

หัวใจของการออกแบบเครื่องสูบน้ำแบบหลายชั้น คือการหารูปทรงของช่องทางไหลภายในเครื่องสูบน้ำแต่ละชั้นที่สอดคล้องกัน เพื่อทำให้การไหลของน้ำภายในเครื่องสูบน้ำดังแต่ทางน้ำเข้าที่ชั้นที่หนึ่งไหลงรีน์ตลอดไปจนถึงทางน้ำออกที่ชั้นสุดท้าย กระบวนการออกแบบแบบเริ่มดันด้วยการใช้ข้อมูล ข้อกำหนดคุณลักษณะและสมรรถนะของเครื่องสูบน้ำมาคำนวณหารูปทรงพื้นฐานของเครื่องสูบน้ำ ซึ่งประกอบด้วย นอชเชลทางน้ำเข้าไหพัด ดัวเรือนเครื่องสูบน้ำ ส่วนเชื่อมต่อระหว่างชั้น และช่องทางออกของเครื่องสูบน้ำ เมื่อได้รูปทรงพื้นฐานครบถ้วนแล้ว จึงนำไปสร้างเม็ช สำหรับคำนวณผลศาสตร์ของไหลเพื่อตรวจสอบลักษณะการไหล และลักษณะการสร้างความดันน้ำ นำผลลัพธ์จากการคำนวณมาปรับปรุงรูปทรงของช่องทางไหล สร้างเม็ช คำนวณใหม่ ทำซ้ำจนกระทั่งได้รูปแบบการไหลงภายในเครื่องสูน้ำตามที่ต้องการ งานวิจัยนี้ เป็นการออกแบบเครื่องสูบน้ำขนาด 5 ชั้น ขนาด 4 นิ้ว อัตราไหล 5 ลูกบาศก์เมตรต่อชั่วโมง มีเขตสูงสุดไม่เกิน 30 เมตรน้ำ ทำงานที่ 2,850 รอบต่อนาที ศึกษาอิทธิพลต่อการไหลงไหพัดแบบโค้งรัศมีเดี่ยว (Single Arc) และโค้งผสมสองรัศมี (Double Arc) ช่องทางไหลงกลับที่จุดต่อระหว่างชั้นแบบโค้งวงกลับ 135° และ 180° จำลองการไหลงด้วยซอฟต์แวร์ Fluent ด้วยแบบจำลองความปั่นป่วน Shear Stress Transport $k-\omega$ ให้การไหลงที่มีเสถียรภาพ มีการไหลงน้อยเป็นเงื่อนไขในการจำลอง ผลการศึกษาพบว่า อัตราการเพิ่มของความดันระหว่างชั้นลดลงเมื่อจำนวนชั้นมากขึ้น เอดสูงสุดมีค่าอยู่ในช่วง 20-21 เมตรน้ำ ที่ความดันเดียวที่เครื่องสูบน้ำที่มีรอยต่อระหว่างชั้นแบบโค้งวงกลับ 135° ให้อัตราไหลงมากกว่าแบบโค้งวงกลับ 180°

Abstract

192358

The essential part of the design of multi-stage submersible pumps is to find out the consistent flow channels in order that water flows smoothly from the inlet to the outlet. The design process starts from using the data of specification and performance of pumps to calculate the basic shape of pumps consisting inlet nozzle, impeller, pump case, stage interface and outlet. After the calculation of basic shapes, mesh is built for CFD calculation to check the flow pattern and development of pressure. The calculation results are used to modify the shape of flow channels in order to improve flow pattern. The mesh is rebuilt and flow pattern is recalculated. It is repeated until the pump requirement is satisfactory. This research is to design a 5-stages submersible water pump, 4 inch in diameter and the flow rate of $5 \text{ m}^3/\text{h}$. Its maximum head shall not exceed 30 mWG and its rotation speed shall be 2,850 rpm. It is to study the influence of impeller (single arc and double arc) on flows. Moreover, two shapes of return channel, 135 degree and 180 degree are investigated. The flow is simulated using Fluent software with shear stress transport $k-\omega$ turbulent model. The stable smooth flow with minimum circulation is used as a simulation condition. The study shows that a pressure ratio between layers decreases when the number of layers increases. The maximum head are about 20-21 mWG. At the same pressure condition, pump configuration with 135 degree return channel gives flow more than that of 180 degree.