CHAPTER 3 METHODOLOGY

In this chapter, we will be describing the finite difference method 13-point stencil, the
finite difference method 25-point stencil and the integrated radial basis functions for
solving the biharmonic problem. The details of these topics are following.

We consider biharmonic equation in two dimensions as following.
ou(x, o'u(x, o'u(x,
(y) HTulxy) FUY) gy yy 1)
OX ox“oy oy
Let uniform Cartesian grid N x N, we defined 0<x<1 and 0<y<1. Subject to the

boundary conditions are given by
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Where n is outward unit normal vector to the boundary I"

u is the prescribed potential on essential I',

ul

g isnormal flux on essential I"; .

3.1 Finite difference approximation of biharmonic equation with 2"
order accuracy
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3.1.1 The finite difference approximation of ok with 2™ order
X

accuracy
Consider a grid node(i, j)an intersection of the grid lines i and j. Let h is the gird
size (h=(x—x)=(y—y)) and 2<i<N-2 and 2< j<N-2.Take the Taylor series

expansion of u; . ;,U;,,;,U; ,; and u;,, ; at u(xi,yj).
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Multiply 4 into equation (3.5)
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So the finite difference approximation of g—l: with 2" order accuracy is
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Where O( ) is a truncation error term proportional to h?*.
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3.1.3 The finite difference approximation of a—lj with 2" order accuracy
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Substitution a—l:

into equation (3.10) by holding i fixed and differentiating with

ij

respect to j.

o'u 1

o ~ F(ui‘j’z — AU U =AU L) +O(h2). (3.13)
i

Adding equations (3.11), (3.12) and (3.13), so the finite difference approximation of
biharmonic equation with 2" order accuracy is expressed as following
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Figure 3.1 Diagram of biharmonic equation with 2" order accuracy.

3.2 Finite difference approximation of biharmonic equation with 4"
order accuracy
4
3.2.1 The finite difference approximation of a—‘j with 4™ order accuracy
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From Taylor series in equation (3.10) uniform of finite difference approximation of —-

with 4™ order accuracy is following
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v (3.15)
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Consider term of 8—2 f—— = | in equation (3.15) we get
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Substitution equation (3.16), (3.17) and (3.18) into equation (3.15), so the finite

. I o'u . .
difference approximation of PV with 4™ order accuracy is
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Figure 3.2 Diagram of Z—u with 4" order accuracy.
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3.2.2 The finite difference approximation of 2% with 4" order
X2oy?|
1]
accuracy
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Figure 3.3 Diagram of 2882—;y with 4" order accuracy.
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3.2.3 The finite difference approximation of a—lj with 4" order accuracy
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From Taylor series in equation (3.15) we substitution a—lj

by holding i fixed and

i

: T : P 20°u;; o'y ).
differentiating with respect to j and consider Y fi"'_axzayé - 8x4 in term of

equation (3.15) we get
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Substitution equation (3.21), (3.22) and (3.23) into equation (3.15), so the finite
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Substitution equations (3.19), (3.20) and (3.24) into biharmonic equation, so the finite
difference approximation of biharmonic equation at 4™ order accuracy is
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Figure 3.5 Diagram of biharmonic equation with 4" order accuracy.
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3.3 Integrated Radial Basis Functions (IRBF)

From biharmonic equation in equation (1) we let
_2lu(xy) .\ ’u(x,y)

= 3.26
OX? oy? (3.26)
The second order derivative of v is decomposed into finite difference method
oV (X, o*v(x, o'u(x, o'u(x, o'u(x,
(), FV(xy)_ulny) ou0y) Suy) g 0 g

aXZ ay2 8X4 aXZayZ ay4
The figure 3.6 show that a schematic outline of a five-point stencil associated with a
node(i, j). Nodes are locally numbered from left to right and from bottom to top

((i, i) 53). We construct the approximations for the field variable v and its derivatives
on two lines defined by 1-3-5 and 2-3-4 in a separate manner.

