
CHAPTER 2 THEOREM 
 

In the chapter 2, we will be present radial basis functions method, integrated radial basis 

functions and biharmonic equation, which they are described as following.  

 

2.1 Radial Basis Functions (RBFs) Method 

(Baxter, 1992; Wright, 2003) the RBF method is now one for the primary tools for 

interpolating multidimensional scattered data. It is simple form and ability to accurately 

approximate an underlying function has made the method particularly popular. In this 

section we review the conditions on the basis functions to guarantee a nonsingular 

method. This is followed by summary of some of some important theoretical and 

computational results, as a summary of some of the applications the RBF method has 

been successfully applied to. 

 

A radial basis function approximation takes the form as follows: 
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where : 0, R   , is a fixed univariate function,   denote the Euclidean norm and 

the coefficients  i i I   are real numbers. Consequently our approximation s  is a 

linear combination of translates of a fixed function  x x  which is “radially 

symmetric” with respect to the given norm, in the sense that it clearly possesses the 

symmetries of the unit ball. 
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 are the centres of radial 

basis function interpolant . Furthermore, it is usual to refer to   as the radial basis 

function, if the norm is understood. 

 

(Micchelli, 1986) gave sufficient conditions for  r  in (2.1.1) to guarantee that the A  

matrix in (2.1.2) is unconditionally nonsingular, and thus that the basis RBF method is 

uniquely solvable. Table 1.1 lists a few of the many available choices for  .r  
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Table 1.1 Some commonly used radial basis functions. 

 

Type of basis function  r   0r   

Infinitely smooth RBFs 

Gaussian (GA) 

Inverse quadratic (IQ) 

 

Inverse multiquadric (IMQ) 

 

Multiquadric (MQ) 
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Piecewise smooth RBFs 

Linear 

Cubic 

Thin Plate Spline (TPS) 

 

r  
3r  

2 logr r  

 

Note:  in all cases, 0.    

 r  that lead to a uniquely solvable method are given in the first five entries of Table 

1.1 The parameter   in the infinitely smooth RBFs from the table is a free parameter for 

controlling the shape of functions. At this point, assume that it is some fixed non-zero 

real value.  

 

Gaussian (GA) 

(Baxter, 1992) here we choose Gaussian    
2

,
r

r e





 where   is shape parameter. 

Gaussian method is very important to the choice of parameter , as we might expect 

(Franke, 1982). Furthermore, Gaussian method cannot even reproduce constants when 

interpolating function values given on an infinite regular grid (Buhmann, 1990) so, its 

potential for practical computer calculations seems to be small. However, it possesses 

many properties which continue to win admirers in spite of these problems. Especially, 

it seems that users are seduced by its smoothness and rapid decay. Moreover the 

Gaussian interpolation matrix is positive definite if the centers are distinct, as well as 

being suited to iterative techniques. 
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Multiquadric (MQ) 

(Baxter, 1992) here the multiquadric can be written in the form    
2
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interpolation matrix A  is invertible provided only that the points are all different and 

there are at least two of them. Further, this matrix has an important spectral property: it 

is almost negative definite.  
 

This radial basis function provided the most accurate interpolation surfaces of all the 

methods tried for interpolation in two dimensions (Frank, 1982). His centers were 

mildly irregular in the sense that the range of distances between centers was not so large 

that the average distance became useless. Frank found that the method worked best 

when   was chosen to be close to this average distance. It is still true to say that we do 

not know how to choose   for a general function. (Buhmann and Dyn, 1991) derived 

error estimates which indicated that a large value of   should provide excellent 

accuracy. This was borne out by some calculations and an analysis of (Powell, 1991) in 

the case when the centre formed a regular grid in one dimension.  

 

Inverse Multiquadric (IMQ) 

(Baxter, 1992) here we can be write Inverse multiquadric in form  
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(Frank, 1982) found that this radial basis function can provide excellent approximations, 

even when the number of centre is small. As for the multiquadric, there is no good 

choice of   known at present (Franke, 1982).  

 

Thin Plate Spline (TPS) 

The name thin plate spline refers to the physical analogy involving the bending of a thin 

sheet of metal. In the physical setting, deflection is in the z direction, orthogonal to the 

plane. In order to apply this idea to the problem of coordinate transformation, one 

interprets the lifting of the plate as a displacement of the x  or y  coordinates within the 

plate. The thin plate spline is the two-dimensional analog of the cubic spline in one 

dimension. It is the fundamental solution to the biharmonic equation, and has the form 

  2 log .r r r   Thin plate spline has been widely used as the non-rigid transformation 

model in image alignment and shape matching. The popularity of Thin plate spline 

comes from a number of advantages: (i) the interpolation is smooth with derivatives of 

any order, (ii) the model has no free parameters that need manual tuning, (iii) it has 

closed-form solutions for both warping and parameter estimation, (iv) there is a physical 

explanation for its energy function. 
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2.2 Integrated Radial Basis Functions (IRBFs) 

Integrated radial basis functions (IRBFs) are developed from radial basis function 

(RBFs). If the second-order derivative  ''u x  is approximated by the original radial 

basis functions, i.e. 
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Then the first-order derivative  'u x  can be obtained by integration, which is written as 
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Similarly, the function u  is obtained as 
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Here  kH x  and  kH x  are the IRBFs and k  is the coefficient for  kH x  and 

  ,kH x 1C  and 2C  are the constants of integration. 

 

2.3 Biharmonic Equation 

The biharmonic equation is the governing equations that describe thin plate bending 

problems. Thin plate structures are widely used in engineering practice for the design of 

aircraft, ship, and ground structures. Numerical study behavior under various loadings 

condition is, therefore, essential. Apart from a few thin plates bending problem with 

simple transverse load or simple boundary condition, a general solution is difficult to 

obtain analytically. Some numerical method such as finite element method (FEM), 

boundary element method (BEM), hybrid-Trefftz finite element method (HT-FEM), and 

method of fundamental solution (MFS) are developed to analyze bending deformation 

of thin plate structures under various transverse load and boundary conditions.The 

biharmonic equation is encountered in plane problems of elasticity. It is also used to 

describe slow flows of viscous incompressible fluids. Several phenomena in 

Engineering and Mathematical physics are modeled as biharmonic equations. 

 

The general biharmonic equation is written as 

     4 0.u                    (2.6) 

For a function  1 2,u u u  in two dimensions is expressed as in the form 
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2  is called two-dimensional Laplace operator. 

Thus, the bihamonic equation is expressed as following 
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In two dimensions, the biharmonic equation is expressed as in the form 
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where  , [ , ] [ , ].x y a b c d   


