CHAPTER 2 THEOREM

In the chapter 2, we will be present radial basis functions method, integrated radial basis
functions and biharmonic equation, which they are described as following.

2.1 Radial Basis Functions (RBF;) Method

(Baxter, 1992; Wright, 2003) the RBF method is now one for the primary tools for
interpolating multidimensional scattered data. It is simple form and ability to accurately
approximate an underlying function has made the method particularly popular. In this
section we review the conditions on the basis functions to guarantee a nonsingular
method. This is followed by summary of some of some important theoretical and
computational results, as a summary of some of the applications the RBF method has
been successfully applied to.

A radial basis function approximation takes the form as follows:

s()=>_As(|x—i]), xeR (2.1)

iel
where ¢:[0,00) —> R, is a fixed univariate function, || denote the Euclidean norm and
the coefficients (ﬂ,,)iel are real numbers. Consequently our approximation s is a
linear combination of translates of a fixed function x — ¢(||x|) which is “radially

symmetric” with respect to the given norm, in the sense that it clearly possesses the
symmetries of the unit ball.

If 1is a finite set, say|l :(xj ):—1’ the interpolation conditions provide the symmetric

linear system as following

A |[a]=|f 2.2)
where A:(¢<ij — X, H)):’k_l,ﬂ:(i)?_l, f :(f)?:1 and (X, )?:1 are the centres of radial

basis function interpolant . Furthermore, it is usual to refer to ¢ as the radial basis
function, if the norm is understood.

(Micchelli, 1986) gave sufficient conditions for ¢(r) in (2.1.1) to guarantee that the A
matrix in (2.1.2) is unconditionally nonsingular, and thus that the basis RBF method is
uniquely solvable. Table 1.1 lists a few of the many available choices for#(r).



Table 1.1 Some commonly used radial basis functions.

Type of basis function ¢(r) (r=0)
Infinitely smooth RBFs
~(er)’
Gaussian (GA) ¢ 1
Inverse quadratic (1Q) 5
1+(er)
Inverse multiquadric (IMQ) 1
2
Multiquadric (MQ) 1+(er)
1+(er)
Piecewise smooth RBFs
Linear r
Cubic r3
Thin Plate Spline (TPS) r?logr

Note: in all cases, ¢ > 0.

¢(r) that lead to a uniquely solvable method are given in the first five entries of Table

1.1 The parameter & in the infinitely smooth RBFs from the table is a free parameter for
controlling the shape of functions. At this point, assume that it is some fixed non-zero
real value.

Gaussian (GA)

(Baxter, 1992) here we choose Gaussiang(r)=e )" where ¢ is shape parameter.

Gaussian method is very important to the choice of parameters, as we might expect
(Franke, 1982). Furthermore, Gaussian method cannot even reproduce constants when
interpolating function values given on an infinite regular grid (Buhmann, 1990) so, its
potential for practical computer calculations seems to be small. However, it possesses
many properties which continue to win admirers in spite of these problems. Especially,
it seems that users are seduced by its smoothness and rapid decay. Moreover the
Gaussian interpolation matrix is positive definite if the centers are distinct, as well as
being suited to iterative techniques.



Multiquadric (MQ)

(Baxter, 1992) here the multiquadric can be written in the form ¢(r):af1+(gr)2. The

interpolation matrix A is invertible provided only that the points are all different and
there are at least two of them. Further, this matrix has an important spectral property: it
is almost negative definite.

This radial basis function provided the most accurate interpolation surfaces of all the
methods tried for interpolation in two dimensions (Frank, 1982). His centers were
mildly irregular in the sense that the range of distances between centers was not so large
that the average distance became useless. Frank found that the method worked best
when ¢ was chosen to be close to this average distance. It is still true to say that we do
not know how to choose ¢ for a general function. (Buhmann and Dyn, 1991) derived
error estimates which indicated that a large value of & should provide excellent
accuracy. This was borne out by some calculations and an analysis of (Powell, 1991) in
the case when the centre formed a regular grid in one dimension.

Inverse Multiquadric (IMQ)
1

1+(<9I’)2
(Frank, 1982) found that this radial basis function can provide excellent approximations,

even when the number of centre is small. As for the multiquadric, there is no good
choice of ¢ known at present (Franke, 1982).

(Baxter, 1992) here we can be write Inverse multiquadric in formgo(r):

Thin Plate Spline (TPS)

The name thin plate spline refers to the physical analogy involving the bending of a thin
sheet of metal. In the physical setting, deflection is in the z direction, orthogonal to the
plane. In order to apply this idea to the problem of coordinate transformation, one
interprets the lifting of the plate as a displacement of the x or y coordinates within the
plate. The thin plate spline is the two-dimensional analog of the cubic spline in one
dimension. It is the fundamental solution to the biharmonic equation, and has the form

(p(r): r’logr. Thin plate spline has been widely used as the non-rigid transformation

model in image alignment and shape matching. The popularity of Thin plate spline
comes from a number of advantages: (i) the interpolation is smooth with derivatives of
any order, (ii) the model has no free parameters that need manual tuning, (iii) it has
closed-form solutions for both warping and parameter estimation, (iv) there is a physical
explanation for its energy function.



2.2 Integrated Radial Basis Functions (IRBFs)

Integrated radial basis functions (IRBFs) are developed from radial basis function
(RBFs). If the second-order derivative u"(x) is approximated by the original radial
basis functions, i.e.

N
u (X):ZHk¢k(X)' (2.3)
k=1
Then the first-order derivative u'(x) can be obtained by integration, which is written as
N
u(x)=J'u (x)dx=>_ s H, (x)+C,. (2.4)
k=1
Similarly, the function u is obtained as
NG
U(X)=J.U‘(X)dX:ZIUka(X)+C1X+C2. (2.5)
k=1

Here H,(x) and Hi(x) are the IRBFs and g, is the coefficient for H,(x) and

Hi (x), C, and C, are the constants of integration.

2.3 Biharmonic Equation

The biharmonic equation is the governing equations that describe thin plate bending
problems. Thin plate structures are widely used in engineering practice for the design of
aircraft, ship, and ground structures. Numerical study behavior under various loadings
condition is, therefore, essential. Apart from a few thin plates bending problem with
simple transverse load or simple boundary condition, a general solution is difficult to
obtain analytically. Some numerical method such as finite element method (FEM),
boundary element method (BEM), hybrid-Trefftz finite element method (HT-FEM), and
method of fundamental solution (MFS) are developed to analyze bending deformation
of thin plate structures under various transverse load and boundary conditions.The
biharmonic equation is encountered in plane problems of elasticity. It is also used to
describe slow flows of viscous incompressible fluids. Several phenomena in
Engineering and Mathematical physics are modeled as biharmonic equations.

The general biharmonic equation is written as

Viu=0. (2.6)
For a function u = (ul,uz) in two dimensions is expressed as in the form
2 2
V-l @)
ox~ oy

V2 is called two-dimensional Laplace operator.
Thus, the bihamonic equation is expressed as following

Viu=v?(v*)u. (2.8)
In two dimensions, the biharmonic equation is expressed as in the form
o'u(x, o'u(x, o'u(x,
() pP0R) 09) 25
OX OX“0y oy
where (X, y)e[a,b]x[c,d].