4::(1"“ 1)

-1, : s 1+1,
( lc) g’(1._]) (o J)
1 3 5
24

{lj'l)

Figure 3.6 Schematic outline of a 5-point stencil.

On a line 1-3-5, the second-order derivative of v is decomposed into RBFs with respect
to xis expressed as following

o*v(x)
ox*
where x1£x3£x5,Gk(x) and W, are the RBFs and the associated weight of node
k(k={135}). If the multiquadric (MQ) function is chosen, so G, () is expressed as

following
G, () =4(x-%)" +a> (3.29)

where a ’ is the multiquadric width(free parameter). It is noted that another form of the

=W,G, (X)+W;G, (X) +W;Gg () (3.28)

free parameter ¢ =1/a, is also used in some case to enable comparison with published
results in the literature.



16

Approximate expressions for the variable v is obtained by integrating (3.28) with
respect to x

%:W1H1+W3H3+W5H5+Cl (3.30)

v(X)=wWHi+wW,Hs+w,Hs +Cx+C, (3.31)
where H, (x)= _[Gk (x)dx, Hi(x)= j H (x)dx,k ={1,3,5}andC,,C,are two constants

of integration. With the presence of C, and C, there are 5 unknowns, instead of the
usual 3, over a straight line of 3 nodes. This feature will be exploited here to incorporate
the values of &°v/ox® at nodes 1 and 5 into the RBF approximations. We construct the

system that represents the relation between the RBFs space and the physical space as
following

Vl -— — _ -

v, | |Hi(x) Ha(x) Hs(x) x 1w,

V, Hi(x) Hs(%) Hs(x) x 1w

o, |7 Hi(xs) Hs(x) Hs(x) x5 1| (3.32)
ox* | | G(x) Gy(x) Gs(x) 0 OffC

0s | [ Gi(%) Gi(x) Gs(x) 0 0J\C

OX? ¢

where C is a 9x9 matrix that will hereafter be called the conversion matrix. Solving
equation (3.32) leads to

Wl
W, T
. o%v, o™
w, |=C {vl A ale axj} : (3.33)
CZ
CZ

Approximate expressions for v and its derivatives in the physical space are obtained by
substituting (3.33) into (3.31), (3.30) and (3.28)

= — = o o, o |

V(X):|:H1(X) Ha(x) Hs(x) x 1}0 {vl Vi Vs =3 axz} (3.34)
ov(x B o2 ) Pe . T

a(x):[Hl(X) H,(x) Hg(x) 1 0]C {vl Vo Vg ax‘g 6):’2} (3.35)
o%v(x) . v, v, |

pv: =[G,(x) G;(x) G;(x) 0 0]C {vl v 8x2} (3.36)
where X, <X <X They can be rewritten in the following form

_ 2 _ 52

V(X):¢1(X)V1+¢3(X)V3+¢5(X)V5+¢1(X)%+¢5(X)§V25 (3.37)
v(x) _ d¢1(x)v1+ d¢3(x)v3+ d¢5(x)v5+ de, (x) 32\21 N d s (X) aZst 03
OX dx dx dx dx X dx OX

V() _dh(x), dh(),  dhK), | Ch) o A ()N g

ox? x> ' odx® Y dx® ° A axd x>  ox?
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where {¢l(x),¢3(x),¢5(x),Eﬁl(x),%s(x)} are the set of IRBFs in the physical space. At

X=X, for brevity, we rewrite expressions (3.38) and (3.39) as
o, — 0%,

v _
8_)3 = MV T+ Vs + HeVs + 1y Y T Hs a3 (3.40)
GA o, — 0%,

6723:771V1+773V3+775V5+771 o 15— 8X (3.41)
where ﬂk=d¢k(X3) - _d¢1(X3) - _d¢5(X3) 7, = d ¢k( )1771—d2¢l(xa)’

ax T T ax T T o T g dx?

~ d%,
M = ﬁx( )and k ={1,35}.

