0) ⊆ B0 and (A,B) satisfies the weak P-property;

(b) T is α-proximal admissible;

(c) There exist elements x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(d) T is a continuous Kannan weak α− ϕ−contraction.

Then, there exists an element x⋆ ∈ A0 such that

d(x⋆, Tx⋆) = d(A,B)
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(8) Let (X, d) be a complete metric space and let A and B be nonempty, closed

subsets of X such that A0 and B0 are non-empty. Let α : A×A −→ [0,+∞) satisfy

the following conditions:

(a) T (A0) ⊆ B0 and (A,B) satisfies the weak P-property;

(b) T is α-proximal admissible;

(c) There exist elements x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(d) T is a Kannan weak α− ϕ−contraction;

(e) If {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ A

as n → ∞, then there exists a subsequence {xnk
} of xn such that α(xnk

, x) ≥ 1 for

all k.

Then, there exists an element x⋆ ∈ A0 such that

d(x⋆, Tx⋆) = d(A,B)

(9) Let (X, d) be a complete metric space and let A and B be nonempty, closed

subsets of X such that A0 and B0 are non-empty. Let α : A×A −→ [0,+∞) satisfy

the following conditions:

(a) T (A0) ⊆ B0 and (A,B) satisfies the weak P-property;

(b) T is α-proximal admissible;

(c) There exist elements x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and

α(x0, x1) ≥ 1;

(d) T is a Kannan weak α− ϕ−contraction;

(e) T is (α, d)−regular;

(f) If {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ A

as n → ∞, then there exists a subsequence {xnk
} of xn such that α(xnk

, x) ≥ 1 for

all k.

Then, there exists an element x⋆ ∈ A0 such that

d(x⋆, Tx⋆) = d(A,B)

(10) Let (X,≤, d) be a partially ordered complete metric space. Let A and

B be nonempty closed subsets of the metric space (X, d) such that A0 ̸= ∅. Let

F : A× A→ B satisfy the following conditions.
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(i) F is continuous having the proximal mixed monotone property and proximally

coupled weak contraction on A such that F (A0 × A0) ⊆ B0.

(ii) There exist elements (x0, y0) and (x1, y1) in A0 × A0 such that

d(x1, F (x0, y0)) = d(A,B) with x0 ≤ x1

and

d(y1, F (y0, x0)) = d(A,B) with y0 ≥ y1.

Then there exist (x, y) ∈ A×A such that d(x, F (x, y)) = d(A,B) and d(y, F (y, x)) =

d(A,B).

(11) Let (X,≤, d) be a partially ordered complete metric space. Let A and

B be nonempty closed subsets of the metric space (X, d) such that A0 ̸= ∅. Let

F : A× A→ B satisfy the following conditions.

(i) F is continuous having the proximal mixed monotone property and proximally

coupled weak contraction on A such that F (A0 × A0) ⊆ B0.

(ii) There exist elements (x0, y0) and (x1, y1) in A0 × A0 such that

d(x1, F (x0, y0)) = d(A,B) with x0 ≤ x1

and

d(y1, F (y0, x0)) = d(A,B) with y0 ≥ y1.

(iii) (xn) is a non-decreasing sequence in A such that xn → x, then xn ≤ x.

(yn) is a non-increasing sequence in A such that yn → y, then y ≤ yn.

Then, there exist (x, y) ∈ A×A such that d(x, F (x, y)) = d(A,B) and d(y, F (y, x)) =

d(A,B).
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