

การผลิตพลังงานจากชีวมวลสามารถกระทำได้ 2 กระบวนการ คือกระบวนการทางชีวภาพ และกระบวนการทางอุณหเคมี โดยสำหรับกระบวนการทางอุณหเคมี กระบวนการผลิตกําชเชื้อเพลิง ได้รับความสนใจในวงกว้าง เนื่องจากสามารถแก้ปัญหาการกำจัดของเสีย เช่น ขยะมูลฝอย ได้ โดยส่วนใหญ่ต้องสิ่งแวดล้อมน้อยกว่าการเผาไหม้โดยตรง และสามารถนำกําชเชื้อเพลิงที่ได้มาผลิตพลังงานความร้อนหรือไฟฟ้าได้ งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาสมรรถนะและประเมินศักยภาพ สำหรับการผลิตพลังงานจากขยะมูลฝอยเครื่องผลิตกําชเชื้อเพลิงขนาด 15 กิโลกรัมต่อชั่วโมงเพื่อใช้ในห้องปฏิบัติการ แต่เพื่อให้สามารถควบคุมสภาวะและเรื่องไฟฟ้า ทุกอย่างได้ จึงได้ใช้ไม้เป็นเชื้อเพลิงสำหรับเป็นข้อมูลอ้างอิงและเปรียบเทียบเมื่อเปลี่ยนเชื้อเพลิง เป็นขยะมูลฝอย การประเมินสมรรถนะอาศัยข้อมูลขององค์ประกอบกําชเชื้อเพลิง สมดุลมวล และข้อมูลที่ได้ตรวจน้ำหนักและวัดความชื้น พบว่าใช้การเผาไหม้มีอุณหภูมิประมาณ 1000 องศาเซลเซียส ณ สภาวะที่เหมาะสมสำหรับการปฏิบัติงานจะมีองค์ประกอบของกําชเชื้อเพลิงโดยเฉลี่ยดังนี้ กําชคาร์บอน ไดออกไซด์ร้อยละ 15.12 กําชออกซิเจนร้อยละ 1.62 กําชมีเทนร้อยละ 1.73 กําชคาร์บอนมอนอกไซด์ร้อยละ 19.98 กําชไฮโดรเจนร้อยละ 10.34 และมีค่าความร้อนค่าสูง 4.15 เมกกะจูลต่อกรัมนาโนกรัม จากการประเมินสมรรถนะการผลิตพลังงานไฟฟ้าจากเครื่องผลิต กําชเชื้อเพลิงสามารถผลิตไฟฟ้าได้ประมาณ 6.15 กิโลวัตต์ หรือมีอัตราส่วนการผลิตพลังงานเท่ากับ 1.50 กิโลกรัมต่อกิโลวัตต์ชั่วโมง ที่อัตราการสิ้นเปลืองเชื้อเพลิงเท่ากับ 9.67 กิโลกรัมต่อชั่วโมง

Abstract

Energy can be harnessed from biomass by two processes named as biological and thermochemical processes. Among all thermochemical processes, the gasification deserves extensive attention because it helps in solving disposal problems, reducing environmental pollution and producing combustible fuel gas for thermal and power generation applications. The objective of this research is to study performance of a downdraft gasifier and evaluating performance for power generation. A 15 kg/hr of biomass batch type gasification has been designed, fabricated and operated on wood chips for evaluating its performance. In order to control the experimental conditions in laboratory, wood chip was used as reference in the place of municipal solid waste. The performance of the gasifier is evaluated in terms of measures determined from the gas composition, material balance data and other measurements. The temperatures along the height of the gasifier have been measured. The temperatures investigated in the combustion zone were around 1000°C. From the analysis on results, the gas sampled at the exit consists of 15.12%CO₂, 1.62%O₂, 1.73% CH₄, 19.98% CO and 10.34% H₂. The calculated higher heating value was 4.15 MJ/Nm³. The estimated electric power generation of this lab-scale gasifier was about 6.15 kW, with a specific consumption about 1.50 kg/kWh at fuel consumption rate of 9.67 kg/hr.