On a line 2-3-4, in a similar form line 1-3-5, which they are expressed as following
o’v, — 0%,

—= PNy T PoVs + @V, + (772 WZQ +, 6y2 (3.42)
2 Y, A2
a—%:92v2+03v3+94v4+92%+94 a@yv; (3.43)
de (vs) = dg,(ys) = _dg, (v d’g (v:) 7 d°4,(y
where b= k( 3)’¢2:M’¢4: 4( 3)’0k:M192: 2(2 3)’
dy dy dy dy dy

0s = ¢4( 5) and k ={2,3,4}.
dy?
The bihamornic equation is solved using a Picard-type iteration scheme and we can be

written in the following equation associated with node 3, i.e. (i, j)

82 n _ 2., n-1 _ aZV n-1
1 5
—a =1V 7V + 7V 7y o +1s o (3.44)
2 n 2 n-1 _ 2., n-1
oV =6V, +0,v," +6,v," +0266y2 +6?488V;2 (3.45)

where the superscript n is used to indicate a current iteration (i, j). The discretization

equation associated with node 3, i.e. (i, j), is obtained by substituting (3.44) and (3.45)
into (3.27)

62 n-1 62V n-1
(771\/1n +773V3n+775V5n)+(92\/2n+93v3n+84V4 )—f _(771 5X2 +1s 8)?2 J

2y, n-1 2y, n-1
(028" 18, 2V ]
oy’ oy

(3.46)

Solve this linear system by Gauss-Seidel iteration is expressed as foIIowing
V3n ol (f _771 82 n-1 azvsn—l _ azvzn—l _ azv n-1 kil

-6 —O0s———-nV,
—0v," " G, ) 1 (7, +6;)

a 2 775 aXZ ayZ 8y2 775

(3.47)
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with initial values is
v"=v"%i=1234,5.
Where the superscript k is used to indicate Gauss-Seidel iteration.

Consider equation (3.26), we construct the approximations for the field variableuand its
derivatives on the x andy grid lines. On line x and y the second-order derivative of

u are decomposed into IRBFs and the equations are solved using a Picard-type iteration
scheme.

aZu n ] ; .= aZu n-1 aZu n-1

aXS =ThU; + 175Uy + 175U + 17, 8)(12 15 8)?2 (3.48)
2, n _ 2, n-1 2, n-1
ﬁ%:@yw@w+@w+&5$2+ma§2 (3.49)

The discretization equation associated with node 3, i.e.(i, j), is obtained by substituting
(3.48) and (3.49) into (3.26)

_ aZu n-1 _ aZu n-1
V5" =mU," +7eUy" + 775U +7718—X12+775 8—)(52
_ aZu n-1 aZu n-1 (350)
+6,u," + 6,u," +6,u," + 0> ay22 + 0, 6;2
Solve this linear system by Gauss-Seidel iteration is expressed as following
ket (k= 82U1n_1 _ azusnfl _ azuzn—l _ 5‘2U4n_l
U, —(V3 - > 15 7 -0 7 —0, >
ox OX ) oy (3.51)

—1pu,"™ = 1,u5" — G, — G,u," ) / (773 + ‘93)
with initial values is
u"=u""i=1234,5.

3.4 Iteration Method

3.4.1 Iteration method of finite difference method (FDM) with 2™ order
accuracy

From equation (3.14) we will have iteration method of biharmonic equation at 2" order
accuracy as following

n+1 n+1 4
U =uy +(rh fi'j—(ui721j+ui+21j

U +ui,j+2)
+ 8(ui—l,j FU HU ot Ui,j+1) - 2<ui—1,j—l U jatUigjut ui+1,j+1)
—~20u; ;)

(3.52)
where 7 is time step, which the operation count for each iteration is 20 times for each
node.
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-7
-2t 8 -2r
mﬁl=U:j+rh4ﬂj+ - 8 -20r 8 -t u”-+0(h2)
-2r 8¢ -2r
-7

Figure 3.7 Diagram of iteration method biharmonic equation at 2™ order accuracy.

