

CONTENTS

	PAGE
ENGLISH ABSTRACT	ii
THAI ABSTRACT	iii
ACKNOWLEDGEMENT	iv
CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF TECHNICAL VOCABULARY AND ABBREVIATIONS	x
CHAPTER	
1. INTRODUCTION	1
1.1 Rational	1
1.2 Literature Review	1
1.3 Objective of the Thesis	2
1.4 Scopes of the Thesis	2
2. THEOREM	3
2.1 Radial Basis Functions (RBFs) Method	3
2.2 Integrated Radial Basis Functions (IRBFs)	6
2.3 Biharmonic Equation	6
3. METHODOLOGY	7
3.1 Finite difference approximation of biharmonic equation with 2^{nd} order accuracy.	7
3.1.1 The finite difference approximation of $\frac{\partial^4 u}{\partial x^4} \Big _{i,j}$ with 2^{nd} order accuracy.	7
3.1.2 The finite difference approximation of $2 \frac{\partial^4 u}{\partial x^2 \partial y^2} \Big _{i,j}$ with 2^{nd} order accuracy.	8
3.1.3 The finite difference approximation of $\frac{\partial^4 u}{\partial y^4} \Big _{i,j}$ with 2^{nd} order accuracy.	9
3.2 Finite difference approximation of biharmonic equation with 4^{th} order accuracy.	9
3.2.1 The finite difference approximation of $\frac{\partial^4 u}{\partial x^4} \Big _{i,j}$ with 4^{th} order accuracy.	9
3.2.2 The finite difference approximation of $2 \frac{\partial^4 u}{\partial x^2 \partial y^2} \Big _{i,j}$ with 4^{th} order accuracy.	12

	PAGE
3.2.3 The finite difference approximation of $\frac{\partial^4 u}{\partial y^4} \Big _{i,j}$ with 4 th order accuracy.	12
3.3 Integrated Radial Basis Functions (IRBF _s).	15
3.4 Iteration Method	18
3.4.1 Iteration method of Finite Difference Method (FDM) with 2 nd order accuracy.	18
3.4.2 Iteration method of Finite Difference Method (FDM) with 4 th order accuracy.	19
3.4.3 Iteration method of Integrate Radial Basis Functions (IRBFs)	20
3.5 Boundary Condition	20
3.5.1 Backward difference approximation of $\frac{\partial u}{\partial x} \Big _{i=N,j}$ with 2 nd order accuracy.	20
3.5.2 Backward difference approximation of $\frac{\partial u}{\partial y} \Big _{i,j=N}$ with 2 nd order accuracy.	21
3.5.3 Forward difference approximation of $\frac{\partial u}{\partial x} \Big _{i=N,j}$ with 2 nd order accuracy.	21
3.5.4 Forward difference approximation of $\frac{\partial u}{\partial y} \Big _{i,j=N}$ with 2 nd order accuracy.	22
3.5.5 Backward difference approximation of $\frac{\partial u}{\partial x} \Big _{i=N,j}$ with 4 th order accuracy.	23
3.5.6 Backward difference approximation of $\frac{\partial u}{\partial y} \Big _{i,j=N}$ with 4 th order accuracy.	24
3.5.7 Forward difference approximation of $\frac{\partial u}{\partial x} \Big _{i=N,j}$ with 4 th order accuracy.	25
3.5.8 Forward difference approximation of $\frac{\partial u}{\partial y} \Big _{i,j=N}$ with 4 th order accuracy.	26
4. RESULTS AND DISCUSSION	27
4.1 Example1	27
4.2 Example2	31
5. CONCLUSION AND RECOMMENDATION	35
5.1 Conclusion	35
5.2 Recommendation	35

	PAGE
REFERENCES	36
APPENDIX	38
BIOGRAPHY	52

LIST OF TABLES

TABLE	PAGE
1.1 Some commonly used radial basis functions.	4
4.1 The result of example 1 by using FDM 13-point stencil and FDM 25-point stencils.	29
4.2 The result of example 1 by using FDM 25-point stencil and IRBFs 5-point stencils.	30
4.3 The result of example 2 by using FDM 13-point stencil and FDM 25 point stencils.	33
4.4 The result of example 2 by using FDM 25-point stencil and IRBFs 5-point stencils.	34

LIST OF FIGURES

FIGURE	PAGE
3.1 Diagram of biharmonic equation with 2 nd order accuracy.	9
3.2 Diagram of $\frac{\partial^4 u}{\partial x^4} \Big _{i,j}$ with 4 th order accuracy.	11
3.3 Diagram of $2 \frac{\partial^4 u}{\partial x^2 \partial y^2} \Big _{i,j}$ with 4 th order accuracy.	12
3.4 Diagram of $\frac{\partial^4 u}{\partial y^4} \Big _{i,j}$ with 4 th order accuracy.	14
3.5 Diagram of biharmonic equation with 4 th order accuracy.	14
3.6 Schematic outline of a 5-point stencil.	15
3.7 Diagram of iteration method biharmonic equation at 2 nd order accuracy.	19
3.8 Diagram of iteration method biharmonic equation with 4 th order accuracy.	19
4.1 Surface of exact solution of example 1	27
4.2 Surface of compact Finite Difference Method 13-point stencil of example 1.	28
4.3 Surface of compact Finite Difference Method 25-point stencil of example 1.	28
4.4 Surface of Integrated Radial Basis Functions 5-point stencil of example 1.	29
4.5 Surface of exact solution of example 2	31
4.6 Surface of compact Finite Difference Method 13-point stencil of example 2.	32
4.7 Surface of compact Finite Difference Method 25-point stencil of example 2.	32
4.8 Surface of Integrated Radial Basis Functions 5-point stencil of example 2.	33

LIST OF TECHNICAL VOCABULARY AND ABBREVIATIONS

D	=	Flexural rigidity
h	=	Grid size
n	=	Distant data
\mathbf{n}	=	Outward unit normal vector to the boundary Γ
C_k	=	Constant of integration
$G_k(x), \phi(r)$	=	Radial Basis Functions
$H_k(x), \bar{H}_k(x)$	=	Integrated Radial Basis Functions
β	=	Factor
ε	=	Shape parameter
τ	=	Time step
q_0	=	Intensity of the load at center of the plate
a_k^2	=	Multi-quadric width
w_k	=	Weight of node k
\bar{u}	=	Prescribed potential on essential Γ_u
\bar{q}	=	Normal flux on essential Γ_q
∇^2	=	Two-dimensional Laplace operator
$\ \cdot\ $	=	Euclidean norm