3.4.2 lteration method of finite difference method (FDM) with 4™ order
accuracy

From equation (3.25) we will have iteration method of biharmonic equation at 4™ order

accuracy as following

n+l _ N 4
u =l e (0 (12, = (Fy o+ fray o+ Fipo + fi)
+16( fi—l,j + fi+1,j + fi,j—l + fi,j+1))_5(ui—2,j—2 tUo 2 TUis et ui+2,j+2)
+44(ui—1,j—2 F Uiy 2 TUiy jip Uiy oo HUiy o T UL o T U g +ui+2,j+1)

- 6(ui,j—2 + ui,j+2 + ui—2,j + ui+2,j ) _128(ui—1,j—1 + ui+1,j—l + ui—l,j+1 + ui+1,j+l)

i+1, j i,j-1

—120(Uyy j + Uy +U; L+ U,y )+ 6840, )

(3.53)
the operation count for each iteration is 44 times for each node.

—rh*
167h*
u'lt=u';+9—ch* 167h* 12¢zh* 167h* —rht g f
167h*

rh*

5 -44r 67 —-44r 57
—44r 1287 120r 1287 44r
+4 6z 120r —684r 120r -6z ,u,;+O(h)
—44r 1287 120r 1287 44r
57 447 67 447 57

Figure 3.8 Diagram of iteration method biharmonic equation with 4" order accuracy.
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3.4.3 lIteration method of integrated radial basis functions (IRBF)

uir?'jk+l = [( fi,j _%[ﬁi—l,j (Vi—z,j _2Vi—1,j +Vi,j )+5i+l,j (Vi,j _2Vi+1,j +Vi+2,j)

#0011 (Vi =20, + Ve )+ i (V) =20 1+ )|
77| -1,j |n—ll<j1 ﬁHlj I+lj 9'_11V| i 1 6"1JV| j+l)/(77i,j +9i,j)
1

h2 [77. 4 ( 2, _2Ui_1,j +U; )+7_7i+1,j (Ui,j _2ui+1,j +ui+2,j)

N nk+1
#0151 (U, — 20+ U, )+ Oiga (U —2ui'j+1+ui,j+2)} My U

77|+lj I+lj 9"1Ju|nj J:rLl 9"1Ju| J+l:|/(77l j +9 )

(3.54)
the operation count for each iteration is 62 times for each node.

3.5 Boundary Condition

Consider boundary conditiona—u =a, we using backward and forward difference

g
approximation for solving boundary.

3.5.1 Backward difference approximation on—i with 2" order
i=N,

accuracy
ou
OX i

1 —
~ %(UHJ —4u,H‘j +3quj ) =q

N.j

1 —
Uy, = Z(th —Uy_, | —3uN’j)
n+ 1 .
Unh; = Z(_th +3Uy | +uN72’j)
n+l

1
Uy = 4[ 2hq+3Un j +Up_,  + r[h“fozJ

_(UN—A,j +Uy+Uy g2 +uN—2,j+2)+8(uN—3,j Uy +uN—2,j—1+uN—2,j+l)

_Z(UN—B,j—l +uN—l,j—1 + uN—3,j+1 +uN—1,j+l)_20uN—2,j ﬂ

(3.55)
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3.5.2 Backward difference approximation of u with 2" order accuracy
i,j=N

~ 2_1h(ui,N—2 —AU;  +3U; ) =a

—U, = %(Zha—umz —3U; )

u
oy

i,j=N

Wi, = %(—Zha +3U;  + ui,N,z)

1 _
n+l n 4
Ui :Z[—th+3ui,N +U\ +r[h finz

_(ui—Z,N—Z FUiono tUing Uy )+8(ui—l,N—2 FUggnotUnst ui,N—l)

_2(ui—1,N—3 FUgns Tyt ui+1,N—l>_20ui,N—2 ]J
(3.56)

with 2" order
i=N, j

35.3 Forward difference approximation ofg—i

accuracy

~ i(—SuN’j + AUy, 5 —Uyz ) =q

_(UN,j +uN+2,j +uN+2,j—2 +uN+2,j+2)+8(uN+1,j +uN+1,j +uN+2,j—l+uN+2,j+1)

_2(uN+1,j—l + uN+3,j—1 + uN+1,j+1 + uN+3,j+1)_20uN+2,j ﬂ
(3.57)
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3.5.4 Forward difference approximation ofﬁ—u with2" order accuracy
i,j=N

ou

oy

1 _
R %(_‘?MLN +4U; _ui,N+2) =g

i j=N
1, -
Ui Nt :Z(th+3ui,N +ui,N+2)
n+ 1 ~
ui,N1+1 = Z(th +3U; +ui,N—2)
u, = %[2hﬁ+36m Ul e[0T,

_(ui—Z,N+2 +ui+2,N+2 +ui,N + ui,N+2)+8(ui—1,N+2 + ui+1,N+2 +ui,N+1 +ui,N+3)

_z(ui—l,N+l Tl TUgns T ui+1,N+3)_20ui,N+2 ﬂ
(3.58)
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with4™ order accuracy

3.5.5 Backward difference approximation ofg—u

Xlion,j
ou 1 -
I ~ 2h(— neaj By s ; 18Uy, +10uy ,  +3u, ;)=

1
Uy s, ——0(12hq+uN Loy~ 6Uy 5 +18u, , —3uy )
n+ 1
_1“— ( 2hq -3, ; +18U,_, ; —6Uy 5 +Uy_ 41)

u™t o = |:12hq 3UN] |:18U2172'j+2'(h4(12f[\172,j

Uy =
_( fN—4,j + fN,j + fN—Z,j—Z + fN—2,j+2)+16( fN—3,j + fN—l,j + fN—Z,j—l + fN—2,j+1))

_S(UN—4,j—2 TUy 2 FUy g2 +uN,j+2)

+44(“1\1—3,;‘—2 TUy g0 Uy gjio TUN g2 FUG 40 UG FUG g T uN,j+1)
_6(UN—2,j—2 +uN—2,j+2 +uN—4,j + uN,j )_128(UN73,jfl + uN—l,j—l + uN—S,j+l +uN—l,j+1)
—120(Uy g +Uy 4 +uN_2,j_1+uN_2’j+l)+68uN_2’j)}

—6[u;,3,j (N (120 5, —(fusy + fuay + fuago* fuageo)

+16( fN ajt fN 2, fos,H + fN—S,j+l))_5(uN—5,j—2 TUy g2 tUns e +uN—1,j+2)
+44(UN74,J’72 FUy 252 tUngji2 PUn 2 ji2 FUN 550 FUN 1 UGS +UN71,1+1)
_G(UN—3,j—2 + uN—3,j+2 + uN—S,j + uN—l,j )_128(UN—4,j—1 +uN—2,j—1 + uN—4,j+l +uN—2,j+1)
—120(Uyy_y ; +Uy_p; +Uy 5 +Uy 5 )+ 68Uy 5 )}

ey + 7 (0 (120~ (fucey + Facas * fucaga+ fuan)

#16( g+ fug g+ fua ot fuasa))

_S(UN—e,j—z +uN—2,j—2 + uN—G,j+2 + uN—2,j+2)

+44(UN—5,j—2 FUy 32 TUns 02 TUn g ji2 TUN 650 HUn2 j1 TUne i +uN—2,j+l)

_B(UN—4,J‘—2 + uN—4,j+2 + uN—G,j +uN—2,j )_128(UN—5,j—1 + uN—3,j—1 +uN—5,j+l + uN—3,j+1)

~120(uy s, uN—3,j+uN—4,j—1+uN—4,j+l)+68uN—4,j):|
(3.59)
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3.5.6 Backward difference approximation ofa—u‘ with4" order accuracy

ou 1 =
5 - ~ 12h (_ui,N—4 +6U; 3 —18u; _, +10u; _, +3u; ) =(
1
Uiy =—0(12hq+u Uy s +18U, o =30, )
unt, —%(thq 3U, +18U, , —6U,y 5 +U; )
1
|nJr:|1—1 _E[lth 3U' N+ 18u| N-2 T(h4 (12 fi,N—z _( fi—2,N—2 + fi+2,N—2 + fi,N—4 + fi,N )
+16( f|—1N 2t f|+lN 2t fu N3 T fu N 1)) S(Ui—z,N—A TUong tUoy +ui+2,N)
+44(u| -1,N 4 |+1N 4 +ui—1,N +ui+l,N +ui—2,N—3 +ui+2,N—3 +ui—2,N—l+ui+2,N—l)

_G(Ui,N—A TUn TU N2 Ui N ) _128(ui—1,N—3 TUnsTUigna T ui+1,N—1)
_120(ui—1,N—2 TUgno TUNs T ui,N—1)+ 68ui,N—2 )}

_6[uier—3 +T(h4 (12 fi,N—S _( fi—Z,N—S + fi+2,N—3 + fi,N—S + fi,N—l)

+16( fians+ fianat finat fi,N—z))_5(ui—2,N-5 FUons TUana T ui+2,N—1)
+44(ui—l,N—5 FUgns TU gy TU g Uy g Ty s Ui N T ui+2,N—2)
_6(ui,N—5 FUnatUoyst ui+2,N—3)_128(ui—1,N U N Tl N +ui+1,N—2)
_120(ui—1,N—3 TUan s TUin g TUno ) + 68ui,N—3 )}

+|:uir7N—4 +T(h4 (12 fi,N—4 _( fi—2,N—4 + fi+2,N—4 + fi,N—G + fi,N—Z)

+16( fi—l,N—4 + fi+1,N—4 + fi,N—S + fi,N—3))_5(ui—2,N—6 TUionses TUiano2 +ui+2,N—2)
+44(ui—l,N—6 FUane TUgn o Py o TUion s TUon s TU oy T ui+2,N—3)

_6(ui,N—6 FUin2tUiong +ui+2,N—4)_128(ui—1,N s tUns TUign st ui+1,N—3)

_120(ui—l,N—4 FUin-s TUins +ui,N—3)+ 68ui,N—4 )}

(3.60)
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3.5.7 Forward difference approximation ofg—u

with4™ order accuracy
X

i=N,j

1 —_—
~ H(_Bu“"' ~10uy,,; +18Uy,, ; —6Uy.5; +Uy,,;) =0

1 —
Uy, = B(—thq —3Uy,; +18Uy,, j —BUy .5 ; +uN+4'j)

8_u
OX

i=N,j

n+ 1 -
Uy = E(_lth —3uy ; +18uy,,  —6uy 5 +uN+4'j)

ut = %[—Qha—?ﬂm +[180],, + 1 (n* (121,

_( fN,j + fN+4,j + fN+2,J>2 + fN+2,j+2)+16( fN+l,j + fN+3,j + fN+2,j—l+ fN+2,j+l))
_S(UN,j—Z +uN+4,j—2 + uN,j+2 + uN+4,j+2)

+44(“N+1,j—2 FUyisj-2 P Unsje2 TUNGs ez TUN o T UG 0 T UGG +uN+4,j+1)
_6(uN+2,j—2 + uN+2,j+2 + uN,j + uN+4,j )_128(UN+1,j—1 +uN+3,j—1 + uN+l,j+l + uN+3,j+l)
_120(UN+l,j TUyizj T Uns2 +uN+2,j+1)+68uN+2,j )}

_G[UEH-S,j +T(h4 (12 fN+3,j _( fN+l,j + fN+5,j + fN+3,j—2 + fN+3,j+2)

+16( fN+2,j + fN+4,j + fN+3,j—1 + fN+3,j+1))

_5(uN+l,j—2 + uN+5,j—2 + uN+1,j+2 + uN+5,j+2)

+44(“N+2,j—2 T Uyia52 TUnc2 02 TUnGa a2 TUNG o FUNGs o PUNG T uN+5,j+l)
_6(uN+3,j—2 +uN+3,j+2 +uN+1,j + uN+5,j )_128(UN+2,H +uN+4,j—1 +uN+2,j+l +uN+4,j+1)
_120(UN+2,1 FUygj HUyns +uN+3,j+l)+68uN+3,j )J

+[UE+4,1 +T(h4 (12 fN+4,j _( fN+2,j + fN+6,j + fN+4,j—2 + fN+4,j+2)

+16( fN+3,j + fN+5,j + fN+4,j—1+ fN+4,j+l))

_5(uN+2,j—2 FtUne,j2 TUn2ja2 T uN+6,j+2)

+44(“N+3,j—2 T Uyys,j2 T Unys 2 TUns iz TUnG o TUNGe jo TUNG2 i T uN+6,j+1)
_6(uN+4,j—2 +uN+4,j+2 +uN+2,j +uN+6,j)
_128(UN+3,j—l+uN+5,j—1+uN+3,j+l+uN+5,j+l)

_lzo(uN+3,j + uN+5,j + uN+4,j—1 + uN+4,j+1)+ 68uN+4,j )j|
(3.61)
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3.5.8 Forward difference approximation ofﬁ—u with4" order accuracy

i,j=N
ou 1 —
a_yi'j:N ~ m(_&-’i,l\l —10u; ., +18U; ., —6U; .5 +ui,N+4) =q
Uing = %(—12ha—3um +l8ui,N+2 _6ui,N+3 +ui,N+4)
1 hq 18 6
ui,N+1 —E(_lz q_3ui,N + ui,N+2_ ui,N+3+ui,N+4)
ur, = %[—Hh& ~ Ui +[18u7, (0 (126,

—

( i-2,N+2 + fi+2,N+2 + fi,N + fi,N+4)+16( fi—l,N+2 + fi+1,N+2 + fi,N+l + fi,N+3))

_S(Ui—Z,N TUon TN T ui+2,N+4)

+44(Upy y + Uy U

i-1,N+4 +U;

i+1L,N i+1,N+4 + ui—2,N+l + ui+2,N+l + ui—2,N+3 + ui+2,N+3)

_G(Ui,N FUinig TUione +ui+2,N+2)_128(ui—l,N+l TUiana T Uings +ui+l,N+3)
_lzo(ui—l,N+2 TUianee TUina +ui,N+3)+ 68ui,N+2 )J

_6|:Uier+3 + T(h4 (12 fi,N+3 _( fi—Z,N+3 + fi+2,N+3 + fi,N+1 + fi,N+5)

+16( fi—l,N+3 + fi+l,N+3 + fi,N+2 + fi,N+4))

_5(ui—2,N+l TUionatUions T ui+2,N+5)

+44(ui—1,N+l FUianag TUignes TUianes TUio v Ui N Ui v T ui+2,N+4)
_G(Ui,N+l FUinag TUions T ui+2,N+3)

_128(ui—l,N+2 FUignee TUignes T ui+1,N+4)

_120(ui—1,N+3 FUig Nz TUin T ui,N+4)+ 68ui,N+3 )}

+|:uier+4 +T(h4 (12 fina _( fionee * fonea T finia + fi,N+6)

+16( fi—l,N+4 + fi+l,N+4 + fi,N+3 + fi,N+5))_5(ui—2,N+z TUione TUione +ui+2,N+6)
+44(ui—1,N+2 TUianee TUignee TUnee TUiones TUions TU o ns T ui+2,N+5)
_G(Ui,mz FUine TUioneg TUio N ) _128(ui—1,N+3 FUgns tUigns T+ ui+l,N+5)

_120(ui—1,N+4 FUinea T Uings TUnss ) + 68ui,N+4 )]

(3.62)



